
Looking Under the EA Hood with Price’s Equation

Jeffrey K. Bassett1, Mitchell A. Potter2, and Kenneth A. De Jong1

1 George Mason University, Fairfax, VA 22030
{jbassett, kdejong}@cs.gmu.edu

2 Naval Research Laboratory, Washington, DC 20375
mpotter@aic.nrl.navy.mil

Abstract. In this paper we show how tools based on extensions of Price’sequa-
tion allow us to look inside production-level EAs to see how selection, represen-
tation, and reproductive operators interact with each other, and how these inter-
actions affect EA performance. With such tools it is possible to understand at a
deeper level how existing EAs work as well as provide supportfor making better
design decisions involving new EC applications.

1 Introduction

Evolutionary algorithm design is difficult for a number of reasons, not the least of which
is that the choices of selection, representation, and reproductive operators interact in
non-linear ways to affect EA performance. As a consequence,EA designers are often
faced with their own “black box” optimization problem in terms of finding combina-
tions of design choices that improve EA performance on theirparticular application
domain.

Results from the EC theory community continue to provide newinsights into this
difficult design process, but often are obtained by make simplifying assumptions in or-
der to make the mathematics tractable. This often leaves open the question as to whether
particular theoretical results apply in practice to actualEAs being used and/or to newly
designed EAs.

The results presented here are part of an ongoing effort thattries to bridge this
gap by using theoretical results to help us build useful tools that can be used to look
inside actual EAs in order to better understand what’s happening “under the hood”.
In particular, we have been exploring the use of some theoretical work done by Price
(1970) to obtain deeper insights into the interactions of selection, representation, and
the reproductive operators of crossover and mutation. In this respect we are indebted to
Lee Altenberg who for some time now has been encouraging the EC community to pay
more attention to Price’s Theorem (Altenberg 1994; Altenberg 1995).

In section 2 we provide a brief overview of Price’s Theorem and how it can be
extended in a way to provide a useful analysis tool. Section 3describes how Price’s
Theorem can be further extended to provide additional insights. We illustrate these ideas
in section 4 by using the developed tools to instrument actual production-level EAs and
showing how two EAs with similar ”black box” behavior look quite different “under
the hood”. Finally, in section 5 we conclude with some observations and future work.

2 J. Bassett, M. Potter and K. De Jong

2 Background

In 1970, George Price published the articleCovariance and Selection(Price 1970) in
which he presented an equation that has proved to be a major contribution to the field of
evolutionary genetics (Frank 1995). The equation describes the existence of a covari-
ance relationship between the number of successful offspring that an individual pro-
duces and the frequency of any given gene in that individual.If this covariance value is
high, then the existence of that gene is a good predictor of selection.

2.1 Price’s Equation

Although Price focused on gene frequency, his equation is more general and can be
used to estimate the change in any measurable attribute fromthe parent population to
the child population, and separate the change attributableto selection from the change
attributable to the genetic operators. Specifically,

∆Q =
Cov(z,q)

z
+

∑zi∆qi

Nz
, (1)

whereqi is the measurement of some attribute of parenti such as the number of occur-
rences of a particular gene or combination thereof,zi is the number of children to which
parenti contributed genetic material,z is the average number of children produced by
each parent,N is the number of parents, and∆qi is the difference between the average
q value of the children ofi and theq value of parenti.

Price’s Equation combines the effect of all the genetic operators into a single term.
To further separate the effects of the individual reproductive operators, Potter et al.
(2003) extended the equation as follows:

∆Q =
Cov(z,q)

z
+

P

∑
j=1

∑zi∆qi j

Nz
, (2)

whereP is the number of genetic operators and∆qi j is the difference between the av-
erageq value of the children ofi measured before and after the application of operator
j.

2.2 Previous Applications in Evolutionary Computation

Altenberg (1995) was one of the first in the EC community to call attention to Price’s
Equation. He demonstrated Price’s assertion that gene frequency is not the only attribute
of the individuals which can be predicted by the equation, and identified several differ-
ent measurement functions which could be useful, includingmean fitness from both
the biological and evolutionary computation perspectives, frequency of schemata, and
evolvability.

More recently, Langdon and Poli (2002) showed how measuringgene frequencies is
equivalent to determining the frequency of use of the available primitives in the evolving
solution trees, and used Price’s Equation to diagnose the probable causes of poorer
performing runs.

Looking Under the EA Hood with Price’s Equation 3

Finally, Potter, Bassett, and De Jong (2003) concentrated on using fitness as a mea-
surement function and applied Price’s Equation to the visualization of the dynamics of
evolvability, that is, the ability of an EA to continue to make improvements in fitness
over time.

3 Variance of Operator Effects

Each term in Price’s equation calculates the contribution of a different operator as a
mean of the attribute being measured. Although visualizations based on the decompo-
sition of delta mean fitness into operator-based componentscertainly provides more
information than simple best-so-far curves (Potter et al. 2003), focusing on the mean
can sometimes be misleading. In particular, the mean may be close to zero, leading one
to believe that an operator is making a minimal contribution, when in fact it is a critical
component of the evolutionary process.

In fact, the average individuals are not the ones driving evolution forward. It is the
occasional exceptional individuals created by crossover and mutation that enable the
population to continue to improve over time. The best and worst individuals are at the
upper and lower tails of the population fitness distributions. Therefore, if we want to
get some sense of how often an operator creates above or belowaverage individuals,
we need to look at the variance of the∆q values for mutation and crossover, not just the
mean.

We should emphasize that we are interested in the variance ofthe effect of an opera-
tor on the individuals of a population, not the variance of the mean effect given multiple
runs. Specifically, letE[X] be the expected change in the measurement ofq due to a
particular operator such as crossover. For simplicity we will assume for the moment
that only a single operator is used. Expanding the second term of equation 1 we have

E[X] =
∑N

i=1zi∆qi

Nz

=
∑N

i=1zi
∑

zi
k=1(qik−qi)

zi

Nz

=
∑N

i=1 ∑zi
k=1(qik −qi)

Nz
,

whereqik is the measuredq of thekth child of parenti, N is the number of parents,zi

is the number of children produced by parenti, andz is the average number of chil-
dren produced by each parent. From this expansion we see thatthe random variable of
interest isX = qik −qi, and

Var[X] =
∑N

i=1∑zi
k=1(qik −qi)

2

Nz
−

(

∑N
i=1∑zi

k=1(qik −qi)

Nz

)2

. (3)

This can be extended to multiple operators by expanding equation 2, resulting inX =
qi jk −qi(j−1)k, whereqi jk is the measuredq of thekth child of parenti after the applica-
tion of operatorj.

4 J. Bassett, M. Potter and K. De Jong

4 Looking Under the Hood

To illustrate how to use these ideas to look under the hood, wewill compare the per-
formance of our evolutionary algorithm using two differentmutation operators. In par-
ticular we will focus on the importance of the fitness variance in relation to Price’s
Equation.

4.1 Example Problem

To help in our illustration, we have chosen a standard problem from the function opti-
mization literature introduced by Schwefel (1981). The objective function

f (x) = 418.9829n+
n

∑
i=1

xi sin
(

√

|xi |
)

defines a landscape covered with a lattice of large peaks and basins. The predominant
characteristic of the Schwefel function is the presence of asecond-best maximum far
away from the global maximum, intended to trap optimizationalgorithms on a subop-
timal peak. The best maximums are near the corners of the space. In this formulation
of the problem, the global minimum is zero and the global maximum is 837.9658n. In
our experiments the problem has thirty independent variables constrained to the range
(−500.0,500.0).

4.2 Algorithm Design

Typically as one makes design decisions for an evolutionaryalgorithm they go through
a process of trial and error. Most of us simply exchange components, perform some
runs, and then compare the best-so-far curves. We find a component that seems to work
well for our problem, and then move on to other design decisions or parameter tuning,
hoping that all of our choices will complement each other.

Let us assume that we have already made a series of design decisions, including
using a real-valued representation and (µ, λ) selection of (500, 1000). We’ve chosen
these unusually large population sizes in order to increasethe sample sizes and reduce
the amount of noise when calculating the terms in Price’s equation. We’ve also decided
to use two-point crossover at a rate of 0.6 and we’ve implemented it all with the ECKit
Java class library developed by Potter (1998).

Now we are left with one final decision, the mutation operator. We are going to
use a Gaussian mutation which is applied to all genes in the genome, but we want to
decide between using a fixed standard deviation or one where the standard deviations
are adapted, as described in (Bäck and Schwefel 1993).

4.3 Comparing Mutation Operators

In order to compare operators, we perform 100 runs using the fixed Gaussian mutation
(with a standard deviation of 1.0), and 100 runs with the adaptive gaussian mutation.
The best-so-far curves for each are plotted Figure 1. Based on what we see here, both

Looking Under the EA Hood with Price’s Equation 5

0 50 100 150 200

16
00

0
20

00
0

24
00

0

Generation

F
itn

es
s

Fixed mutation
Adaptive mutation

Fig. 1. Comparison of best fitness curves
from Schwefel function optimization us-
ing fixed and adaptive Gaussian muta-
tions. The global optimum is approxi-
mately 25,140.

0 50 100 150

0
20

0
40

0
60

0
80

0

Generation

∆
F

itn
es

s

Selection
Crossover
Mutation

Fig. 2. The mean contributions from
selection, crossover and mutation dur-
ing optimization of the Schwefel func-
tion using fixed Gaussian mutation.
These were calculated using the ex-
tended Price’s equation.

appear to be able to reach the optimum consistently, but the fixed Gaussian mutation
operator seems to be able to do so more quickly. Without any other information, this is
the operator we would choose.

But do we have any idea why this operator is better than the other? The EA is
essentially a black box, and we have very little idea of what is happenning inside. If
we could get more information about how the operators are interacting and what effects
they are having, we could make more intelligent decisions about how to improve the
performance of our EA.

By applying the extended version of Price’s Equation (equation 2) to the EA while
it is running, we can calculate the average effect that each operator has on the popula-
tion. Figure 2 shows the mean effects of selection, crossover and mutation when using
the fixed Gaussian mutation operator. The plots shows that the crossover and mutation
operators have an average effect near zero (which may be difficult to read in the plot),
while selection seems to be doing all of the work. What exactly does this mean? These
average values are clearly not telling us the whole story. Recall that in section 3 we
claimed that the average individuals created by the geneticoperators are not as impor-
tant as the exceptional ones because it is the exceptional individuals which are chosen
by selection.

We want to look at the standard deviations of the∆q values, but instead of plotting
them in a separate plot, we have combined it with the existingplots of the delta mean
fitnesses. Figure 3 gives an example of this type of plot for the crossover operator. For
each generation a gray band is drawn starting from the mean effect of crossover (which
is very close to zero) up to plus one standard deviation and down to minus one standard

6 J. Bassett, M. Potter and K. De Jong

0 50 100 150

−
60

0
−

20
0

0
20

0
40

0
60

0

Generation

∆
F

itn
es

s

Selection
Crossover
Mutation

Fig. 3. Standard deviation of delta fit-
ness effects caused by the crossover op-
erator. The experiment was run using a
fixed Gaussian mutation with standard
deviation of 1.0 on the Schwefel func-
tion. Results are averaged over 100 runs.

0 50 100 150

−
60

0
−

20
0

0
20

0
40

0
60

0

Generation

∆
F

itn
es

s

Selection
Crossover
Mutation

Fig. 4. Standard deviation of delta fit-
ness effects caused by the mutation op-
erator. The experiment was run using a
fixed Gaussian mutation with standard
deviation of 1.0 on the Schwefel func-
tion. Results are averaged over 100 runs.

deviation. This of course assumes that the fitness distribution of the∆q values is normal,
which is not always a good assumption.

The advantage of this type of plot is that one can compare the relative effects of
the delta mean fitness to the effects of the variance. In otherwords, an operator may on
average be quite disruptive (low mean fitness), but still have a high variance. This would
mean that the operator could still be effective. One should keep in mind though that we
are plotting only one standard deviation. Genetic operators can often create individuals
with fitnesses that are two to three standard deviations fromthe mean when run on this
problem.

Getting back to the experiments, Figures 3 and 4 show the variance effects of
crossover and fixed Gaussian mutation. Whereas before the two operators were indistin-
guishable, now we can see a large difference between them. Notice that the upper edge
of the crossover standard deviation curve follows the curverepresenting mean contri-
bution from selection very closely. It seems clear that crossover is contributing more
to the search process, at least in the early generations. Thevariance of the mutation
operator is much lower, as can be seen by the very narrow gray band along the x-axis.
It is unlikely mutation does much more than local hill climbing.

Moving on to the adaptive Gaussian mutation operator, Figure 5 shows the mean
effects of selection, crossover and mutation when using this operator. Here we see that
once again the average effect of crossover is close to zero, but this time the average
effects of mutation are much more negative. The adaptive mutation operator appears to
be much more disruptive than the fixed Gaussian mutation.

Looking Under the EA Hood with Price’s Equation 7

0 50 100 150

−
10

00
−

50
0

0
50

0
10

00

Generation

∆
F

itn
es

s

∆Q
Selection
Crossover
Mutation

Fig. 5. The mean contributions from selection, crossover and mutation during optimization of the
Schwefel function using adaptive Gaussian mutation. Thesewere calculated using the extended
Price’s equation.

0 50 100 150

−
20

00
−

10
00

0
50

0
10

00

Generation

∆
F

itn
es

s

∆Q
Selection
Crossover
Mutation

Fig. 6. Standard deviation of delta fit-
ness effects caused by the crossover op-
erator. The experiment was run using
an adaptive Gaussian mutation on the
Schwefel function. Results are averaged
over 100 runs.

0 50 100 150

−
20

00
−

10
00

0
50

0
10

00

Generation

∆
F

itn
es

s

∆Q
Selection
Crossover
Mutation

Fig. 7. Standard deviation of delta fit-
ness effects caused by the mutation op-
erator. The experiment was run using
an adaptive Gaussian mutation on the
Schwefel function. Results are averaged
over 100 runs.

8 J. Bassett, M. Potter and K. De Jong

But we should not draw too many conclusions before we see the variance effects
of the operators, which are plotted in Figures 6 and 7. One of the first things to note
in Figure 7 is that although mutation is very disruptive on average, the upper edge of
the standard deviation curve still comes above the x-axis bya fair margin, which indi-
cates that it is contributing to the search process more thanthe fixed gaussian mutation
operator did.

There is something more interesting though. Now we can get some insight into why
it takes longer to reach the optimum using the adaptive Gaussian mutation than it does
using the fixed Gaussian mutation. Compare the crossover standard deviations in Fig-
ure 6 with the ones in Figure 3. In conjunction with the adaptive mutation, crossover
continues to have high variances out to generation 50, as opposed to the rapidly de-
creasing variances we see when fixed Gaussian mutation is used. The disruptive effects
of mutation are so high that crossover is having to spend moretime repairing individ-
uals. It cannnot make headway in the search process until thestandard deviations for
mutation have been reduced.

With this knowledge we can now make a more informed decision about choosing
our mutation operator. It is clear that crossover can take care of exploration on its own
(in this domain), so we do not need a mutation operator which performs search also,
especially when it comes with the undesirable side effects of disuption.

5 Conclusions and Future Work

In this paper we have shown how tools based on extensions of Price’s equation al-
low us to look inside production-level EAs to see how selection, representation, and
reproductive operators interact with each other, and how these interactions affect EA
performance. In particular, we have shown how these extensions can provide insight
into the way in which reproductive operator variance provides the exploratory power
needed for good performance.

The reported results focused on ES-like EAs. We are in the process of completing
a similar study for GA-like EAs. The interesting preliminary results suggest that in this
case crossover and mutation interact internally in quite different ways. With results such
as these we believe that it is possible to understand at a deeper level how existing EAs
work as well as provide support for making better design decisions involving new EC
applications.

Acknowledgments

We thank Donald Sofge, Magdalena Bugajska, Myriam Abramson, and Paul Wiegand
for helpful discussions on the topic of Price’s Equation. The work reported in this paper
was supported by the Office of Naval Research under work request N0001403WX20212.

References

Altenberg, L. (1994). The evolution of evolvability in genetic programming. In K. E.
Kinnear, Jr. (Ed.),Advances in Genetic Programming, Chapter 3, pp. 47–74. MIT
Press.

Altenberg, L. (1995). The schema theorem and Price’s theorem. In L. D. Whitley and
M. D. Vose (Eds.),Foundations of Genetic Algorithms III, pp. 23–49. Morgan
Kaufmann.

Bäck, T. and H.-P. Schwefel (1993). An overview of evolutionary algorithms for
parameter optimization.Evolutionary Computation 1(1), 1–23.

Frank, S. A. (1995). George price’s contributions to evolutionary genetics.Journal
of Theoretical Biology 175, 373–388.

Langdon, W. B. and R. Poli (2002).Foundations of Genetic Programming. Berlin
Heidelberg: Springer-Verlag.

Potter, M. A. (1998). Overview of the evolutionary computation toolkit.
http://cs.gmu.edu/ mpotter/.

Potter, M. A., J. K. Bassett, and K. A. De Jong (2003). Visualizing evolvability with
price’s equation. InProceedings of the 2003 Congress on Evolutionary Compu-
tation, pp. 2785–2790. IEEE.

Price, G. (1970). Selection and covariance.Nature 227, 520–521.
Schwefel, H.-P. (1981).Numerical optimization of Computer models. Chichester:

John Wiley & Sons, Ltd.

