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Abstract
One of the challenges in building analytic performance models such as quewing network
models is obtaining service demands for the various workloads and various devices. While
some of these parameters can be easily measured, some may not be easy to obtain due
to the complexity that the measurements may entail or because it may not be possible to
stop the operation of a production system to collect measurements. This paper discusses
a black-box approach for computing unknown service demand parameters in quewing net-
work models. The paper addresses the problem of finding a subset of the service demand
values given the known values and given the values of the response times for all work-
loads. A unique closed form solution is given for the case of a single missing parameter
and a process for obtaining a feasible solution for the case of multiple missing parameters
is discussed. Numerical examples illustrate the approach. An online service demand es-
timator that successively computes better estimates for the service demands is described.
The experiments carried out with this estimator show a relatively low relative error in the

predicted response times when the estimated service demands are used.

1 Introduction

Significant research has been done in the development
of analytic models that can be used to predict the perfor-
mance of computer systems given a set of parameters [1, 2,
3, 8]. These models, called Queuing Network (QN) models,
have been shown to be quite successful and robust and have
been incorporated in many commercial performance predic-
tion and capacity planning products. The typical problem
solved by these formulations is depicted in Fig. 1, which
shows an analytic model of a computer system receiving a
set of input parameters and generating a set of performance
metrics.
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Figure 1: Typical Use of Analytic Performance Models.

Sometimes, we do not have all input parameters for a
performance model but can easily measure the response of

a system for which we want to build a model. So, the
problem we address in this paper is that depicted in Fig. 2
which consists of computing the values of the missing in-
put parameters from the known input parameters and from
the measured values of the performance metrics. This is
a kind of “inverse” problem from that illustrated in Fig. 1
and requires knowledge of the analytic performance model
plus some type of numeric multi-equation solver, as will be
discussed later in the paper.

The rest of the paper is organized as follows. Section 2
discusses basic concepts and notation used throughout the
rest of the paper. The next section provides a closed form
solution to the problem of finding a single unknown param-
eter. Section 4 discusses the sensitivity of the response time
values to the value of an input parameter. This result is im-
portant because it can be used by numeric multi-equation
solvers. Section 5 discusses the problem of computing more
than one missing parameter. The next section discusses
an online service demand estimator that successively com-
putes better estimates for the service demands and shows
the predictive power of the estimated service demands. Fi-
nally, section 7 presents a summary of the contributions of
this paper.


danny
Text Box
Proceedings of the 2008 Computer Measurement Group (CMG) Conference, Las Vegas, NV, Dec. 8-12, 2008.


ome . issi
S Analytic Model Missing
Input of a Input
Parameters Parameters
— > Computer System———
+
Equation Solver
Performance

Metrics

Figure 2: Novel Use of Analytic Performance Models.

2 Basic Concepts and Notation

Analytic queuing network (QN) models are very useful
in predicting the performance of computer systems [1, 5, 8].
A QN has a certain number of queues that each represents
physical devices in the computer system (e.g., processors,
I/O devices, and networks) or logical devices such as soft-
ware resources (e.g., threads, database locks, or critical
sections) [7]. These models may be used to represent vari-
ous classes of transactions or requests when there is a need
to capture workloads that vary in intensity and/or use of
resources. Such models are called multiclass models.

A QN model has two categories of parameters:

e Workload intensity parameters. They measure how
many requests of each workload are present in the sys-
tem (i.e., the concurrency level) or the rate at which
requests of a workload arrive to the system per unit
time. When workload intensity parameters are speci-
fied as arrival rates, the model is called an open model.
This paper focuses on these models.

e Service demands. The service demand of a request of
a given workload at a given device measures the total
service time (no queuing involved) of that request at
that device. Since service demands are the sum of
all service times at a device during the execution of a
request, they do not depend on the system load.

The solution of open multiclass QN models is well-
known and is simple to obtain from the input parame-
ters [5]. Let,

e RR: number of classes of the QN model,

o K: number of devices in the QN model,

Ao arrival rate (in tps) of class r requests,

D, ,: service demand (in sec) of class r requests at
device 7, and

e T,.: average response time of class r requests measured
at the real system.

Then, T, can be written as
K
D.
T, = E : (1)
R
o 1 =221 A X Diy

For example, consider a two-class model with the pa-
rameters given in Table 1. Using Eq. (1), the response time
for classes 1 and 2 are 0.20 sec and 0.24 sec, respectively.

Class

1] 2

Arrival Rates (in tps)

55 | 6.0

Service Demands (in sec)

CPU | 0.030 0.045
Disk 1 | 0.025 0.038
Disk 2 | 0.050 0.045

Table 1: Parameters for a 2-class open QN model.

The paper considers the problem of computing unknown
service demand parameters for a queuing network (QN)
analytical model given that we know the response time and
the workload intensity for all classes and some but not all of
the service demands. For example, consider that the service
demand D¢ py,1 in the previous example is not known, but
we know all other service demands and the response time for
classes 1 and 2. The question is whether we can compute
Dcpy,1 from the other parameters and from the response
times.

Let us first consider why this is an important problem
to solve. We start by first examining how service demands
are typically measured. Using the Service Demand Law [5],
we can write the service demand D; , as
Cur 2)

Ar

where U .- is the utilization of device ¢ by class r requests
and )\, is the arrival rate of class r requests. The total
utilization, U;, of a device 7 can be easily obtained from
the OS performance monitor. However, a direct measure-
ment of the values of U;, is not always straightforward
because the OS is not aware of the workload characteriza-
tion determined by the user. There are some techniques for
apportioning the total utilization into its class components
(see [5]). Thus, one of the reasons for addressing the prob-
lem stated above is that it may be sometimes difficult to
measure the service demand for a specific device and for a
specific class.

Another reason for being able to solve this problem, is
that some autonomic computing [4] techniques for design-
ing self-optimizing and self-configuring systems are based

Di,r =



on the system being able to dynamically build an analytic
performance model of the system and estimate its service
demands [6].

3 Computing a Single Service Demand
In this section, we assume that only one out of the
K x R service demands is unknown. In particular, assume
without loss of generality that we want to compute D; . as
a function of 7,, (r = 1,---,R), A\, (r = 1,---,R), and
Dj,(G=1,---,K;j#i4v=1---,Rv#r).
We can re-write Eq. (1) as

Di T
T = I d +
1- (szlﬂ,?ﬁr )\vDi,v) - )\rDi,r
K
Y = )
J=1,5#1 1 - Zv:l /\UDJ;U

The second term of Eq. (3) (call it ) does not depend
on D;,. The summation in the denominator of the first
term (call it ) also does not depend on D; ,.. Thus, Eq. (3)
can be written as

Di,r

TT B 1_ﬁ_)\rDi,r
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Eq. (4) can be easily solved for D; ;. and the solution is:

(Tr —a) 1=P)
Di r =
where X«
D; T
o= Z RJ" (6)
j=1,j#i 1 - Zwl AvDjo
and
R
B= > ADis. (7)
v=1,v#r

The above result indicates that D;, can be computed
using a closed form expression as a function of the response
time of class r and no other class, and as a function of the
arrival rates of all classes and of all known service demands.

Going back to the example of Table 1, we can compute
Dcpu,1 as a function of the arrival rates A, Az, the re-
sponse time of class 1 (equal to 0.20 sec), and all other
service demands. The result is 0.030 sec as expected.

It is important to note that service demand parameters
are load independent. Thus, once response times are mea-
sured for a given workload intensity level, a missing service
demand can be computed and used to predict response
times for any future value of the workload intensity. For
example, suppose that the arrival rate A1 is equal to 6.5
tps instead of 5.5 tps. Then, using Eq. (1), the response
time for class 1 becomes 0.22 sec, but Dcpy,; is still 0.030
as computed using the method above.

4 Analyzing the Rate of Change of the
Response Time with the Service De-
mands

It is obvious that as a given service demand value in-
creases, all response times increase. But, the question is
what is the rate of change of the response times of all
classes with respect to the variation of a given service de-
mand. Being able to answer this question is important to
decide which device should be upgraded in order to obtain
the largest reduction in response time.

To answer the question above, we need to compute the
partial derivative of the response time of a given class with
respect to the value of a service demand. We consider two
cases:

Case 1: Compute the partial derivative of T,. with re-
spect to the service demand D; 5, where s # r. To compute
this derivative, we re-write Eq. (1) as

Dir
T, = . +
1- /\sDi,s - Zu:l,v;ﬁs )\vDi,v

K
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The derivative of the second term in Eq. (8) with respect
to D; s is zero since it is independent of D; ;. Thus,

0T, Dy
9 D, (1 R /\UDZ-,U)Q ¥

The summation inside the parentheses in the denom-
inator of Eq. (9) is simply the utilization U; of device .
Thus,

a Tr /\le T
= . (10)
0D;s (1-U;)?
Case 2: Compute the partial derivative of T, with re-
spect to the service demand D; ,, where s = r. To compute

this derivative, we re-write Eq. (1) as

Dir
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The derivative of the second term in Eq. (11) is zero since
it is independent of D; .. Thus,
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From Egs. (9) and (12) we draw the following conclu-
sions:



e The partial derivative of the response time with re-
spect to a given service demand is always positive, as
expected. Eq. (9) is clearly positive. It is easy to see
that Eq. (12) is also always positive since the denomi-
nator is always positive since the numerator is positive
given that 31" | A,Di, is less than the utiliza-
tion of device 7, which has to be less than one for the
system to be stable.

e The partial derivative of the response time with respect
to the service demand at a given device i depends on
the service demands for device i for all classes but
does not depend on any service demand for any other
device.

e The partial derivative of the response time with respect
to a given service demand of a device i is inversely
proportional to the square of one minus the utilization
of that device.

Applying the results of Eqgs. (9) and (12) to the example
of Section 2, we obtain the derivatives shown in Table 2.
The table shows that the response time for class 1 increases
at a rate of 3.53 seconds per second increase in Dpisk2,1
when the value of Dpjisko,1 = 0.050. That is the highest
rate of increase among all other rates. The rate of increase
of the response time for class 2 with respect to Dpjsk2,2
is almost as high. That confirms that an upgrade in the
speed of disk 2 will have a very high impact on reducing
the response time of both classes.

Derivatives of T}
1 2
CPU 2.29 0.56
Disk 1 | 1.92 0.37
Disk 2 | 3.53 1.45
Derivatives of Ty
1 2
CPU 0.78 2.62
Disk 1 | 0.52 2.14
Disk 2 | 1.20 3.50

Table 2: Derivatives of the Response Times for Classes
1 and 2 with Respect to the Service Demands.

5 Computing More than One Service De-
mand

In the case where more than one service demand is un-
known, there is no unique solution, i.e., no single set of
values for the missing service demands that gives the same
response time values. For example, consider the parameters
in Table 3. The only difference with respect to the param-
eters in Table 1 is in the values of Dcpy,1 and Dpisk2,1-
However, the response times for classes 1 and 2 are exactly
the same as in the example of Table 1.

Class

1] 2

Arrival Rates (in tps)

55 | 6.0

Service Demands (in sec)

CPU | 0.041 0.045
Disk 1 | 0.025 0.038
Disk 2 | 0.041 0.045

Table 3: Different Parameters for a 2-class Open QN
model.

The problem can now be cast as:

e Given the response times T;. for all classesr = 1,-- -, R.
Let us call these response time goals.

e Given a subset S of the service demand values D; ,,
fori=1,---,Kandr=1,---,R.

e Given the arrival rates A, for all classesr =1,---, R.

e Find a set of values for the service demands not in-
cluded in S such that the resulting response times
computed using Eq. (1) are the same as the response
time goals.

The solution to this problem can be obtained by solving
the following non-linear constrained optimization problem:

Minimize
R K 2
D.
PSS (13)
R
r=1 < Pl ) DI Wi Di,v)
Subject to

Diﬂ« Z O V i, T
SE AN D, <1 Vi

Note that the term inside the parentheses in Eq. (13) has
to be equal to zero for each class  when the solution to the
problem satisfies Eq. (1). The first constraint simply says
that service demands cannot be negative and the second
constraint indicates that the utilization of any device has
to be less than one.

There are several packages that can be used to solve
this type of problem. Besides standalone packages, com-
panies such as Frontline Systems also offer solver engines
that can be used in C++, .Net, and Java programs (see
http://www.solver.com/). Microsoft's Excel has a Solver
available from the Tools menu. This solver uses the Gen-
eralized Reduced Gradient Algorithm, which is an iterative
numerical method.

These iterative solution methods start from an initial
solution, i.e., an estimated matrix of service demands that



has known service demands as well as some guessed val-
ues of service demands that have to satisfy the utilization
constraint U; = Zil M Dir <1 Vi If Ujis known
(and in fact it can be easily measured in most cases), it is
even easier to come up with some initial estimates for the
unknown service demands based on the known utilization
value. If the initial value for the matrix of service demands
satisfies Eq. (1), then all solutions to the minimization prob-
lem stated above provide the same result for any values of
arrival rates and their corresponding response times.

Consider the example problem shown in Table 4, which
requires that three service demand values be computed:
Dcpu,1, Dpiski,2, and Dpigk2 1. These missing values are
indicated by question marks in Table 4.

Class
T ] 2
Arrival Rates (in tps)
55 6.0
Response Time Goals (in sec))
0.4 | 05
Service Demands (in sec)
CPU ? 0.045
Disk 1 | 0.025 ?
Disk 2 ? 0.045

Table 4: Example Problem.

Using a numerical solver, such as Microsoft's Excel, we
obtain the complete set of values for the service demands
as shown in Table 5. When using Eq. (1) to compute the
response times we obtain the response time goals in Table 4.

Class
T ] 2
Arrival Rates (in tps)
55 | 6.0
Response Time Goals (in sec))
0.4 | 05
Service Demands (in sec)
CPU 0.078 0.045
Disk 1 | 0.025 0.088
Disk 2 | 0.035 0.045

Table 5: Results for Example Problem.

6 Online Estimation of Service Demands

Figure 3 illustrates an online estimator of service de-
mands that collects regular measurements on transaction
arrival rates for each class and measures their correspond-
ing response times in order to estimate service demands
based on the formulation described in the previous section.

The online estimator starts from an initial estimate Dy
of the matrix of service demands and computes a new es-
timate using the process in the previous section using as
inputs the measured values for arrival rates and response
times. The process is repeated several times as new ar-
rival rate and response time measurements are obtained.
At each step k, the starting point of the estimation process
is the matrix of service demands obtained in the previous
step. More precisely, the process used by the online esti-
mator can be described as follows:

Dy, = f(Xk, Th, Di1) (14)

where Xk is the set of arrival rates of all classes measured
at interval £, fk is the set of response times of all classes
measured at interval k, and Dj_1 is the estimated matrix
of service demands obtained at step kK — 1. This matrix
would typically contain some known service demands and
some estimated service demands.

The final estimate of the matrix of service demands is
obtained as the average, over all steps, of the matrices
obtained at all steps.

response
arrival rates Actual times
] System ]
Service
Y > Demand - v
Estimator
A 4
initial estimated
service service
demands demands

Figure 3: Online Estimation of Service Demands.

We now provide an example of online service demand
estimation and show the predictive value of the estimated
demands. Assume that the actual system has service de-



mands as specified in Table 5. However, the service de-
mands marked with a “?" in Table 4 are unknown. Table 6
shows values of service demands for Dcpu,1, Dpiski,2, and
Dnpjsk2,1 obtained at steps 1-8. The column “Load Factor”
is a multiplicative factor of the arrival rates in Table 5. The
last row of Table 6 shows the average service demands after
eight steps.

Step || Load Factor | Dcpu,1 | Dpiski,2 | Dpiska,1
0 0.032 0.090 0.035
1 0.95 0.057 0.088 0.066
2 1.00 0.060 0.088 0.065
3 1.05 0.061 0.088 0.066
4 1.10 0.062 0.088 0.067
5 1.15 0.060 0.088 0.070
6 1.20 0.064 0.088 0.069
7 1.25 0.063 0.088 0.072
8 1.28 0.056 0.088 0.070

[Ave. | [ 0061 | 0088 | 0068 |

Table 6: Several steps of the Online Service Demand
Estimator.

We then used the average values of the service demands
shown in Table 6 as input to an analytic queuing model
solver and obtained the response times for each load factor.
We also compared these response times with those obtained
for the same load factors but assuming the matrix of service
demands given in Table 5 (the actual system demands).

The graph of Fig. 4 shows the absolute value of the
relative error between the response time for the actual sys-
tem and that predicted with the estimated service demands.
The figure shows that the relative error varies from zero to
7.6% for workload 2 and from 0.8% to 18% for workload 1,
a reasonable value given that 50% of the service demands
are being estimated. The predictive power of the estimated
service demands is better for workload 2 because it has less
unknown service demands. It can also be seen that the rel-
ative predictive error increases with the workload intensity.

7 Concluding Remarks

This paper discussed the problem of finding unknown
values for a subset of the service demands that satisfy given
values of the response times in a multiclass open queuing
network model. In addition, the paper established the rate
of change of the response time of a given class with respect
to the value of a given service demand.

The contributions and observations of this paper can be
summarized as follows:

e When a single service demand D;, is unknown, its
value can be computed using a closed form expression
as a function of the response time of class r and no
other class, and as a function of the arrival rates of all
classes and of all known service demands.
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Figure 4: Absolute Relative Error on the Predictive
Value of the Estimated Service Demands.

e The rate of variation of the response time with respect
to a given service demand is always positive.

e The rate of variation of the response time with respect
to the service demand at a given device ¢ depends on
the service demands for device i for all classes but
does not depend on any service demand for any other
device.

e The rate of variation of the response time with respect
to a given service demand of a device i is inversely
proportional to the square of one minus the utilization
of that device.

e In the case where more than one service demand is
unknown, there is no unique solution, i.e., no single
set of values for the missing service demands that gives
the same response time values.

e In the case where more than one service demand is
unknown, a feasible set of unknown values can be ob-
tained by solving a constrained non-linear minimization
problem using any of the existing numerical solvers.

e An online service demand estimator is described. The
experiments carried out with this estimator show a
relatively low relative error in the predicted response
times when the estimated service demands are used.
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