
Simple Analytic Modeling of Software Contention

Daniel A. Menasc´e 1

Abstract

Being able to model contention for software resources (e.g.,
a critical section or database lock) is paramount to build-
ing performance models that capture all aspects of the de-
lay encountered by a process as it executes. Several methods
have been offered for dealing with software contention and
with message blocking in client-server systems. We present
in this paper a simple, straightforward, easy to understand
and implement, approach to modeling software contention
using queuing networks. The approach consists of a two-
level iterative process. Two queuing networks are considered:
one represents software resources and the other hardware re-
sources. Multiclass models are allowed and both open and
closed queuing networks can be used at the software layer.
Any solution technique—exact or approximate—can be used
at any of the levels. This technique falls in the general nature
of fixed-point approximate models and is similar in nature to
other approaches. The main difference lies in its simplicity.

1 Introduction

The response time of a transaction or request submitted to a
computer system can be broken down into three components.
The first is the total service time, i.e., the total time spent by
transactions obtaining service from the various physical re-
sources such as processors, disks, and networks. The second
component is the total time spent waiting to use a physical
resource. Finally, the third component (software contention),
is the time spent to access a software resource such as a non-
reentrant software module, a software thread, or a database
lock. It is important to take into account the effect of soft-
ware contention when estimating the total response time.

Agrawal and Buzen [1] present an approximate iterative tech-
nique to model serialization delays that employs a conven-
tional queuing network (QN) comprised of servers that rep-
resent actual processors and I/O devices plus additional ag-
gregate servers that represent serialized processing activity.
The technique iteratively determines the values of the service
times at all devices by computing adjustment factors used to
elongate the original service times. The formulas provided
for computing these adjustment factors are neither simple nor
intuitive. The formulation is presented for single class mod-
els only. The extension to multiple classes is said to follow
the same principles but is acknowledged to be computation-

1Department of Computer Science, MS 4A5, George Mason University,
Fairfax, VA 22030-4444, menasce@cs.gmu.edu

ally difficult [1]. The work in [21] is a two-level model of
serialization delays. At the lower level, a QN that represents
the physical resources is used to compute transition rates for
a higher level Markov Chain model. This formulation does
not generalize to multiple classes and does not deal with other
types of software contention issues. The approach taken in [7]
for analyzing QNs with serialization delays consists in trans-
forming the network to one with population constraints and
using an approximation technique to solve the latter problem.
Other analytic work on specific software contention situations
can be found in [11] and [16].

Multilayer client-server queuing network models were intro-
duced in [15] to handle synchronous and asynchronous ex-
change of messages between clients and servers. The prob-
lem of modeling CORBA based distributed systems was ad-
dressed in [9] through the use of QNs with simultaneous re-
source possession. These networks are solved through de-
composition into a set of auxiliary product-form QNs and it-
eration between these networks.

A very important body of work aimed at estimating software
contention issues is the Method of Layers (MOL), also called
Layered Queuing Networks (LQN) [17, 23]. Also related
and very relevant is the work on stochastic rendez-vous net-
works [14, 22]. Layered queuing networks were extended to
handle parallel tasks in [4]. The LQN approach while, in prin-
ciple, similar to the technique presented here differs in ways
that will be explained in the concluding remarks, after our
technique has been presented.

The main contribution of this paper is that it provides a simple
analytical modeling technique for estimating software con-
tention delays. The technique consists of a two-layer queu-
ing network model. Software resources are modeled by a
software queuing network (QN) and physical resources by
a hardware queuing network. The effect of software con-
tention on the physical QN and the effect of physical re-
source contention on the software QN requires an iterative
technique to solve this dependency. The technique relies
on existing solution techniques for open, closed, multiclass
queuing networks and can be used with both product-form
QNs and approximations [2] used to handle situations such
as simultaneous resource possession [2, 8, 12], and priori-
ties [2, 3, 18]. Multiservers can be handled by using load-
dependent servers [10, 13] or approximations [19]. The basic
idea developed in this paper was first proposed in [10] but no
algorithm and no validation was presented there. While the
other techniques referenced earlier can also handle the situa-
tions addressed by our approach, we believe that the strength

of our method lies in its simplicity. Anyone who knows how
to solve exact or approximated multiclass QNs can use the
method to estimate software contention.

The rest of the paper is organized as follows. Section 2 illus-
trates the main rationale behind the technique through a sim-
ple motivating example in whichN processes compete for a
single critical section and execute non-critical section code af-
ter they complete the critical section. A single class algorithm
is also presented in that section. The next section presents a
more complex example and compares our results with those
obtained with other techniques. Section four shows how the
technique presented in section 2 can be extended to model
other cases. Section 5 presents the multiclass algorithm and
section 6 presents some concluding remarks.

2 A Simple Example - Contention for a Critical Section

Consider the case ofN processesP1, · · · , PN that alternate
between executing non-critical section and critical section
code. Any number of processes can be concurrently executing
their non-critical code. But, only one of them can be execut-
ing the critical section code. If a process attempts to enter its
critical section code while another process is inside the criti-
cal section, the attempting process is put to sleep at the queue
associated with the semaphore that controls access to the crit-
ical section. Let us assume in this simple example that the
only physical device used by all processes during the execu-
tion of the critical and non-critical section code is the CPU
and that the CPU scheduling discipline is processor-sharing.

If we just consider the software phases of a process execu-
tion, we can depict a process by asoftware queuing network
(SQN) as in the top part of Fig. 1. The SQN has two resources
(software modules). One is a delay-resource (illustrated as a
rectangle) that corresponds to the non-critical section code;
there is no queuing for a software resource during this phase.
The other software resource is a queuing resource, which cor-
responds to the critical section code.

Software Level
Queuing Network

Hardware Level
Queuing Network

NCS CS

CPU

Figure 1: Software and Hardware Queuing Networks for the Criti-
cal Section Example

While a process—a customer in the SQN—is using the soft-
ware resources in the SQN, it is also using or waiting to use
physical resources (e.g., CPUs and disks). Delay resources

are used in the SQN to represent software resources for which
there is no software contention. The queuing network asso-
ciated with the physical resources, thehardware queuing net-
work (HQN), is shown in the bottom part of Fig. 1. Customers
in the HQN are processes using the physical resources as a re-
sult of the execution of software modules. The time spent at
the NCS and CS resources in the SQN depends on the con-
tention for access to the physical resources, the CPU in this
case. Also, the number of processes contending for the CPU,
i.e., the number of processes in the HQN, is equal to the num-
ber of concurrent processes that are not blocked waiting for
entry to the critical section. The blocked processes are sleep-
ing and are therefore not present in any HQN queue. There-
fore, the customer population in the HQN is equal toN − B
whereB is the number of processes blocked for a software
resource.

We now define some notation before we proceed with an ex-
planation on how contention for access to software resources
can be computed. Let

• Dsh
j,i: service demand, i.e., total service time of a pro-

cess executing software modulej when using physical
resourcei in the HQN. The superscript “sh” indicates
that these service demands are related to the mapping
between the software and hardware QNs. For example,
Dsh

ncs,cpu is the total CPU time for the execution of the
non-critical section code. This time does not include
the time spent waiting to use the CPU while executing
non-critical section code.

• Ds
j : service demand, i.e., total service time to execute

modulej in the SQN. The superscript “s” indicates that
this service demand relates to the software QN. For ex-
ample,Ds

ncs is the total service time to execute the non-
critical section code. The service demandD s

j is the sum
of all service times at all physical devices during the ex-
ecution of modulej. Thus,

Ds
j =

∑

∀ i

Dsh
j,i. (1)

• Dh
i : service demand, i.e., total service time of a process

at physical resourcei in the hardware QN. For example,
Dh

cpu is the total service time of a process at the CPU.
This time, is the sum of the service demands due to the
execution of all modules of the process. Thus,

Dh
i =

∑

∀ j

Dsh
j,i. (2)

For example,Dh
cpu = Dsh

ncs,cpu + Dsh
cs,cpu.

• R
′
i(n): residence time, i.e., total time spent by a process

at physical resourcei, waiting for or receiving service,
when there aren processes at the HQN.

We now show the iterative algorithm used to estimate the soft-
ware contention time and to compute all performance metrics

(e.g., response time and throughput). The inputs to the al-
gorithm are the service demandsD sh

j,i and the numberN of
processes. The algorithm iterates until successive values of
the number,B, of processes blocked for software contention
are sufficiently close.

• Step 1 - Initialization:

Ds
j ←

∑

∀ i

Dsh
j,i (3)

Dh
i ←

∑

∀ j

Dsh
j,i (4)

B0 ← 0 initial value for B (5)

k ← 1 iteration counter (6)

• Step 2 - Solve the SQN withDs
j as service demands

andN as customer population.

• Step 3 - Compute the average number of blocked pro-
cessesBk. In the case of our example, this is equal to
the average number of processes waiting in the queue
for the CS resource. So,Bk = ncs − Ucs, wherencs

is the average number of processes at resource CS in
the SQN andUcs is the utilization of resource CS. In
general,

Bk =
∑

∀j

Lj (7)

whereLj is the average number of processes in the
waiting line for software resourcej.

• Step 4 - Solve the HQN withDh
i as service demands

andNh = N − Bk as customer population. Note that
the solution to a QN with a non-integer customer pop-
ulation can be obtained using Schweitzer’s approxima-
tion [20].

• Step 5 - Adjust the service demands at the SQN to ac-
count for contention at the physical resources. So,

Ds
j ←

∑

∀i

Dsh
j,i

Dh
i

×R
′
i(N

h). (8)

So, for our example we have

Ds
ncs ← Dsh

ncs,cpu

Dh
cpu

×R
′
cpu(N

h) (9)

Ds
cs ← Dsh

cs,cpu

Dh
cpu

×R
′
cpu(N

h). (10)

• Step 6 (Convergence Check Step):
If | (Bk − Bk−1)/Bk |> ξ thenk ← k + 1 and go to
step 2.

We now give a justification for Step 5 of the above algorithm
using our critical section example. The residence time equa-
tion for MVA applied to the HQN is

R
′
cpu(N) = Dh

cpu[1 + ncpu(N − 1)]. (11)

But,
Dh

cpu = Dsh
ncs,cpu + Dsh

cs,cpu. (12)

So, using Eqs. (11) and (12), we get

R
′
cpu(N) = Dsh

ncs,cpu[1 + ncpu(N − 1)] +

Dsh
cs,cpu[1 + ncpu(N − 1)]. (13)

The first term of the right-hand side of Eq. (13) is the to-
tal time (waiting + service) spent at the CPU by a process
while executing non-critical section code and the second term
is the total time spent at the CPU by a process while execut-
ing the critical section code. So, for example, using Eqs. (11)
and (13) we can write the total time spent at the CPU while
executing the non-critical section code as

Dsh
ncs,cpu

Dh
cpu

×R
′
cpu(N). (14)

Figure 2 shows the percentage of the total response time spent
waiting to enter the critical section as a function of the number
of concurrent processes. The service demands used to obtain
the graph are:Dsh

ncs,cpu = 0.2 sec andDsh
cs,cpu = 0.1 sec. As

it can be seen, as the concurrency level increases, contention
for software resources dominates the response time of a pro-
cess.

3 A More Complex Example

In this section we apply the algorithm presented in the pre-
vious section to an example that appears in [1]. We use this
example for two reasons. First, because the example is more
complex than the one presented before. It has two critical
sections at the software level (see top portion of Fig. 3). The
hardware QN is composed of one CPU and three disks (see
bottom part of Fig. 3). Processes use both CPU and disk while
in the critical section. The second reason for using the exam-
ple in [1] is that global balance solutions are provided in that
paper. So, we can compare the results provided by our tech-
nique with exact results.

The service demands (i.e, the values ofD sh
j,i) are given in Ta-

ble 1 and are the same as in [1]. The last row shows the values
of Ds

j and the last column contains the values ofDh
i .

Table 2 shows the results (i.e., throughputs) obtained with our
technique (called SQN-HQN) and with global balance equa-
tions, as reported in [1], for eight values of the number of con-
current processesN . The last three columns of the table show
the absolute % relative error obtained with our technique and
with those of [1] and [7] relative to the global balance equa-
tions solution. The error of our approach is very small and
does not exceed 3.05% in this example; forN > 1, it is al-
ways smaller than the one reported in [1]. The error obtained
with our method is higher than the one for [7] forN > 4
but our method is much simpler to implement. It should also
be noticed that the results obtained with the SQN-HQN tech-
nique are consistently pessimistic.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0 10 20 30 40 50 60

Multithreading Level

%
 S

o
ft

w
ar

e
C

o
n

te
n

ti
o

n
 T

im
e

Figure 2: Percent of Software Contention Time vs. Multithreading Level in the Critical Section Example

Table 1: Service Demands (in sec) for the Example in [1]

Software Module Hardware
Device NCS CS 1 CS 2 Demands
CPU 0.2000 0.0600 0.0808 0.3408
Disk 1 0.0560 0.0576 0.000 0.1136
Disk 2 0.0360 0.0000 0.1212 0.1572
Disk 3 0.0360 0.0000 0.0000 0.0360
Software Demands 0.3280 0.1176 0.2020

Table 2: Throughput(processes/sec) for Example in [1] (GBS
= Global Balance Solution, SQN-HQN= technique pre-
sented in this paper, ASM = algorithm in [1], and ASPA =
algorithm in [7])

N SQN-HQN GBS Absolute % Relative Error
SQN-HQN ASM ASPA

1 1.544 1.54 0.27 0.00 -
2 2.088 2.11 1.06 4.60 -
3 2.317 2.37 2.22 5.89 4.2
4 2.428 2.49 2.49 5.99 2.8
5 2.487 2.56 2.86 5.87 2.0
6 2.521 2.60 3.05 5.78 1.5
7 2.541 2.62 3.00 5.75 1.5
8 2.555 2.63 2.86 5.77 1.1

4 Other Cases

In this section we explain how the algorithm presented in Sec-
tion 2 can be extended to cover other situations. The first
is the case in which a customer in the SQN spends time not

directly associated with the execution of a software module
(e.g., think times or network time). The second case discusses
how open QNs can be used to represent SQNs.

4.1 Modeling Non-Software Resources
There are cases in which there is no correspondence between
a resource at the hardware and the software layers. For exam-
ple, Fig. 4 shows the case in which user think time as well as
network waiting and transmission time need to be modeled.
In these cases, we need to incorporate these two resources—
a delay device for the think time and a queuing device for
the network—in both the SQN and HQN networks. We call
themnon-software resources. Note that we depict software
resources by rectangles in the SQN and all other resources by
circles. The computation ofBk in Step 3 of the algorithm pre-
sented in the previous section only includes processes blocked
for software resources.

4.2 Open QN at the Software Level
The technique presented in this paper can be extended to in-
clude the case in which the SQN is modeled as an open queu-
ing network as illustrated in Fig. 5. In that case, processes

QN

hardware
QN

ncs

cs1

cs2

CPU
disk 2

disk 1

disk 3

software

Figure 3: Software and Hardware Queuing Networks for the Ex-
ample in [1]

arrive at a rate ofλ requests/sec.

Steps 2 and 4 of the algorithm described in Section 2 should
be replaced by the following to contemplate the case of open
SQNs.

• new Step 2 - Solve the SQN withDs
j as service de-

mands andλ as arrival rate and obtainN the average
number of customers in the SQN.

• new Step 4 - Solve the HQN withDh
i as service de-

mands andN h = N − Bk as customer population.
Note that the solution to a QN with a non-integer cus-
tomer population can be obtained using Schweitzer’s
approximation [20].

5 The Multiclass Algorithm

The algorithm presented in Section 2 generalizes in a straight-
forward manner to multiple classes. We define here the gen-
eralized notation and present the multiclass algorithm. Let

• R: number of classes in the SQN and in the HQN.

• �N s = (N1, · · · , NR): population vector for the SQN.
Nr is the multithreading level for classr.

• �Nh = (N1, · · · , NR): population vector for the HQN.
Nr is the number of customers in classr.

time

client
think

time

client
think

QN

QN

ncs

cs1

cs2

CPU
disk 2

disk 1

disk 3

software

hardware

network

network

Figure 4: Example with Client Think Time and Network

• �B = (B1, · · · , BR): vector of number of processes
blocked, i.e., waiting for a software resource.Br is
the number of classr processes blocked for a software
resource.

• Dsh
j,i;r: service demand, i.e., total service time at physi-

cal resourcei of a classr software modulej.

• Ds
j;r: service demand, i.e., total service time to execute

modulej of classr in the SQN. The service demand
Ds

j;r is the sum of all service times at all physical de-
vices during the execution of modulej. Thus,

Ds
j;r =

∑

∀ i

Dsh
j,i;r. (15)

• Dh
i;r: service demand, i.e., total service time at physical

resourcei for classr in the hardware QN. This time, is
the sum of the service demands due to the execution of
all modules of a process. Thus,

Dh
i;r =

∑

∀ j

Dsh
j,i;r. (16)

• R
′
i;r(�Nh): residence time, i.e., total time spent by a

classr process at resourcei, waiting for or receiving
service, when the customer population at the HQN is
given by the vector�Nh.

We now show the iterative algorithm used to estimate the soft-
ware contention time and to compute all performance metrics
(e.g., response time and throughput). The inputs to the algo-
rithms are the service demandsDsh

j,i;r and the vector�N s. The

algorithm iterates until successive values of�B are sufficiently
close.

QN

hardware
QN

ncs

cs1

cs2

CPU
disk 2

disk 1

disk 3

software

λ

Figure 5: Open QN at the Software Level

• Step 1 - Initialization:

Ds
j;r ←

∑

∀ i

Dsh
j,i;r r = 1, · · · , R (17)

Dh
i;r ←

∑

∀ j

Dsh
j,i;r r = 1, · · · , R (18)

�B ← �0 (19)

k ← 1 (20)

• Step 2 - Solve the SQN withDs
j;r as service demands

and �N s as customer population.

• Step 3 - Compute the average number of blocked pro-
cesses per class as

�Bk = (
∑

∀j

Lj,1, · · · ,
∑

∀j

Lj,r, · · · ,
∑

∀j

Lj,R) (21)

whereLj,r, r = 1, · · · , R, is the average number of
classr processes in the waiting line for software re-
sourcej.

• Step 4 - Solve the HQN withDh
i;r as service demands

and population vector�Nh = �N s − �Bk as customer
population. Note that the solution to a QN with a
non-integer customer population can be obtained using
Schweitzer’s approximation [20]. The solution to the
HQN provides the residence time valuesR

′
i;r(�Nh) for

all devicesi and classesr.

• Step 5 - Adjust the service demands at the SQN to ac-
count for contention at the physical resources. So,

Ds
j;r ←

∑

∀i

Dsh
j,i;r

Dh
i;r

×R
′
i;r(�Nh). (22)

• Step 6 (Convergence Check Step): Ifmaxr | (Bk
r −

Bk−1
r)/Bk

r |> ξ thenk ← k + 1 and go to step 2.

The same considerations discussed in section 4 can be ap-
plied to the multiclass case. Situations that require modeling
a queue for a multithreaded software server can be considered
by including a multiserver queue in the SQN and using ap-
proximation techniques [19] to solve QNs with multiservers
or QNs with load-dependent servers [10, 13].

6 Concluding Remarks

This paper presented a simple technique to estimate software
contention using analytic models. The approach uses well-
known hierarchical modeling methods solved through itera-
tion. The technique consists of two queuing networks. The
top level—the software queuing network (SQN)—has servers
associated with software resources. A class of customers rep-
resents processes with similar behavior in their use of soft-
ware resources and use of the underlying physical resources
while using software resources. Mutiple classes of customers
are allowed. Software resources that do not generate any soft-
ware contention are modeled as delay resources in the SQN
and contention for software resources is represented by queu-
ing resources. These may have a single server (as in the case
of a critical section or a serialization delay) or multiple servers
as in the case of a multithreaded process. The SQN may
be open or closed. Any known technique, exact or approx-
imate, may be used to solve the SQN. Situations that involve
processes that request service more than once (multi-phased
processes) from the same software resource and have signif-
icantly different service times at each phase, can be modeled
using class-switching QNs as done in [5, 6].

The bottom-level QN represents the hardware resources. Ser-
vice demands at the software level are iteratively adjusted to
account for contention at the physical level. Again, any exact
or approximate technique can be used to solve the hardware
QN, which is modeled as a closed QN.

Our approach differs from the LQN method [17] in that i)
only two layers are considered, ii) any QN solution technique
can be used at the SQN and HQN without any need to adapt
specific residence time equations as done in [17], and iii) open
and closed QNs are allowed at the SQN. The hope is that by
providing a straightforward and easy to understand method
for modeling software contention, those who are familiar with
solution methods for multiclass QNs will be able to readily
model software contention without the need to use new types
of QNs. While simple, the technique presented here was val-
idated and is general enough to be applied to multiclass situ-
ations.

References

[1] S. C. Agrawal and J. P. Buzen, “The Aggregate Server
Method for Analyzing Serialization Delays in Computer Sys-
tems,” ACM Transactions on Computer Systems, Vol. 1, No.
2, May 1983, pp. 116–143.

[2] S. C. Agrawal, “Metamodeling: A study of Approxi-
mations in Queuing Models,” MIT Press, 1985.

[3] V.A.F. Almeida and D. A. Menasc´e, “Approximate
Modeling of CPU Preemptive Resume Priority Scheduling
Using Operational Analysis,” Proc. 10th European Computer
Manufactures Association (ECOMA) Conference on Com-
puter Measurement, Munich, Germany, October 12-15, 1982.

[4] G. Franks and C. M. Woodside, “Performance of Multi-
Level Client-Server Systems with Parallel Service Opera-
tions,” Proc. First Int. Workshop on Software and Perfor-
mance (WOSP’98), Santa Fe, NM, Oct. 1998, pp. 120–130.

[5] A. Harbitter and D. A. Menasc´e, “The Performance
of Public Key Enabled Kerberos Authentication in Mobile
Computing Applications,” Eighth ACM Conference on Com-
puter and Communications Security (CCS-8), Philadelphia,
PA, November 5-8, 2001.

[6] A. Harbitter and D. A. Menasc´e, “Performance of
Public Key-Enabled Kerberos Authentication in Large Net-
works,” Proc. 2001 IEEE Symposium on Security and Pri-
vacy, Oakland, California, May 13-16, 2001.

[7] P. A. Jacobson and E. D. Lazowska, A Reduction Tech-
nique for Evaluating Queuing Networks with Serialization
Delays,”Performance’83, eds. A. K. Agrawal and S. K. Tri-
pathi, North-Holland Publishing Company, 1983, pp. 45–59.

[8] P. A. Jacobson and E. D. Lazowska, “Analyzing
Queuing Networks with Simultaneous Resource Possession,”
Comm. ACM 25, 2, Feb. 1982, pp. 142–151.

[9] P. Kahkipuro, “Performance Modeling Framework for
CORBA Based Distributed Systems,” Ph.D. Dissertation,
Technical Report A-2000-3, Department of Computer Sci-
ence, University of Helsinki, Finland, 2000.

[10] E. D. Lazowska, J. Zahorjan, G. S. Graham, K. C. Sev-
cik, “Quantitative System Performance,” Prentice Hall, 1984.

[11] C. M. Lladó and P. G. Harrison, “Performance Eval-
uation of an Enterprise JavaBean Server Implementation,”
Proc. Second International Workshop on Software and Per-
formance, Ottawa, Canada, Sept. 17-2-, 2000, pp. 180–188.

[12] D. A. Menascé, O. Pentakalos and Y. Yesha, “An An-
alytic Model of Hierarchical Mass Storage Systems with
Network-Attached Storage Devices,” Proc. of the 1996 ACM
Sigmetrics Conference Philadelphia, PA, May 1996.

[13] D. A. Menascé and V. A. F. Almeida, “Capacity Plan-
ning and Performance Modeling: from mainframes to client-
server systems,” Prentice Hall, Upper Saddle River, NJ, 1994.

[14] D. Petriu, H. Amer, S. Majumdar, I. Abdull-Fatah,
“Using Analytic Models for Predicting Middleware Perfor-
mance,” Proc. Second International Workshop on Software
and Performance, Ottawa, Canada, Sept. 17-2-, 2000, pp.
189–194.

[15] S. Ramesh and H. G. Perros, “A Multilayer Client-
Server Queuing Network Model with Synchronous and Asyn-
chronous Messages,”IEEE Tr. Software Eng., Vol. 26, no. 11,
Nov. 2000, pp. 1086–1100.

[16] P. Reeser and R. Hariharan, “Analytic Model of Web
Servers in Distributed Environments,” Proc. Second Inter-
national Workshop on Software and Performance, Ottawa,
Canada, Sept. 17-2-, 2000, pp. 158–167.

[17] J. A. Rolia and K. C. Sevcik, “The Method of Layers,”
IEEE Tr. Software Eng., vol. 21, no. 8, 1995, pp. 689–700.

[18] K. C. Sevcik, “Priority Scheduling Disciplines in
Queuing Network Models of Computer Systems,” Proc. IFIP
Congress 77, North-Holland Publishing Co., Amsterdam,
1977, pp. 565–570.

[19] A. Seidmann, P. Schweitzer, and S. Shalev-Oren,
“Computerized Closed Queueing Network Models of Flexi-
ble Manufacturing Systems,”Large Scale Syst. J., North Hol-
land, vol. 12, pp. 91–107, 1987.

[20] P. Schweitzer, Approximate analysis of multiclass
closed network of queues, inInternational Conference on
Stochastic Control and Optimization, Amsterdam, 1979.

[21] Thomasian, A., “Queuing Network Models to Estimate
Serialization Delays in Computer Systems,”Performance’83,
eds. A. K. Agrawal and S. K. Tripathi, North-Holland Pub-
lishing Company, 1983, pp. 61–81.

[22] C. M. Woodside, J. E. Neilson, D. C. Petriu, and S.
Majumdar, “The Stochastic Rendez-vous Network Model for
Performance of Synchronous Client-Server-like Distributed
Software,”IEEE Tr. Computers, vol. 44, no. 1, 1995.

[23] C. M. Woodside, “An Active-Server Model for the Per-
formance of Parallel Programs Written Using Rendezvous,”
J. Systems and Software, 1986, pp. 125–131.

