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Abstract. In this paper we show how tools based on extensions of Pecgia-
tion allow us to look inside production-level EAs to see halestion, represen-
tation, and reproductive operators interact with eachrptived how these inter-
actions affect EA performance. With such tools it is possiol understand at a
deeper level how existing EAs work as well as provide supfmoninaking better
design decisions involving new EC applications.

1 Introduction

Evolutionary algorithm design is difficult for a number ofs®ns, not the least of which
is that the choices of selection, representation, and dejutive operators interact in
non-linear ways to affect EA performance. As a consequdbBeajesigners are often
faced with their own “black box” optimization problem in tes of finding combina-
tions of design choices that improve EA performance on thaiticular application
domain.

Results from the EC theory community continue to provide iesights into this
difficult design process, but often are obtained by make Kfiyinpy assumptions in or-
der to make the mathematics tractable. This often leaveastbpejuestion as to whether
particular theoretical results apply in practice to acttidb being used and/or to newly
designed EAs.

The results presented here are part of an ongoing effortttiest to bridge this
gap by using theoretical results to help us build usefulgdoht can be used to look
inside actual EAs in order to better understand what’s haipge‘under the hood”.
In particular, we have been exploring the use of some thieatetork done by Price
(1970) to obtain deeper insights into the interactions tdctmn, representation, and
the reproductive operators of crossover and mutation.isréspect we are indebted to
Lee Altenberg who for some time now has been encouraging@edEhmunity to pay
more attention to Price’s Theorem (Altenberg 1994; Altegti995).

In section 2 we provide a brief overview of Price’s Theorend &ow it can be
extended in a way to provide a useful analysis tool. Sectiaglesribes how Price’s
Theorem can be further extended to provide additional sig/\Ve illustrate these ideas
in section 4 by using the developed tools to instrument dpnoaluction-level EAs and
showing how two EAs with similar "black box” behavior look it different “under
the hood”. Finally, in section 5 we conclude with some obagons and future work.



2 J. Bassett, M. Potter and K. De Jong

2 Background

In 1970, George Price published the arti€levariance and SelectiofiPrice 1970) in
which he presented an equation that has proved to be a maijwitedion to the field of
evolutionary genetics (Frank 1995). The equation dessribe existence of a covari-
ance relationship between the number of successful offgghat an individual pro-
duces and the frequency of any given gene in that individilis covariance value is
high, then the existence of that gene is a good predictoretsen.

2.1 Price'sEquation

Although Price focused on gene frequency, his equation isergeneral and can be
used to estimate the change in any measurable attributetiremparent population to
the child population, and separate the change attributaldelection from the change
attributable to the genetic operators. Specifically,
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whereq; is the measurement of some attribute of paresuich as the number of occur-
rences of a particular gene or combination therga$,the number of children to which
parenti contributed genetic materia,is the average number of children produced by
each parent\ is the number of parents, add is the difference between the average
g value of the children off and theq value of parenit.

Price’s Equation combines the effect of all the genetic afwes into a single term.
To further separate the effects of the individual reproshecbperators, Potter et al.
(2003) extended the equation as follows:
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whereP is the number of genetic operators ahgj; is the difference between the av-
erageq value of the children of measured before and after the application of operator

J.

2.2 PreviousApplicationsin Evolutionary Computation

Altenberg (1995) was one of the first in the EC community td atiéntion to Price’s
Equation. He demonstrated Price’s assertion that genedraxy is not the only attribute
of the individuals which can be predicted by the equatiod,identified several differ-
ent measurement functions which could be useful, includiggn fithess from both
the biological and evolutionary computation perspectifiesjuency of schemata, and
evolvability.

More recently, Langdon and Poli (2002) showed how measg@mg frequencies is
equivalent to determining the frequency of use of the algglprimitives in the evolving
solution trees, and used Price’s Equation to diagnose tbleapte causes of poorer
performing runs.



Looking Under the EA Hood with Price’s Equation 3

Finally, Potter, Bassett, and De Jong (2003) concentratagsing fithess as a mea-
surement function and applied Price’s Equation to the Vizatgon of the dynamics of
evolvability, that is, the ability of an EA to continue to meaknprovements in fithess
over time.

3 Variance of Operator Effects

Each term in Price’s equation calculates the contributiba different operator as a
mean of the attribute being measured. Although visuabratbased on the decompo-
sition of delta mean fitness into operator-based comporeamtainly provides more
information than simple best-so-far curves (Potter et @03), focusing on the mean
can sometimes be misleading. In particular, the mean majoke t zero, leading one
to believe that an operator is making a minimal contributiehen in fact it is a critical
component of the evolutionary process.

In fact, the average individuals are not the ones drivindugian forward. It is the
occasional exceptional individuals created by crossomdrrautation that enable the
population to continue to improve over time. The best andsiodividuals are at the
upper and lower tails of the population fithess distribusiofiherefore, if we want to
get some sense of how often an operator creates above or beéwage individuals,
we need to look at the variance of thg values for mutation and crossover, not just the
mean.

We should emphasize that we are interested in the variaribe effect of an opera-
tor on the individuals of a population, not the variance efitmean effect given multiple
runs. Specifically, leE[X] be the expected change in the measurementdide to a
particular operator such as crossover. For simplicity wit agisume for the moment
that only a single operator is used. Expanding the secontddéequation 1 we have
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whereqjy is the measured of the kth child of pareni, N is the number of parents,
is the number of children produced by parenandz is the average number of chil-
dren produced by each parent. From this expansion we sethéhetndom variable of
interest isX = gk — q;, and
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This can be extended to multiple operators by expandingtegua, resulting inX =
Gijk — Oi(j—1)k Whereg;jk is the measured of thekth child of parent after the applica-
tion of operatorj.
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4 Looking Under the Hood

To illustrate how to use these ideas to look under the hoodyiveompare the per-
formance of our evolutionary algorithm using two differemtitation operators. In par-
ticular we will focus on the importance of the fithess varime relation to Price’s
Equation.

4.1 ExampleProblem

To help in our illustration, we have chosen a standard prolitem the function opti-
mization literature introduced by Schwefel (1981). Thesgkije function

f(x) = 418982 + i X sin(\/m)
=1

defines a landscape covered with a lattice of large peaks asids The predominant
characteristic of the Schwefel function is the presence séand-best maximum far
away from the global maximum, intended to trap optimizaatgorithms on a subop-
timal peak. The best maximums are near the corners of thespathis formulation
of the problem, the global minimum is zero and the global mmaxn is 837965&. In
our experiments the problem has thirty independent vasabbnstrained to the range
(—500.0,5000).

4.2 Algorithm Design

Typically as one makes design decisions for an evolutioakygrithm they go through
a process of trial and error. Most of us simply exchange corapts, perform some
runs, and then compare the best-so-far curves. We find a aeenpthat seems to work
well for our problem, and then move on to other design dexssir parameter tuning,
hoping that all of our choices will complement each other.

Let us assume that we have already made a series of desigiodsciincluding
using a real-valued representation apdX) selection of (500, 1000). We've chosen
these unusually large population sizes in order to incréf@ssample sizes and reduce
the amount of noise when calculating the terms in Price’atqn. We've also decided
to use two-point crossover at a rate of 0.6 and we've implaetkit all with the ECKit
Java class library developed by Potter (1998).

Now we are left with one final decision, the mutation operatde are going to
use a Gaussian mutation which is applied to all genes in therge, but we want to
decide between using a fixed standard deviation or one wherstandard deviations
are adapted, as described in (Back and Schwefel 1993).

4.3 Comparing Mutation Operators

In order to compare operators, we perform 100 runs usingstkd fsaussian mutation
(with a standard deviation of 1.0), and 100 runs with the &idagaussian mutation.
The best-so-far curves for each are plotted Figure 1. Basadhat we see here, both
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Fig. 1. Comparison of best fithess curves Fig.2. The mean contributions from
from Schwefel function optimization us- selection, crossover and mutation dur-
ing fixed and adaptive Gaussian muta- ing optimization of the Schwefel func-
tions. The global optimum is approxi- tion using fixed Gaussian mutation.
mately 25,140. These were calculated using the ex-

tended Price’s equation.

appear to be able to reach the optimum consistently, butxked fsaussian mutation
operator seems to be able to do so more quickly. Without amgramformation, this is
the operator we would choose.

But do we have any idea why this operator is better than ther®@tiithe EA is
essentially a black box, and we have very little idea of wkdtappenning inside. If
we could get more information about how the operators aegaieting and what effects
they are having, we could make more intelligent decisiormiahow to improve the
performance of our EA.

By applying the extended version of Price’s Equation (eigual) to the EA while
it is running, we can calculate the average effect that egelnator has on the popula-
tion. Figure 2 shows the mean effects of selection, crossaove mutation when using
the fixed Gaussian mutation operator. The plots shows teatrtbssover and mutation
operators have an average effect near zero (which may beuttiid read in the plot),
while selection seems to be doing all of the work. What eyadiles this mean? These
average values are clearly not telling us the whole storgaRé¢hat in section 3 we
claimed that the average individuals created by the gepptcators are not as impor-
tant as the exceptional ones because it is the exceptiatigidoals which are chosen
by selection.

We want to look at the standard deviations of fitpvalues, but instead of plotting
them in a separate plot, we have combined it with the exigilots of the delta mean
fitnesses. Figure 3 gives an example of this type of plot ferdtossover operator. For
each generation a gray band is drawn starting from the méact ef crossover (which
is very close to zero) up to plus one standard deviation amshdo minus one standard
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Fig.3. Standard deviation of delta fit- Fig.4. Standard deviation of delta fit-
ness effects caused by the crossover op- ness effects caused by the mutation op-
erator. The experiment was run using a erator. The experiment was run using a
fixed Gaussian mutation with standard fixed Gaussian mutation with standard
deviation of 1.0 on the Schwefel func- deviation of 1.0 on the Schwefel func-
tion. Results are averaged over 100 runs. tion. Results are averaged over 100 runs.

deviation. This of course assumes that the fitness disimibof theAq values is normal,
which is not always a good assumption.

The advantage of this type of plot is that one can comparediatire effects of
the delta mean fitness to the effects of the variance. In gtbeds, an operator may on
average be quite disruptive (low mean fitness), but stilereakiigh variance. This would
mean that the operator could still be effective. One shoakpkn mind though that we
are plotting only one standard deviation. Genetic opesatan often create individuals
with fitnesses that are two to three standard deviations thenmean when run on this
problem.

Getting back to the experiments, Figures 3 and 4 show thenesi effects of
crossover and fixed Gaussian mutation. Whereas before thepterators were indistin-
guishable, now we can see a large difference between theticeNbat the upper edge
of the crossover standard deviation curve follows the cuepeesenting mean contri-
bution from selection very closely. It seems clear that oesr is contributing more
to the search process, at least in the early generationsvarfence of the mutation
operator is much lower, as can be seen by the very narrow gnay élong the x-axis.
It is unlikely mutation does much more than local hill climbi

Moving on to the adaptive Gaussian mutation operator, Eigushows the mean
effects of selection, crossover and mutation when usirggdpéerator. Here we see that
once again the average effect of crossover is close to zatdhis time the average
effects of mutation are much more negative. The adaptivatioutoperator appears to
be much more disruptive than the fixed Gaussian mutation.
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Fig. 5. The mean contributions from selection, crossover and outauring optimization of the
Schwefel function using adaptive Gaussian mutation. These calculated using the extended
Price’s equation.

A Fitness

500 1000

0
|

-1000
Il

— - - Selection
— — Crossover
---- Mutation

-2000
|

T T T T
100 150

Generation

Fig.6. Standard deviation of delta fit-
ness effects caused by the crossover op-
erator. The experiment was run using
an adaptive Gaussian mutation on the
Schwefel function. Results are averaged
over 100 runs.
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Fig.7. Standard deviation of delta fit-
ness effects caused by the mutation op-
erator. The experiment was run using
an adaptive Gaussian mutation on the
Schwefel function. Results are averaged
over 100 runs.
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But we should not draw too many conclusions before we seedhance effects
of the operators, which are plotted in Figures 6 and 7. Onéefitst things to note
in Figure 7 is that although mutation is very disruptive oerage, the upper edge of
the standard deviation curve still comes above the x-axis fajr margin, which indi-
cates that it is contributing to the search process moretti@fixed gaussian mutation
operator did.

There is something more interesting though. Now we can gaesosight into why
it takes longer to reach the optimum using the adaptive Gaussutation than it does
using the fixed Gaussian mutation. Compare the crossovedata deviations in Fig-
ure 6 with the ones in Figure 3. In conjunction with the adaptnutation, crossover
continues to have high variances out to generation 50, assepipto the rapidly de-
creasing variances we see when fixed Gaussian mutationds Tise disruptive effects
of mutation are so high that crossover is having to spend tiroeerepairing individ-
uals. It cannnot make headway in the search process untitéimelard deviations for
mutation have been reduced.

With this knowledge we can now make a more informed decisimuachoosing
our mutation operator. It is clear that crossover can take cbexploration on its own
(in this domain), so we do not need a mutation operator whétiopms search also,
especially when it comes with the undesirable side effeiodésoiption.

5 Conclusionsand Future Work

In this paper we have shown how tools based on extensionsiad'$equation al-
low us to look inside production-level EAs to see how setattirepresentation, and
reproductive operators interact with each other, and h@sdhnteractions affect EA
performance. In particular, we have shown how these exdaasian provide insight
into the way in which reproductive operator variance presithe exploratory power
needed for good performance.

The reported results focused on ES-like EAs. We are in thegzoof completing
a similar study for GA-like EAs. The interesting prelimigaesults suggest that in this
case crossover and mutation interact internally in quiferdint ways. With results such
as these we believe that it is possible to understand at a&ds@l how existing EAs
work as well as provide support for making better designsieas involving new EC
applications.
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