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Abstract. Online auction sites have very specific workloads and user
behavior characteristics. Previous studies on workload characterization
conducted by the authors showed that i) bidding activity on auctions
increases considerably after 90% of an auction’s life time has elapsed,
ii) a very large percentage of auctions have a relatively low number of
bids and bidders and a very small percentage of auctions have a high
number of bids and bidders, iii) prices rise very fast after an auction
has lasted more than 90% of its life time. Thus, if bidders are not able
to successfully bid at the very last moments of an auction because of
site overload, the final price may not be as high as it could be and
sellers, and consequently the auction site, may lose revenue. In this paper,
we propose server-side caching strategies in which cache placement and
replacement policies are based on auction-related parameters such as
number of bids placed or percent remaining time till closing time. A
main-memory auction cache at the application server can be used to
reduce accesses to the back-end database server. Trace-based simulations
were used to evaluate these caching strategies in terms of cache hit ratio
and cache efficiency. The performance characteristics of the best policies
were then evaluated through experiments conducted on a benchmark
online auction system.

1 Introduction

Online auctions are becoming an important segment of the e-commerce space
with large players such as eBay and Yahoo!Auctions. It has been observed that
web requests follow Zipf-like distributions and that this fact can be used to design
caches that improve hit ratios [6]. That work was applied to web sites that mostly
served static pages. E-commerce sites generate most of their pages dynamically.
Our workload characterization work [1, 2, 16] of online auction sites also found
evidences of Zipf distributions, and power laws in general. Our previous work also
showed that the workload of online auction sites is substantially different from
that of online retailers and uncovered a plethora of interesting findings that can



be used, among other things, to improve the performance of online auction sites.
These findings include i) There is some bidding activity at the beginning stages
of an auction. This activity slows down in the middle and increases considerably
after 90% of an auction’s life time has elapsed. ii) A very large percentage of
auctions have a relatively low number of bids and bidders and a very small
percentage of auctions have a high number of bids and bidders. iii) Prices rise
faster in the first 20% of an auction’s life time than in the next 70% of its life
time. However, after the age of an auction reaches 90%, prices increase much
faster than in the two previous phases. iv) A relatively few users are responsible
for winning the majority of auctions. v) A relatively few sellers are responsible
for creating the majority of the auctions. vi) The majority of bids are placed by
a relatively small number of unique bidders.

We rely on these facts to suggest that a main memory auction cache at
the application server can save a significant number of accesses to a backend
database and thus significantly reduce the server-side latency for both read and
write requests at online auctions sites. We propose several cache placement and
replacement policies. We conducted an experimental validation of our policies
for various cache sizes using a trace derived from a data collection process in
which an agent collected data for over 340,000 auctions from Yahoo!auctions.
We measured the cache hit ratio and the cache efficiency. Our findings show
that small caches can be quite efficient and are able to provide reasonably large
hit ratios.

We then implemented a three-tiered online auction site based on RUBiS [3]
and on TPC-W (www.tpc.org). The workload generator for that site mirrored
the workload we identified in a large production auction site. We implemented
server-side caching using the best placement and replacement policies identified
in the trace-driven simulation. The experimental results allowed us to assess the
performance of the online auction site in terms of response time, throughput,
and other metrics.

The trace-based simulation and the experimental assessment using the three-
tiered testbed are complementary and serve distinct purposes. The evaluation
of cache effectiveness in terms of hit ratio and cache utilization does not require
a detailed simulation of the auction site components (e.g., processors, disks,
networks). Only the cache needs to be simulated. Once we identify the best
cache placement and replacement policies among the ones that we introduced and
proposed, we need to assess the performance of the site in terms of metrics such
as response time, throughput, and utilization of its components. This requires
taking into account the components of the site and their interconnections. An
adequate evaluation would require a very detailed simulation of the auction site.
Instead, we resorted to using an experimental testbed since it would provide us
with a much richer set of performance metrics.

Significant work has been done in the area of web caching [10, 11, 19, 22].
Many conferences including IEEE’s International Workshop on Web Content
Caching and Distribution (WCW), already in its 10th installement, and the In-
ternational World Wide Web Conference (WWW), started in 1994, have been



some of the preferred venues for cache-related publications. A good collection of
cache related information and resources is Brian Davidson’s web site (www.web-
caching.com/). A new cache document replacement policy considering the con-
tribution-to-sales of every document was proposed in [8]. A technique to improve
performance of web sites that deliver dynamic content was proposed in [5] and
is based on the notion of degrading dynamic content based on elapsed time of
content generation. In general, web caching work can be classified into browser
caching, client-side proxy caching, network caching (as in Content Delivery Net-
works), and server-side caching [19–21]. Our work falls into the realm of server-
side caching and is specific to online auctions sites. The authors are not aware
of any other auction-site specific caching study that uses real traces from a large
production auction site.

An important distinguishing feature of our work is that it deals with caching
in a non-traditional way. Previous caching studies have relied on temporal fea-
tures (e.g., Least Recently Used), frequency aspects (e.g., Least Frequently
Used), or even space characteristics (e.g., size of a Web document). We deal
with indicators that are relevant to a specific online business, i.e., bidding ac-
tivity, and use these indicators to drive the cache placement and replacement
policies. Thus, it is not enough to know that someone viewed an item in order to
decide to cache it; it is rather more important to consider the fact that someone
bid on that item. Our policies are therefore business-oriented because bidding
activity is directly related to the revenue generated by an auction site. Another
noteworthy aspect of our study is that it is driven by a thorough workload
characterization study we performed on a very large production auction site.
Therefore, all trace-driven simulations and experimental evaluation is based on
realistic workloads. Finally, our study incorporates both simulation and actual
implementation in order to provide a complete assessment of the caching policies
we devised. Trace-driven simulation is used to evaluate cache hit ratios of several
policies. Experiments on a three-tiered auction benchmark site is used to assess
performance metrics, including response time and throughput, for the caching
policies that have the best hit ratios.

The rest of this paper is organized as follows. Section two provides some
background and definitions used throughout the paper and introduces in more
detail the notion of an auction cache. Section three describes typical user be-
havior using a Customer Behavior Model Graph. The next section describes the
cache placement and replacement policies studied here. The policies are evalu-
ated in section five with the help of trace-driven simulation using data gathered
from a large production auction site. Section six describes our implementation of
a three-tiered auction site that uses the best cache placement and replacement
policies identified in section five and provides the results of the evaluation of its
performance in terms of response time and thorughput. Finally, section seven
presents some concluding remarks.



2 Background

An open auction (i.e., one that is still in progress) is defined by several param-
eters including: opening time, to, closing time, tc, and the total number of bids,
b(t), submitted up to time t. From these parameters, one can define tp(t), the
percent remaining closing time at time t, as [(tc − t)/(tc − to)] × 100.

The typical software architecture of an auction site is multitiered and is
composed of three layers as indicated in Fig. 1. The first layer comprises web
servers that handle the incoming HTTP requests and serve static HTML pages.
Most pages served by an auction site are dynamically generated by an application
server, which implements the site’s business logic. The application server may
need to access persistent data stored in a backend database server. An example
is the processing of a request to view all bids for a given auction. The bid
information comes from the database. The application server then generates an
HTML page with the bid information. This page is passed back to the web
server, which sends the page back to the browser.
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Fig. 1. Architecture of an online auction site.

The performance of online auction sites can potentially be improved if a
fraction of the millions of auctions present at any time is cached in the main
memory of the application server, thus avoiding most of the trips to the database.
As indicated in Fig. 1, when the information about an auction can be found in
the main memory cache of the application server, a cache hit occurs. Otherwise
a cache miss occurs and the information about the auction has to be retrieved
from the database. The auction cache can store the following information about
an auction:

– Auction information: includes headline, textual description, names of the
files that store thumbnail images and possibly larger images, number of bids,
highest bid, highest bidder ID, bid increment, starting price, and seller ID.



– Bid history: all the bids placed for the auction. Each bid includes bidder ID,
overall bid sequential number, bid price, and proxy flag (indicates if the bid
was manually placed or if it was placed by an agent on behalf of the bidder).

– Seller information: specifies the seller of the auction and his/her rating in-
formation, number of auctions sold, and date since the seller has been a
member of the auction site.

In this paper we are only concerned with transactions that can potentially
be served by an auction cache. Therefore, we do not consider transactions such
as auction creation, registration, and login. The transactions that may be served
by the cache can be divided into read-only and write transactions. Read-only
transactions include View Bid, View Auction Information, View Auction Details
(e.g., description of items, warranty), View Seller Information and Ratings, and
View Comments on the Seller. The main write transaction is Place Bid.

There could be a problem executing write transactions at the cache without
refreshing the database immediately. If a power failure occurs, the content of the
main memory cache could be lost and with it all updates (i.e., all bids on the
cached auctions). However, large production e-commerce sites maintain multiple
levels of backup power supplies such as separate power sources, UPS, and power
generators. So, power failures at popular e-commerce sites are extremely rare.
Therefore, we assume that the auction cache survives power failures. This as-
sumption assures that write transactions can be executed at the cache. Failures
due to software crashes are also possible. To cope with them, one may write a
log of all write transactions at the application server in parallel with writing into
the cache. A background process can be used to refresh the backend database
at regular intervals from the log.

Most production auction sites have several web servers and several applica-
tion servers. Therefore, each application server will have its own auction cache.
To deal with problems of cache coherence we assume that any given auction
can be cached at one and only one application server cache. This can be ac-
complished by identifying each auction by a unique id. Then, one can devise a
function f that takes as input an auction’s unique id and returns the id of one of
the application servers. The id of the application server that handles requests for
a given auction can be first sent in a cookie and returned in a cookie to the web
server so that the request can be dispatched to the proper application server.

Auction sites have grown rapidly in the last couple of years, and recent statis-
tics indicate that eBay carries about 50 million items for sale at any time on its
site [12]. Yahoo!Japan carries 7.5 million items for sale [23]. We estimate that
each auction, including its details, bids history and seller information, requires
about 8KB of cache space. Thus, to cache 5% of all auctions, an auction site
carrying 10 million items for sale would require 10, 000, 000×0.05× 8KB = 4GB
of main memory cache. This estimate does not include other items to cache, such
as category names, state names, payment types and other static information to
serve web requests quickly. Thus, for a caching scheme to be effective, it must
provide a relatively high cache hit ratio for a reasonably small cache.
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Fig. 2. Customer Behavior Model Graph (CBMG) for an online auction site.

3 User Behavior

The data gathering process from an actual online auction site only provided infor-
mation about write transactions—auction creation and bid placement. Typically,
users generate read transactions in the form of browse and search actions—e.g.,
view bid, search items, view seller information—that are not stored by the site.
Nevertheless, these actions are important when evaluating the performance of
such sites. Therefore, we needed to build a user model that captures major user
activities and the transitions between them. Such model, in the form of a Cus-
tomer Behavior Model Graph (CBMG), defined by Menascé et al. [18], was used
to create a trace of user activities that includes all typical transactions (both
read and write) generated from users. This model allowed us to derive the rela-
tive number of transactions of each type within a user session (i.e., a sequence of
consecutive requests from a user during the same visit). That information was
combined with the actual trace of write-only transactions to produce a complete
trace of read and write actions.

We describe in what follows a typical user session using the CBMG. Each
node of the graph represents a state in which a user may be during a session.
Nodes of a graph are connected by directed arcs that indicate the possible tran-
sitions between states. Arcs are labeled with the probability that a transition
between states occurs. Figure 2 depicts an example CBMG for an online auction
site. Transactions that are not relevant to the cache are not shown. Transitions
from each state to an Exit state are not shown for better readability. A CBMG
can be used to determine the average number of visits per session to state i, Vi,
as a function of the transition probabilities between states as shown in [18].



The average number of visits, Vi, to state i depends on the average number
of visits to the neighboring states of state i and on the transition probabilities
between these states and state i. For example, state s in Fig. 2 has five neighbors
(h, s, d, i, and v). The contribution of state d to Vs is equal to the number of
visits to state d, Vd, multiplied by the probability of a transition from state d to
state s, pds. Applying this method to the CBMG of Fig. 2, yields the following
equations.

Vs = phs + pssVs + pdsVd + pisVi + pvsVv (1)

Vd = psdVs (2)

Vi = pdiVd = pdi psdVs (3)

Vv = pivVi = piv pdi psdVs (4)

Vb = pvbVv = pvb piv pdi psdVs (5)

The value of Vs can be obtained by solving the system of linear equations in (1)-
(5):

Vs =
1

1 − (pss + pdspsd + pispdipsd + pvspivpdipsd)
(6)

The ratio between read and write transactions, RW , is given by RW =
(Vd+Vi+Vv)/Vb. Using the following typical values for the transition probabilities
phs = 1.0, pss = 0.8, psd = 0.1, pdi = 0.55, piv = 0.5, pvs = 0.75, pvb = 0.2
pds = 0.4, pis = 0.45, yields a value of RW equal to 33. Caching enhances the
performance of auction sites because there is typically a large number of read
requests before a write request is submitted to an auction site as illustrated by
large values of RW.

4 Cache Placement and Replacement Policies

Our work deals with caching in a non-traditional way. Previous caching studies
have relied on temporal features (e.g., Least Recently Used), frequency aspects
(e.g., Least Frequently Used), or even space characteristics (e.g., size of a Web
document) [20]. We deal with indicators specific to online auction sites, such
as bidding activity, and use these indicators to drive the cache placement and
replacement policies. In other words, it is more important for caching purposes
to know that someone bid on an item than knowing that the item was viewed
by a user. Our policies are therefore business-oriented because bidding activity
is directly related to the revenue generated by an auction site.

In this section, we propose novel bidding and auction age based caching poli-
cies, which are evaluated for effectiveness in Sec. 5. Two types of caching policies
are considered: cache placement and cache replacement. A cache placement pol-
icy determines if an auction should be placed in the cache when it is referenced.
A cache replacement policy determines which auction should be removed from
the cache if the cache is full and the cache placement policy decides to add a
new auction to the cache.



In steady-state, it is very likely that the cache will always be full. Consider
now two cases. The first uses an “always place” approach (i.e., no placement
policy). In this case, an auction item has to be removed from the cache every
time that a new incoming item is referenced. It is possible that the evicted
item, selected by the replacement policy, is more valuable than the incoming
item. In the second case, a placement policy decides first if the incoming item
is valuable enough to be cached, avoiding the potential problem of removing
valuable items from the cache. Therefore, a placement policy will be evicting
items from the cache less often. Another reason for having a placement policy is
that there is a cost associated with evicting an auction from the cache since its
state has to be refreshed in the backend database server. Thus, having a proper
placement combined with a replacement policy is critical for implementing an
efficient caching system.

Assuming an unlimited cache size, the hit ratio for a given workload is a
function of the nature of the workload and of the cache placement policy. This
hit ratio is the optimal hit ratio that can ever be achieved when the cache
size is limited. The infinite-cache behavior can then be used as a benchmark
for comparing hit ratios for the limited cache size case. Our results show that
relatively small cache sizes yield the infinite cache size hit ratios as illustrated
in Section 5.

4.1 Cache Placement Policies

We created two different types of policies based on bidding activity and on
remaining time till auction closing. Our activity based (AB) policies consider
the number of bids placed on an auction and the time based policies (PRT)
consider the percent remaining time till closing. We also combined these two
types to form hybrid policies.

The following four policies were evaluated using our trace-driven simulation:

– ABn: this is an activity based policy. An auction referenced at time t is
cached if the number of bids placed until time t is at least equal to n for that
auction, i.e., b(t) ≥ n. For example the AB2 policy caches auctions with at
least two bids already submitted at time t.

– PRTp: this is a percent remaining time policy. An auction is cached at time
t if the percent remaining closing time is less than p, i.e., tp(t) < p. For
instance, the PRT30 policy caches auctions referenced within the last 30%
of their duration.

– H-AND-n-p: this a hybrid policy that caches an auction if both ABn and
PRTp would cache it. For example, a H-AND-2-30 policy caches auctions
that have at least two bids and are within the last 30% of their duration.

– H-OR-n-p: this is a hybrid policy that caches an auction if ABn or PRTp
would cache it. A H-OR-2-30 policy caches an auction if it has at least two
bids or it is within the last 30% of its duration.

Figure 3 shows a relationship between the various policies in the unlimited
cache size case. An arrow from policy a to policy b indicates that the hit ratio
for a is higher or the same as that of policy b in the unlimited cache size case.
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Fig. 3. Relation between placement policies for unlimited cache size.

4.2 Cache Replacement Policies

For cache replacement policies we considered activity based (AB) and time based
(PRT) policies as well as traditional replacement policies, such as Least Recently
Used and Least Frequently Used, found in operating systems [9] and web server
systems [14].

The cache replacement policies considered in our study are:

– AB: this replacement policy is only used in conjunction with the ABn place-
ment policy. It removes the auction with the smallest number of submitted
bids.

– PRT: this replacement policy is only used with the PRTn placement policy.
It replaces from the cache the auction with the largest percent remaining
time to close.

– AB-PRT: this replacement policy is used with both H-AND-n-p and H-OR-
n-p. It removes the auction with the largest percent remaining time to close
among the ones with the smallest number of bids.

– Least Recently Used (LRU): replaces the auction that has received a request
further in the past.

– Least Frequently Used (LFU): replaces the auction that has received the
smallest percentage of requests among all auctions in the cache.

A caching policy is then specified by its cache placement and replacement
policy. We use the naming convention <cache placement>:<cache replacement>
to name the caching policies investigated here. For example, AB2:LRU means
that AB2 is the cache placement policy and LRU the replacement policy.

5 Cache Efficiency Analysis

The experimental evaluation of the policies described above was carried out with
a trace-based simulation. The trace is derived from actual data collection per-
formed for our previous workload characterization and closing time rescheduling
work [1, 16, 17]. The data collection process was described in detail in these pa-
pers. We provide here a brief summary of the process. A data collection agent



gathered a total of 344,314 auction items created during the month of January
2003, belonging to over two thousand categories, from the Yahoo!Auctions site.
A total of 1.12 million bids were placed on these auctions.

For this paper we used three weeks worth of that data, which contains 210,543
auctions, and 156,074 bids on these auctions. Note that the data we collected
only contains the auction creation and bid records for each auction. Thus, we
do not have data on read-only requests (e.g., view bids, view seller info, view
auction details). However, for the purpose of the simulation, we inserted thirty
read requests in the trace before each bid to maintain a RW ratio compatible
with the CBMG analysis of section 3.

We varied the cache size to assess the impact of the placement and replace-
ment policies as the cache size changed. We report the cache size as a percent,
Pc, of the total number of auctions Na that are cached. Thus, a 5% cache size
implies that 5% of the 210,543 auctions can be stored in the cache. The amount
of main memory required per auction is around 8,000 bytes.

Each experiment used a combination of cache placement and cache replace-
ment policy and computed the following metrics for different cache sizes:

– Cache hit ratio (H): percent of cacheable transactions that were served from
the auction cache.

– Cache efficiency (ε): defined as the ratio (H×100)/Nc, where Nc is the aver-
age number of auctions in the cache. This number is computed, using Little’s
Law [13], as the product of the average cache throughput (i.e., number of
auctions that leave the cache divided by the duration of the experiment)
and the average time spent in the cache per auction. The cache efficiency ε
measures how much hit ratio one gets per cached auction on average.

Due to space limitations we only present a small subset of all graphs we
generated in our simulations. A general observation seen from all graphs is that
a relatively small cache, e.g., 4 to 5% of all auctions is enough to generate cache
hit ratios of around 50 to 70%. Even very small caches of about 1% can generate
cache hit ratios as big as 40%.

5.1 Results for ABn Placement Policies

Figure 4 displays the cache hit ratio for the AB1:AB, AB2:AB, and AB3:AB
policies as a function of the percent cache size. The figure indicates that the three
policies have almost the same cache hit ratio for very small cache sizes. However,
as the cache size increases, AB1:AB outperforms AB2:AB, which outperforms
AB3:AB, as discussed above. It can also be observed that the cache hit ratio
increases much faster at the beginning for smaller cache sizes. It can also be
observed that a cache size of 0.5% is sufficient to provide a cache hit ratio of about
35% for all three policies. It can also be seen that all three policies approach very
fast their unlimited cache size performance. For example, the AB1:AB policy has
a limiting hit ratio of 68.2%. Ninety nine percent of this value is achieved for a
4% cache size. Around 86% of the limiting performance of AB1:AB is obtained
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Fig. 5. Comparison among replacement policies AB, LRU, and LFU for place-
ment policy AB1.

for a 2% cache size. In terms of efficiency, AB3:AB outperforms AB2:AB, which
outperforms AB1:AB. For example, for a Pc = 0.25%, the efficiency of AB1:AB
is 0.078 while that of AB3:AB is 0.086.

Figure 5 shows a comparison among the replacement policies AB, LRU, and
LFU when used in conjunction with placement policy AB1, the best in Figure 4.
As expected, for sufficiently large cache sizes, i.e., for Pc > 4.5% all three policies
yield the same result. Smaller cache sizes distinguish the three policies with
LRU being the best, followed by AB, and then by LFU. For example, for Pc =
0.25%, LRU outperforms AB as a replacement policy by a 53% margin. In fact,
AB1:LRU has a 43% hit ratio while AB1:AB has a 28.1% hit ratio for Pc =
0.25%.



5.2 Results for PRTp Placement Policies

Figure 6 compares policies PRT10:PRT, PRT30:PRT, and PRT50:PRT. As was
the case with the ABn placement policy, the increase in hit ratio is much faster
for smaller caches. The unlimited cache size hit ratios for these policies are 18.6%,
32.2%, and 44.2%, respectively, and occurs for a value of Pc equal to 6%. The
difference in hit ratio is significantly reduced for smaller cache sizes. For example,
for Pc = 0.25% the hit ratios for PRT10:PRT, PRT30:PRT, and PRT50:PRT,
are 15.3%, 19.5%, and 23.5%, respectively.
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Fig. 6. Hit ratio for PRT10:PRT, PRT30:PRT, and PRT:50.

Figure 7 compares the effects of the PRT, LRU, and LFU replacement policies
combined with the PRT50 placement policy. For a percent cache size of 6% all
three replacement policies display similar results because the unlimited cache
size behavior is already achieved at this point. For smaller cache sizes, LRU
is slightly better than PRT, which is slightly better than LFU. The difference
between these replacement policies when combined with PRT is not as marked
as in the ABn case.

5.3 Results for the Hybrid Policies

We consider now policies of the type H-AND-n-p:AB-PRT in Fig. 8. The un-
limited cache size behavior is achieved for much smaller cache sizes than in the
ABn and PRTp cases (Pc = 2.5% instead of Pc = 6.0%). As indicated in Fig. 3,
one would expect that for large cache sizes, the following orders, from best to
worst, to hold: i) H-AND-1-30 → H-AND-2-30 → H-AND-3-30; ii) H-AND-1-50
→ H-AND-2-50. iii) H-AND-1-50 → H-AND-1-30. iv) H-AND-2-50 → H-AND-
2-30. These relationships are confirmed in the graph of Fig. 8. However, Fig. 3
does not allow us to infer a relationship between H-AND-1-30 and H-AND-2-50.
Our experiments indicate, as shown in Fig. 8, that H-AND-2-50 outperforms H-
AND-1-30. For Pc = 2.5% the hit ratio of H-AND-2-50 is 15% higher than that
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Fig. 7. Comparison among replacement policies PRT, LRU, and LFU for place-
ment policy PRT50.

of H-AND-1-30 and for a small cache of Pc = 0.3%, the hit ratio of H-AND-2-50
is 20.0% higher than that of H-AND-1-30. This means that it is better to start
caching earlier as long as the auction seems to be more popular.
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Figure 9 is similar to Fig. 8 except that a H-OR placement policy is used
as opposed to a H-AND one. The H-OR policies provide higher hit ratios than
their H-AND counterparts. We already knew that would be the case for unlimited
cache sizes according to Fig. 3. For example, while H-AND-1-50:AB-PRT has a
cache hit ratio of 37.8% for Pc = 2.5%, H-OR-1-50:AB-PRT has a cache hit ratio
of 59.0% for the same value of Pc. Consider now the same relationship for a small
cache size of Pc = 0.3%. The H-OR-1-50 policy outperforms the H-AND-1-50
one by a factor of 1.7.
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Another observation from Fig. 9 is that a large cache is required to achieve
an unlimited cache size performance level (Pc = 6.5% as opposed to Pc = 2.5%)
when compared to the H-AND case. For the large cache sizes, the following
relationships, which are in accordance with Fig. 3, can be observed (from best
to worst): i) H-OR-1-50 → H-OR-2-50. ii) H-OR-1-30 → H-OR-2-30 → H-OR-3-
30. iii) H-OR-1-50 → H-OR-1-30. iv) H-OR-2-50 → H-OR-2-30. It is interesting
to note the crossovers between H-OR-1-50 and H-OR-1-30 and between H-OR-2-
50 and H-OR-2-30. They show that for smaller cache sizes, the preferred policy
is not the one that has the best performance for unlimited cache sizes.

5.4 Policy Comparisons

This section compares the best policies of each category—AB1:LRU, PRT50:LRU,
H-OR-1-50:LRU, and H-AND-1-50:LRU—with respect to the cache hit ratio H
and the cache efficiency ε. Figure 10 compares these policies with respect to H
and shows that AB1:LRU and H-OR-1-50:LRU are very similar and far superior
than PRT50:LRU and H-AND-1-50:LRU. AB1:LRU is slighty superior than H-
OR-1-50:LRU for 0.25% ≤ Pc ≤ 4.0%. For Pc > 4.0%, H-OR-1-50:LRU has a
higher hit ratio. Figure 11 compares the same policies in terms of cache efficiency.
It can be seen that, for all four policies, ε decreases very fast as the cache size
increases indicating that small caches are very effective because of the power law
characteristics of auction workloads [1, 16]. In fact, the efficiency curves also fol-
lows a power law. For example, using regression on the AB1:LRU efficiency curve
yields ε = 0.001704/P 0.703

c . As can be seen, AB1:LRU and H-OR-1-50:LRU have
higher cache efficiency than the two other policies.

6 Experimental Performance Evaluation

Section 5 provided an extensive evaluation of various cache placement and re-
placement policies using trace-based simulation. We then implemented the best
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policies in a multitiered auction site and conducted experiments to evaluate the
best placement and replacement policies in an experimental setting by varying
the load expressed in terms of the number of client emulators. This allowed us,
among other things, to compare response time and throughput with and without
caching.

6.1 Experimental Setup

Our experimental online auction site is based on Rice University Bidding Sys-
tem (RUBiS) [3, 7]—a transactional web service benchmark that supports the
major activities of an online auction site—and on the Transaction Performance
Processing Council’s e-commerce benchmark (TPC-W).

The experimental auction site distinguishes between three types of user ses-
sions: visitor, buyer, and seller. Each session is represented by a Customer Be-
havior Model Graph (CBMG) [18]. Visitors can browse and search on comments
without authenticating themselves. Buyers and sellers need to be authenticated
before bidding or creating new auctions. The site also supports leaving com-
ments and viewing comments on other registered users as is typically supported
by most online auction sites. A buyer session includes viewing bids on an item,
bidding on an item, and viewing comments from others. Seller sessions include
payment of listing fees, specifying details of the auction item, and the auction
details, such as duration in days, minimum price (reserve price), bid increments,
whether the item is available as a buy-it-now item, and buy-it-now price, if
applicable.

There are two significant differences between our benchmark and RUBiS.
The first difference lies on the client emulator, which generates a load that more
closely reflects a realistic activity given that it is based on our previous work
on workload characterization of a large production auction site [1, 2, 16]. As
we demonstrated in that work, bidding activity depends on auction age. To
generate realistic bidding activity we used the following approach. If a bid cannot
be placed, the user session goes back to a previous state, from which it can
navigate to a new path. We modified RUBiS’ client emulator to view auctions
that are closing soon more often than those that just opened. We keep track of
of auctions viewed at each age interval. The process to select an auction to view
among the auctions displayed by a search is done in a way that the minimizes
the error between the current and desired view auction distribution. After a
number of such executions, the expected and actual distributions converge. The
distribution of bids submitted during each auction age interval versus the lifetime
of an auction is shown in Fig. 12. This distribution closely mirrors the observed
distribution at a real large production auction site [1, 16]

The second main difference is in the server side. We implemented the server-
side cache at the application server as described in the previous sections of
this paper. We cached auction information (id, name, description, initial price,
quantity, reserve price, market value, buy now price, number of bids, maximum
bid, starting date, end date, seller, and category), seller information (id, name,
e-mail, rating, balance, creation date, and region), bid history (id, user id, item
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Fig. 12. Percentage of bids submitted vs. life of an auction.

id, quantity, bid, maximum bid, and bid date), comments (id, from user id, to
user id, rating, comment date, and comment text), region information (id and
name), and categories (id, parent category id, and name). Regions and categories
always remain in the cache while the other items are placed and replaced from
the cache according to the placement and replacement policies. When all the
auctions of a given seller are removed from the cache, the seller information,
along with its comments are also removed. When an auction is removed, its bid
history is removed from the cache. The cache size is a configurable parameter
set to 3% of all auctions for all experiments.

We evaluated experimentally the best placement policy identified during our
simulations, which is the activity based placement policy with a single bid as the
threshold, i.e., the AB1 placement policy). Since we cache multiple data elements
(auctions, bids, users, comments etc.) we used the AB bidding activity based
cache replacement policy instead of LRU. This is done because, as described
above, it makes sense to remove from the cache items that are no longer relevant
(for example, the seller information is removed from the cache when there are
no more auctions for that seller in the cache). Thus, our experiments use the
AB1:AB policy pair throughout.

The server side of the experimental setup (see Fig. 13) is composed of three
Intel Pentium 4 machines running Linux to implement the Web server (Apache
version 2.0), application server (servlets provided with RUBiS modified to handle
caching running on Tomcat version 4.2 as servlet container), and database server
(MySql version 3.23). We used four client machines also running Linux. These
client machines run our modified browser emulator. It was necessary to use four
client machines to make sure that the clients would not become a bottleneck in
terms of being able to drive the auction site to high utilizations.

The client emulator generates workload on the auction site by creating one
thread per user session. Each user session creates load on the site by placing
various HTTP requests on a persistent HTTP connection. The load on the site
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can be varied by changing the number of user sessions. Each user session sends
an HTTP request, reads the response, and follows embedded hyperlinks in the
response in a loop until an end state is reached. The user session waits between
placing requests emulating the “think time” of real users as required by TPC-
W. The next state is determined by a CBMG that can be configured to create
different types of loads by changing the transition probabilities in the CBMG.
We use the default bidding mix used by RUBiS [3] in all our experiments, which
is based on eBay’s activity.

Each experiment ran for thirty minutes navigating the auction site and
roughly generating the activity illustrated in Table 1 from one of the experi-
ments. We compressed time in order to complete all experiments in a reasonable
amount of time. We modeled one day of real time as one hour in the experiments.
So a one-hour auction represents a one-day auction. We also made sure that some
auctions would be closing within a few minutes after the experiments started.

Before the start of each experiment we i) delete existing auctions and bids
placed on them, ii) re-generate 32000 auction items with start dates randomly
created in the past and in the future in order to create a realistic distribution
of auctions closing soon at the start of the experiment, iii) insert auctions into
the database, iv) restart the web server, application server, and database server.
During the experiments we use sar to gather CPU, memory, and disk activity
information on all the machines in the environment. At the end of the experiment
we merge the results from each client.

6.2 Experimental Results

The results in this section will be classified under the following categories: a)
system-wide performance metrics; b) CPU utilization results for the web, ap-
plication, and database servers; c) memory utilization for the Web server and
application server; and d) disk activity at the database server. Disk activity at



Table 1. Transaction type distribution per user session.

Request Type % Visits Request Type % Visits
Home 4.19 Register Form 1.18
Register user 1.16 Browse main page 7.15
Browse categories 5.05 Search items in categories 21.63
Browse regions 2.00 Browse categories in region 1.97
Search items in region 4.64 View item 27.58
View user info 0.94 View bid history 0.79
Put bid authorization 4.47 Put bid 4.86
Store bid 3.66 Put comment 0.24
Store comment 0.23 Authentication for selling 0.54
Select category to sell 0.53 Sell item form 0.52
Submit item registration 0.52 About me (authorization form) 1.64
About me 1.83 Back probability 1.33
End of session 1.37

the web and application servers and memory utilization at the database server
is not discussed because of their negligible impact on performance.

System-wide Performance Metrics Figure 14 shows the variation of the
throughput of the auction site, measured in HTTP requests per second, as a
function of the number of clients for the situation with and without caching.
The figure shows that in both cases, the throughput saturates at high loads as
expected. However, caching provides a 56% increase in throughput. For example,
at 600 clients the throughput with caching is 51 requests/sec, while without
caching is 32.7 requests/sec.
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Fig. 14. System throughput (requests/sec) vs. number of clients.



Figure 15 depicts the variation of the response time at the auction site as
a function of the number of clients. Response time is measured at the client
and includes the time to download all images of a page. It also includes the
time necessary for retries in case of timeouts; a maximum of five retries can
be attempted before aborting a request. As it can be seen, caching was able to
significantly reduce the response time especially at high loads. For instance, at
600 clients, the response time without caching is 8 seconds, i.e., over three times
higher than the response time with caching, which is 2.6 seconds.
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Fig. 15. System response time (sec) vs. number of clients.

In e-commerce activities, response time is important and customers tend
to abandon a site if response times are large. We looked at the percentage of
requests that have a response time higher than 5 seconds to gives us an indication
of what would be the percentage of lost requests. This is depicted in Fig. 16. As
it can be seen, as the load increases, the percentage of requests with response
times exceeding 5 seconds increases much faster when caching is not used. For
example, for 600 clients 67% of the requests take longer than 5 seconds while
caching is able to reduce that number to 12%.

CPU Utilization The variation of the utilization of the CPU of the Web server
as a function of the load is depicted in Fig. 17. Our results show, consistently
with [3, 7], that the Web server’s CPU is the bottleneck of the system. The
Web server serves many static HTML pages and images. Despite a much higher
throughput at high loads, the use of caching provides slightly lower utilization
of the CPU at the Web server.

Figure 18 shows the utilization of the CPU for the application server. It can be
seen that the utilization levels of the CPU at the application level are much lower
than that for the Web server. The figure shows an interesting crossover point
between the caching and non-caching curves. At light loads, the throughput is
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almost the same for both caching and non-caching cases (see Fig. 14). However,
the non-caching case has a slightly higher CPU utilization because of various
reasons: establishing more connections with the database server, putting together
SQL calls, and managing a larger number of concurrent threads. As the load
increases, the throughput increases more with caching than without caching as
seen in Fig. 14 and since caching takes place at the application server, its CPU
utilization requires more CPU processing for a higher number of requests per
unit time. Thus, at high loads, the CPU utilization of the application server is
higher for the caching case.
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The utilization of the database server’s CPU, shown in Fig. 19, which shows
that with caching the CPU utilization is significantly lower since many requests
can be satisfied by the cache at the application server and do not need to go to
the database server. For example, at a high load of 600 clients, the non-caching
CPU utilization is 2.3 times higher than in the caching case.

Memory Utilization Figure 20 shows the variation of the amount of memory
used by the web server machine including memory allocated to the operating
system, http server, and threads created to process http requests, as a function
of the number of clients. As the figure illustrates, the use of caching reduces
the amount of memory required because when caching is not used, requests
take longer to be processed (see Fig. 15) and request-related data has to be
stored in the system for longer time. For example, for 600 clients, 427 MB are
required when caching is not used while 372 MB are needed if caching is used.
Another way of understanding this phenomenon is through an analysis of the
average number, n̄, of concurrent requests in the system for the same external
load. Using Little’s Law [13] we can compute the average number of concurrent
requests in the system as the product of the throughput by the average response
time. So, for caching, n̄ = 51 × 2.7 = 138 and for the non-caching case it is
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Fig. 19. Database server CPU utilization vs. number of clients.

n̄ = 32.7 × 8 = 262. Thus, when caching is used, there are less requests in the
system for the same number of clients and therefore less memory is required.
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The memory utilization of the application server is shown in Fig. 21. The
difference between the caching and non-caching curves is constant and equal to
23 MB, which is exactly the amount of main memory needed by the application
server to cache auction, bidding, and user data. It should be noted that the
y axis of this figure starts at 180 MB, so the difference between the curves is
relatively small. For example, for 600 clients, the use of caching requires 11.6%
more memory.

Disk Activity Figure 22 shows the I/O activity of the database server indicat-
ing the number of 512-byte blocks read and written per second for the caching
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Fig. 21. Application server memory utilization (in MB) vs. number of clients.

and non-caching cases. The first observation is that there is significantly more
read than write activity. The second observation is that for all cases, the I/O
activity follows the trend observed in the throughput curves since as the num-
ber of requests processed increases so does the I/O activity as explained by the
Forced Flow Law [15]. Finally, despite the fact that caching implies in less I/Os
to the database per transaction, it also increases significantly the throughput
resulting in slightly higher I/O activity for the caching case. For example, for
600 clients, caching results in 12.7% more reads/second in the caching case than
in the non-caching one. But as seen before, the throughput in this case is 56%
higher. This indicates that the cache hit ratio for 600 clients is the difference,
i.e., 56% − 12.7% = 43.3%.
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7 Concluding Remarks

This paper proposed several cache placement and replacement policies and ana-
lyzed them through trace-based simulations using traces from a large production
site. Some general observations from our analysis are: i) LRU is the cache re-
placement policy that outperforms the others when combined with any of the
placement policies considered. For example, for Pc = 0.25%, AB1:LRU outper-
forms AB1:AB by a 53% margin. ii) Hit ratios increase much faster for small
cache sizes than for larger ones. For example, for the AB1:AB policy, an increase
in cache size from 0.25% to 0.5% provides a 27% increase in hit ratio. An in-
crease in cache size from 4% to 4.5% provides only a 0.7% increase in hit ratio.
iii) The unlimited cache behavior can be obtained with cache sizes ranging from
2.5%, for H-AND policies, to around 6% for the other policies. iv) a relatively
small cache, e.g., 4 to 5% of all auctions is enough to generate cache hit ratios of
around 50 to 70% as is the case with the ABn policies. Even very small caches of
about 1% can generate cache hit ratios as large as 40%. v) the H-OR-n-p policies
provide a much better hit ratio than the H-AND-n-p ones. For example, while
H-AND-1-50:AB-PRT has a cache hit ratio of 37.8% for Pc = 2.5%, H-OR-1-
50:AB-PRT has a cache hit ratio of 59.0% for the same value of Pc. vi) The H-OR
policies have crossover points indicating that the best policy for unlimited cache
sizes is not the best for smaller cache sizes. vii) AB1:LRU and H-OR-1-50:LRU
are very similar and far superior than PRT50:LRU and H-AND-1-50:LRU. viii)
AB1:LRU is slighty superior than H-OR-1-50:LRU for 0.25% ≤ Pc ≤ 4.0%. For
Pc > 4.0%, H-OR-1-50:LRU has a higher hit ratio. ix) The cache efficiency de-
creases very fast as the cache size increases indicating that small caches are very
effective because of the power law characteristics of auction workloads. In fact,
the efficiency curves also follows a power law.

This analysis showed that the performance of online auction sites can be
significantly increased with very small caches (on the order of 1% of the millions
of items being auctioned). These small caches are more effective than larger
caches and produce more hits per cached auction. We then implemented a three-
tiered auction site that uses the best cache placement and replacement techniques
considered in the simulation studies. The results indicated that caching can
significantly increase the performance of online auction sites. For example, at
high loads, the maximum throughput obtained with caching is 56% higher than
when caching is not used. The response time for the same condition is about
three times smaller when caching used. We also saw that at the same high load
levels, 67% of the requests take longer than 5 seconds to be processed if caching
is not used while this percentage falls to 12% with the used of cache. These
significant performance gains are achieved with very little additional memory at
the application server: 11.6% more memory, or 23MB.

In summary, this paper presented a comprehensive study of the benefits of
using server-side caching on online auction sites. Cache placement and replace-
ment policies were presented, analyzed through trace-driven simulations using
traces collected from a large production auction site. Then, the best policies



were implemented so that response time and throughput measurements, among
others, could be evaluated.
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2. Akula, V., Menascé, D.A.: Two-Level Workload Characterization of Online Auc-
tions. Electronic Commerce Research and Applications Journal, Elsevier, to ap-
pear.

3. Amza, C., Cecchet, E., Chanda, A., Cox, A., Elnikety, S., Gil, R., Marguerite, J.,
Rajamani, K., and Zwaenepoel, W.: Specification and Implementation of Dynamic
Web Site Benchmarks. IEEE Workload Characterization Conference (WWC-5),
Austin, TX, USA, November 25, 2002.

4. Bapna,R., Goes, P., Gupta, A.: Online auctions: insights and analysis. Comm.
ACM. 44(11) (2001) 42–50

5. Bradford, L., Milliner, S., Dumas, M.: Scaling Dynamic Web Content Provi-
sion Using Elapsed-Time-Based Content Degradation. Proc. Web Information
Systems (WISE 2004) Conf., Lecture Notes in Computer Science, Springer
Berlin/Heidelberg, Volume 3306/2004

6. Breslau, L., Cao, P., Fan, Li., Phillips, G., Shenker, S.: Web Caching and Zipf-like
Distributions: Evidence and Implications. INFOCOM (1), (1999), 126-134.

7. Cecchet, E., Chanda, A., Elnikety, S., Marguerite, J., and Zwaenepoel, W.: Per-
formance Comparison of Middleware Architectures for Generating Dynamic Web
Content. 4th ACM/IFIP/USENIX International Middleware Conference, Rio de
Janeiro, Brazil, June 16-20, 2003

8. Chen, T.: A new cache document replacement policy considering the contribution
to sales. Electronic Commerce Research and Applications 4(3), Autumn 2005: 283-
297 (2005)

9. Coffman Jr., E.G., Denning, P.J.: Operating Systems Theory. Prentice Hall, Upper
Saddle River, NJ (1973)

10. Davison, B. D.: The Design and Evaluation of Web Prefetching and
Caching Techniques PhD Dissertation, Rutgers University, October (2002) URL:
http://citeseer.ist.psu.edu/davison02design.html

11. Douglis, F., Davison, B. D. (eds) : Web Content Caching and Distribution Proc.
8th International Workshop. Kluwer, June (2004)

12. hardwarezone.com: 10,000 Ebay Enthusiasts to Gather For 10TH Anniversary Cel-
ebration. URL: www.hardwarezone.com/news/view.php?id=1576&cid=5, May 26
(2005)

13. Kleinrock, L.: Queuing Systems: Theory, Vol I. John Wiley & Sons, NY (1975)
14. Lee, D., Choi, J., Kim, J., Noh, S., Min, S.L., Cho, Y., Kim, C.: LRFU: A Spectrum

of Policies that Subsumes the Least Recently Used and Least Frequently Used
Policies. IEEE Trans. Computers 50(12): 1352-1361 (2001)
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