
Teaching the Principles of the Hacker Curriculum to
Undergraduates

Sergey Bratus
ISTS

Dartmouth College
sergey@cs.dartmouth.edu

Anna Shubina
ISTS

Dartmouth College
ashubina@cs.dartmouth.edu

Michael E. Locasto
CSIS

George Mason University
mlocasto@gmu.edu

ABSTRACT
The “Hacker Curriculum” exists as a mostly undocumented set
of principles and methods for learning about information security.
Hacking, in our view, is defined by the ability to question the trust
assumptions in the design and implementation of computer systems
rather than any negative use of such skills.

Chief among these principles and methods are two useful peda-
gogical techniques: (1) developing a cross-layer view of systems
(one unconstrained by API definitions or traditional subject mat-
ter boundaries) and (2) understanding systems by analyzing their
failure modes (this approach works well with learning networking
concepts and assessing software vulnerabilities). Both techniques
provide a rich contrast to traditional teaching approaches, particu-
larly for information security topics.

We relate our experience applying Hacker Curriculum princi-
ples to education and training programs for undergraduates, in-
cluding the Secure Information Systems Mentoring and Training
(SISMAT) program and the Cyber Security Initiative at Dartmouth
College, which allows undergraduates to perform supervised red
team activities on Dartmouth’s production systems.

Categories and Subject Descriptors
K.3.2 [Computers and Education]: Computers and Information
Science Education

General Terms
Experimentation, Measurement, Security

Keywords
security, information assurance, networking, SISMAT, Hacker Cur-
riculum, teaching failure modes

1. INTRODUCTION
An understanding of information security and assurance holds an

increasingly important place in the education of Computer Science
students, many of whom will be asked to deal with new security

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGCSE’10, March 10–13, 2010, Milwaukee, Wisconsin, USA.
Copyright 2010 ACM 978-1-60558-885-8/10/03 ...$10.00.

and control challenges arising from a variety of problems, ranging
from the privacy challenges of social networks and the use of Elec-
tronic Medical Records to a new Smart Energy Grid linked with
and controlled by commodity networks and computing systems.

To meet the challenges of modern computer security practice,
students must be able to switch from their conditioning by tradi-
tional computer science and software engineering curricula to the
attacker’s way of thinking. Successful work in the field of informa-
tion security and assurance requires developing a specialized mind-
set: the essence of real security issues often lies in the complex
interplay between trust, models, and control. It is precisely the
skill to question trust relationships and the assumptions underlying
controls and models that a budding security specialist must nurture.

Over the years, the hacker community has had a great deal of
success doing so, and as a result, it has produced an informal but
highly coherent and efficient “curriculum” that approaches the same
topics as the traditional curricula from a variety of unusual angles.
Far from being a haphazard collection of ad hoc “hacks”, this cur-
riculum exhibits a complex and rich — although often implicit
— structure. The hacker community has developed “cross-layer,
cross-field” methods of approaching computer systems that we can
and should learn from [1, 2].

In order to be meaningful and practical, we believe that the com-
puter security curriculum must include both “defender” and “at-
tacker” perspectives and skills in each of the sub-areas of comput-
ing (e.g., systems, networks, human-computer interaction, relevant
aspects of social engineering). Yet, teaching skills popularly asso-
ciated with the hacker community still carries a substantial stigma.
Many educational institutions frown on the courses taught within
their walls having something to do with “hacking,” a topic which
they deem to be synonymous with unethical or illegal behavior.

This stigma results from serious misunderstandings that surround
the hacker community. In this paper we hope to highlight these
misunderstandings and to lay the groundwork for a more produc-
tive approach to the discussion about the hacker community’s role
in computer security research and practice.

1.1 Overview
This paper relates our experiences stemming from collecting and

applying Hacker Curriculum principles to the education of our stu-
dents and interns. These experiences mainly stem from two pro-
grams: the Dartmouth Cyber Security Initiative, a home-grown red
team of students (guided by research personnel and Dartmouth IT
staff) that help to secure the university’s production networks, and
the SISMAT (Secure Information Systems Mentoring and Train-
ing) educational outreach program.1 We will give a brief overview

1http://www.ists.dartmouth.edu/projects/
sismat.html

of SISMAT [6], introduce the notion of the “Hacker Curriculum”,
enumerate some Hacker Curriculum Principles, and describe the
“failure modes” teaching principle as we applied it to the SISMAT
program during the summer of 2009.

1.2 “Ethical” Hacking
We use the term “hacker” in the most non-pejorative sense pos-

sible. From this perspective, hacking is the skill to question trust
and control assumptions expressed in software and hardware,
as well as in processes that involve human(s)-in-the-loop (a.k.a.
"social engineering"). The ethical hacker community promotes
the development of such skills in many ways and venues open to
the public, such as conferences, e-zines, and websites. Hacking
can be seen as a branch of engineering knowledge, and it shows the
makings of an engineering discipline in (rapid) development.

Unfortunately, hacking has become a loaded term, particularly
since the media has found it to be a convenient description of crim-
inal mischief. We, however, see a need to separate the special
knowledge, mindset, and skill from ill-advised, nuisance, or crim-
inal behavior that might abuse this knowledge. Hackers possess
valuable knowledge, a fact that certain governments understand
and appreciate, although initiatives to recruit and hire hackers often
meets with sharp criticism [4], with popular and vocal perception
that hackers are somehow inherently threatening. This perception
dominates in the media and periodically feeds into sensationalist
reports of imminent cyber-terror and similar themes, such as occa-
sional calls on the public to “give up certain freedoms” in order to
“fix the Internet.” [8]

As a community, hackers are defined by their skills and specific
knowledge, similar to locksmiths, doctors, or martial artists. A doc-
tor knows ways to harm humans, and might criminally abuse this
knowledge. A locksmith is equipped to crack banks’ vaults. A po-
liceman is trained to use and is armed with deadly weapons. Yet
none of them is defined by the potential misuse of the special skills
they possess. Similarly, hacking is a special technological skill that
can be misused, but should not be defined by its misuses.

We believe that this knowledge-centric or skill-centric approach
best explains the activities, successes, and aspirations of the hacker
community, and it inevitably leads to the imperative to learn from
this community rather than shun it.

1.3 Culture Shock
Our experience teaching computer security in the SISMAT pro-

gram and elsewhere leads us to believe that the most important ser-
vice we can perform for our students is a security culture shock.
Teaching students to question their assumptions, however, takes a
great deal of effort: they simply cannot be told “question every-
thing” because this spare advice provides them with no roadmap,
specific principles, common tools, or peer-reviewed methods for
intelligently questioning security assumptions. The Hacker Cur-
riculum contains just such material, albeit largely uncurated.

Since the early days of personal computing, teaching environ-
ments in which aspiring young programmers learn their trade have
gotten increasingly more efficient at imparting marketable skills
without having the students “waste” time on puzzling out various
computing failures unrelated to their intended learning tasks. But
just as teaching environments that hide the underlying engineering
complexities and challenges get better, something is lost: an expe-
rience of the many failure modes of computing environments.

This approach conditions many students to implicitly trust their
programming environment — whether or not it is a real produc-
tion environment or one constructed explicitly for teaching to mask
complexity and to minimize potential confusion. Students also

treat API layer interfaces as boundaries of exploration and desir-
able competence. Nothing can be more damaging for the devel-
opment of a security mindset than this type of conditioning.

For example, software engineers tend to formalize their trust
assumption in “layer models:” or patterns that their system de-
signs follow (e.g., the 7-layer OSI (Open Systems Interconnection)
networking model). The borders of these layers become natural
boundaries of trust (i.e., blocks below boundaries are counted on
by developers to not present surprises — changes in behavior, syn-
tax, or semantics), and therefore become limits of expertise. It is
the hacker mindset and skill to question such assumptions of
engineering trust in real world systems.

2. SISMAT 2009
The SISMAT program provides a comprehensive approach to ed-

ucation and outreach for undergraduates and their faculty mentors
who are interested in information security and assurance topics, but
who lack the necessary local resources and expertise to gain trac-
tion in the area. SISMAT provides undergraduates with an inten-
sive, two-week seminar and laboratory course in computer security.
In addition, we arrange summer internships on information security
topics for each SISMAT participant, and we coordinate with their
faculty mentor to design a research project for the next academic
year. The SISMAT program also includes a mentor development
weekend; participants’ mentors are invited for discussions and cur-
riculum development.

While we have reported on our experiences with the pilot year
(2008) of SISMAT elsewhere [6], in this paper we focus on how
we applied Hacker Curriculum principles to specific lessons in the
SISMAT lecture and lab agenda. For further details on SISMAT
itself, we refer the interested reader to our previous paper [6]. The
lecture and lab exercises for SISMAT 2009 focused largely on spe-
cific network security and ethical hacking skills, including traffic
manipulation, PKI (Public Key Infrastructure), and code exploita-
tion of C/x86 programs.

The academic world has long struggled with how to best incor-
porate information security topics and education in the classroom;
providing hands-on training is challenging [9, 7, 10] from practical,
ethical, and legal standpoints. In SISMAT, the focused nature and
full day length of the labs and lecture allowed for more leisurely
exploration of corner cases and difficult concepts [5]. We recog-
nize that typical semester-length courses do not necessarily enjoy
this advantage in pace.

Finally, the Cyber Security Initiative (CSI) is a joint undertak-
ing of our campus IT and the Department of Computer Science.
It actively involves students in the ongoing campus-wide security
assessment of this large and diverse network infrastructure. Mem-
bers of the CSI group, guided by senior researchers in computer
security, are thereby exposed to the complexities and engineering
challenges of a real-world production network, which provides an-
other essential form of culture shock to students never previously
exposed to such environments and the practicalities of administrat-
ing them [12].

3. A CROSS-LAYER APPROACH
The use of abstraction plays a fundamental role in computer sys-

tem design. This fundamental principle of software engineering
serves as the primary tool for managing complexity in computa-
tional systems, and it leads to the construction of systems orga-
nized in layers, with clearly defined interfaces between each layer.
From the point of view of a programmer working within one layer,
other layers are trusted to behave as specified, and he does not have

to worry about their complexity. Thus interfaces at layer bound-
aries become not only contracts but also natural boundaries of pro-
grammer specializations and core competencies. Examples of layer
boundaries include those defined by the OSI (Open System Inter-
connection) network model, those separating application code from
libraries, userland and kernel code separation defined by system
calls, and kernel modules from the Windows DDK/WDK.

Naturally, most courses designed to develop a core competence
concentrate on programming entirely within one layer of the sys-
tem or the network. Indeed, from the point of view of managing the
complexity of teaching a subject or managing a software project,
this approach is probably the most efficient. As a consequence,
the students or trainees have enough non-trivial logic in their pro-
grams to worry about and cannot also afford excursions into sub-
stantially different and differently structured material. Eventually,
this approach becomes ingrained and remains an important side-
effect of their professional training. The process of building or cre-
ating computing and information systems requires the careful use
of abstraction to manage an overwhelming amount of complexity.

Rogue
clients

Raw
sockets
Frame
injection

Attacker Target

IDS/IPS

Figure 1: Hackers take the cross-layer view of systems and net-
works. They trace, examine, and craft data flows through lay-
ers and interfaces.

Although abstraction proves useful for building things, it can
hinder the process of breaking, decomposing, repairing, or other-
wise analyzing them. For example, the ability to develop an under-
standing of a basic software attacks and achieve successful delivery
of an exploit to a target requires an almost completely orthogonal
approach. We illustrate this approach in Figure 1, using exploita-
tion of a user-level application as an example.

The key observation is that the attack payload (e.g., a shellcode
embedded within crafted input to the target) will be acted upon by
multiple layers of the sending (attacker) system, the transmitting
network (which may include an IDS (Intrusion Detection System)
or IPS (Intrusion Protection System) that must remain unaware of
the attack) and, finally, the target. None of the transformations of
data in transit occurring in these layers should interfere with the ex-
ploit payload for the attack to succeed, and additional transforma-
tions might need to be applied so as to avoid detection and reaction
by the IDS or IPS.

We note that the IDS or IPS has to treat the data streams flowing
through it differently than the targets by taking various heuristic
shortcuts, because it is typically responsible for examining traffic

to many targets, and thus does not operate on the same computa-
tional power “budget” as an individual target, and cannot match
its data processing precisely. Both Ptacek and Newsham’s famous
paper [11] and Paxson’s paper [3] discuss different IDS evasion
techniques that leverage differences in network stack implementa-
tions between the targets and the IDS to create different views of
the packet stream at the IDS and the target. As a result, the IDS
sees the attack stream as innocuous (or at least something that fails
to trigger any known attack signatures), and in the worst case can
cause the IDS to silently fail open.

We also note that while the payload must take the usual path to
the targeted application, the attacking machine is under no such
constraints: data it produces need not follow normal processing
paths and packet composition rules. An attacker’s program, there-
fore, may be instrumented to (1) form the attack packets and send
them directly, bypassing the kernel’s session and transport layers,
or even the network layer (for LAN attacks) to inject straight into
the link layer (as shown on the attacker side of Figure 1; and (2)
suppression of some of the system’s normal functionality (so that
the attack tool’s responses do not get accidentally invalidated by
the kernel’s normal reactions to malformed or unsolicited input).

Thus, successful engineering of exploits requires sufficient un-
derstanding of all the transformations that take place on the path
from the attacker to vulnerable code in a running process on the tar-
get. Consequently, successful defenses must incorporate the same
cross-layer understanding.

Not surprisingly, attack and network security tools in general de-
pend on several libraries that provide ways to bypass the standard
flow of data through the network stack. An example of the network
security toolchain (described in great detail in Michael Schiffman’s
book “Building Open Source Network Security Tools: Components
and Techniques”) can be found in Figure 2.

Nurturing the ability to understand the limitations of algorithms,
libraries, APIs, tools, and software systems requires a significant
investment of time. Nevertheless, if we do not encourage and per-
mit students to exercise this freedom within the formal curriculum,
we run the risk of continuing to produce students that lack an ap-
preciation of software security issues [13].

4. FAILURE MODES ACROSS NETWORK
LAYERS

Typical CS network exercises seldom start with a mission of
discovery: having to find out such facts about a network as what
hosts are present in it, which services are actually available on
them, what kinds of packets get filtered on entry (“ingress”) or
exit (“egress”), and similar reconnaissance activities. Instead, most
network introductions center on abstract models of communica-
tion, brief glimpses of protocol diagrams and packet header lay-
out charts, particular APIs or client-server libraries. Furthermore,
such exercises typically assume that the transaction endpoint(s) are
known in advance and available, i.e., communications are not hin-
dered, fully or partially, by adverse network conditions, misconfig-
uration, router access lists, firewall settings, server configuration,
and the like. While such an approach suffices for a gentle intro-
duction to the topic of network communication, it almost wholly
concentrates on the way things should work rather than the ways
that they might be made to fail.2

2Admittedly, failure modes may not necessarily be appropriate for
teaching some topics: for example, teaching CS 1 by enumerating
all the possible Java compiler warnings and errors does not seem
practical, although students probably would appreciate some com-
mentary on and interpretation of these common warnings.

packet
capture

raw sockets
IP

forwarding/
routing

libpcap libnet

tcpdump
wireshark

ettercap

fragrouter

dsniff/
dnsspoof arpspoof

arp­sk

sniffing/
interception

injection/
spoofing

packet
forwarding

Figure 2: Open source network security toolchain allows bypassing OS network stack layers, enabling extraction and injection of
packets from and into the kernel.

In contrast, hackers concentrate on failure modes of network
communications, because distinguishing between different kinds
of and reasons for transaction failures is critical for network recon-
naissance (identifying potential targets and obstacles to exploita-
tion). For example, scanning tools such as nmap crucially depend
on interpreting signs of connection failure, firewall probing tools
such as firewalk imitate routing failures, and so on.

In the SISMAT training, we direct the students to explore a va-
riety of network failure modes, and, as a side effect, discover basic
port scanning and firewalking techniques. In particular, we direct
them to observe the result of attempted connections to non-existent
hosts within and outside their LAN, to services not available on a
host or filtered via different mechanism, in the presence of invalid
and missing routes, etc.

As a result, the students gain enough confidence to start looking
for failure conditions specifically rather than dismissing them as
unintelligible, and to extract valuable reconnaissance information
from those conditions.

4.1 Beyond the Socket
Typical CS curricula start with network programming APIs such

as sockets and the client-server application model, and then ex-
pands “upward” to application protocols and distributed applica-
tions, and “downwards” to the details of TCP and mathematical
models of congestion control. These topics, however, tend to be
taught in separate courses and, as a result, tend to exist separately
in the minds of most students.

Hacker analysis takes a different approach, connecting the dif-
ferent networking layers and programming abstractions from the
outset. In particular, it is typical for a hacker to acquire an early
understanding of which specific kinds of packets and OS network
stack data structures result from each of the system calls involved in
establishing a socket, and how different stacks differ in this regard.

An intermediate level step (although sometimes taken as a first
one in hacker-style networking), is to build the capability for craft-
ing arbitrary packets and injecting them into the network. This step
is extremely important from the “culture shock” perspective – it

helps the student realize that (1) network packets and frames are
malleable and (2) the network by itself is merely a medium that
would happily carry along any packet that looks well-formed to the
equipment it is comprised of; the network contains hardly any trust
guarantees.

The next step is the understanding of how to affect the OS net-
work stack’s states and thereby exploit them by sending crafted
packets. Ptacek’s paper [11] provides a good introduction to the
topic and the source for the tool fragrouter gives an excellent and
concise set of practical examples. These resources start the stu-
dents thinking on how traffic patterns they describe could be gen-
erated. We then introduce them to libnet and libnet-based tools
from simple ones such as sendip, nemesis, and packetdude, to ad-
vanced environments such as scapy. As a further example of the
type of “problem” that arises with this “failure mode” teaching pat-
tern, the students must consider how to suppress their OS stacks’
natural reactions to incoming packets generated as a side-effects of
the above manipulations. A simple example is presented by dis-
abling ICMP redirects that would normally accompany ARP poi-
soning; http://sockstress.com provides a more compre-
hensive example. This pattern allows us to introduce some of the
rich capabilities of the iptables/netfilter architecture and discuss its
system of hooks within the Linux network stack, as well as the
paths taken by a packet through that stack.

5. ROOTKITS: DECEPTION IN DEPTH
Similar to the cyber-defender maxim of “defense in depth”, at-

tackers also employ multi-layer deception schemes to throw the ad-
ministrators off their trail and conceal evidence of malfeasance. In
fact, this defense maxim may have been shaped by attacker prac-
tices that pre-dated it. We illustrate this “defense in depth” principle
– critical for defenders to understand, since a lower level deception
can be protecting a higher level one, and vice versa, in Figure 3.

We note that developing efficient rootkits is a task that requires
careful understanding of a number of kernel data structures, as well
as the ways those are used by different functions of the kernel, such
as the difference between how scheduling and reporting code paths

main()

libc_func()

system_call()

VFS / sys_func()

dev driver code

Simple kernel rootkits

Advanced
kernel rootkits

DLL hijacking

User­level rootkits

Actual system state

Human operator

Figure 3: Compromising lower layers of the OS enables decep-
tion along the normal data flow path to human operator.

access and affect these data structures. Thus reading of openly
available rootkit code not only helps the students to familiarize
themselves with these threats, but also may provide valuable in-
sights into OS kernel architecture itself. As with networking, a rec-
ommended reading list of helpful hacker materials on rootkits can
be found at the Web site http://hackercurriculum.org/.

6. CONCLUSION
We posit that the largely undocumented and informal “Hacker

Curriculum” contains a number of principles and methods that can
prove useful in educating undergraduates in the art of ethical com-
puter security assessment. We applied the “failure mode” principle
during a summer cyber-security training camp for undergraduates.
By enabling them to view the state of the OS network stack and the
network itself as they made both crafted and legitimate requests for
resources, they gained an appreciation for the limits and outlines
of networks as well as a measure of competence with standard net-
work details and technology.

Hacking involves the ability to develop and nurture a cross-layer
view of systems rather than one where abstraction, APIs, or tradi-
tional subject domain limits create artificial boundaries. In addi-
tion, we find that exploring and understanding the failure modes
of CS concepts and computer systems (particularly with regard to
networks) provides a useful teaching technique.

Acknowledgments
The authors would like to thank the SIGCSE reviewers for their
suggested revisions to the paper and particularly for their sugges-
tions for our presentation during the conference. The authors would
also like to thank Greg Conti for his help in organizing the CISSE
working group in June of 2009, from which many of the ideas for
this paper grew. In addition, we would like to thank the student
participants in the SISMAT 2009 course for their willingness to
explore these techniques with us. The authors would also like to
acknowledge the support of the I3P, Dartmouth College, and DHS
for the work described in this paper. This material is based upon
work supported by the U.S. Department of Homeland Security un-
der Grant Award Number 2006-CS-001-000001. The views and
conclusions contained in this document are those of the authors
and should not be interpreted as necessarily representing the offi-
cial policies, either expressed or implied, of the U.S. Department
of Homeland Security.

7. REFERENCES
[1] S. Bratus. Hacker Curriculum: How Hackers Learn

Networking. IEEE Distributed Systems Online, 8(10), 2007.
[2] S. Bratus. What Hackers Learn That the Rest of Us Don’t:

Notes on Hacker Curriculum. IEEE Security and Privacy,
5(4):72–75, 2007.

[3] M. Handley, V. Paxson, and C. Kreibich. Network Intrusion
Detection: Evasion, Traffic Normalization, and End-to-End
Protocol Semantics. In Proceedings of the USENIX Security
Conference, 2001.

[4] M. E. Kabay. Hiring hackers (part 1): British Government
Puts a Foot In It. http://www.networkworld.com/
newsletters/sec/2009/081009sec2.html,
August 2009.

[5] D. L. Knox, P. J. DePasquale, and S. M. Pulimood. A Model
for Summer Undergraduate Research Experiences in
Emerging Technologies. SIGCSE Bull., 38(1):214–218,
2006.

[6] M. E. Locasto and S. Sinclair. An Experience Report on
Cyber-Security Education and Outreach. In Proceedings of
the Annual Conference on Education in Information
Security, 2009.

[7] P. Y. Logan and A. Clarkson. Teaching Students to Hack:
Curriculum Issues in Information Security. In SIGCSE ’05:
Proceedings of the 36th SIGCSE Technical Symposium on
Computer Science Education, pages 157–161, New York,
NY, USA, 2005. ACM.

[8] J. Markoff. Do We Need a New Internet?
http://www.nytimes.com/2009/02/15/
weekinreview/15markoff.html, February 2009.

[9] P. Mateti. A Laboratory-based Course on Internet Security.
In SIGCSE ’03: Proceedings of the 34th SIGCSE Technical
Symposium on Computer Science Education, pages 252–256,
New York, NY, USA, 2003. ACM.

[10] B. A. Pashel. Teaching Students to Hack: Ethical
Implications in Teaching Students to Hack at the University
Level. In InfoSecCD ’06: Proceedings of the 3rd annual
conference on Information security curriculum development,
pages 197–200, New York, NY, USA, 2006. ACM.

[11] T. H. Ptacek and T. N. Newsham. Insertion, Evasion, and
Denial of Service: Eluding Network Intrusion Detection. In
Snort.org, January 1998.

[12] R. Speers and E. Tice. Cyber Attacks on the Dartmouth
College Network. Dartmouth Undergraduate Journal of
Science (DUJS Online), Fall 2009.
http://dujs.dartmouth.edu/fall-2009/
cyber-attacks-on-the-dartmouth-college-network/.

[13] G. White and G. Nordstrom. Security Across the Curriculum:
Using Computer Security to Teach Computer Science
Principles. In Proceedings of the 19th National Information
Systems Security Conference, pages 483–488, October 1996.

