
A Cooperative Coevolutionary Approach to

Function Optimization

Mitchell A. Potter and Kenneth A. De Jong

Computer Science Department, George Mason University, Fairfax, VA 22030, USA
mpotter@gmu.edu

Abstract. A general model for the coevolution of cooperating species is
presented. This model is instantiated and tested in the domain of func-
tion optimization, and compared with a traditional GA-based function
optimizer. The results are encouraging in two respects. They suggest
ways in which the performance of GA and other EA-based optimizers
can be improved, and they suggest a new approach to evolving complex
structures such as neural networks and rule sets.

1 Introduction

Genetic algorithms (GAs), originally conceived by Holland [10], represent a fairly
abstract model of Darwinian evolution and biological genetics. They evolve a
population of competing individuals using fitness-biased selection, random mat-
ing, and a gene-level representation of individuals together with simple genetic
operators (typically, crossover and mutation) for modeling inheritance of traits.

These GAs have been successfully applied to a wide variety of problems in-
cluding multimodal function optimization, machine learning, and the evolution
of complex structures such as neural networks and Lisp programs. At the same
time, difficulties can and do arise in forcing every problem domain into this
traditional GA model. One of the earliest examples of this is the application
of GAs to rule learning. Evolving rule sets of varying length and complexity
doesn’t map neatly into the traditional GA paradigm, resulting in a variety of
extensions including Holland’s classifier system, Smith’s LS system, and Grefen-
stette’s Samuel system [11, 14, 7].

In this paper we present an extension of the traditional GA model which
appears to have considerable potential for representing and solving more com-
plex problems by explicitly modeling the coevolution of cooperating species. We
provide some initial insight into this potential by illustrating its behavior on the
well-studied domain of function optimization. We conclude with a brief discus-
sion of work in progress on more complex domains.

2 Cooperative Coevolutionary Genetic Algorithms

The hypothesis underlying the ideas presented here is that, in order to evolve
more and more complex structures, explicit notions of modularity need to be

introduced in order to provide reasonable opportunities for complex solutions to
evolve in the form of interacting co-adapted subcomponents. Examples of this
show up in the need for rule hierarchies in classifier systems and subroutines in
genetic programming.

The difficulty comes in finding reasonable computational extensions of the
GA paradigm for which such substructure “emerges” rather than being pre-
specified by the user. At issue here is how to represent such substructures and
how to apportion credit to them for their contributions to the problem solving
activity. Classifier systems attempt to accomplish this via a single population of
interacting rules whose individual fitnesses are determined by their interactions
with other rules via a simulated micro-economy [11]. Other extensions have been
proposed to encourage the emergence of niches and species in a single population
[4, 3], in which individual niches represent competing (rather than cooperating)
solutions to the problem.

The use of multiple interacting subpopulations has also been explored as
an alternate mechanism for representing the coevolution of species, but has fo-
cused primarily on a fixed number of subpopulations each evolving competing
(rather than cooperating) solutions (e.g. [8, 2, 15, 16]). The previous work that
has looked at coevolving multiple cooperative species in separate subpopulations
has involved a user-specified decomposition of the problem into species (see, for
example, [12] or [9]).

The system we envision combines and extends these ideas in the following
ways: 1) a species represents a subcomponent of a potential solution; 2) com-
plete solutions are obtained by assembling representative members of each of the
species present; 3) credit assignment at the species level is defined in terms of
the fitness of the complete solutions in which the species members participate; 4)
when required, the number of species (subpopulations) should itself evolve; and
5) the evolution of each species (subpopulation) is handled by a standard GA.
We call such systems cooperative coevolutionary genetic algorithms (CCGAs).

As a first step we have chosen the domain of function optimization as the test
bed for our ideas. The choice has several advantages. It is a well-studied area with
respect to the use of evolutionary algorithms providing us with a solid frame of
reference. It is also the case that there is a natural decomposition of the problem
into a fixed number of individual subcomponents, namely, the N parameters
of the function to be optimized. This allowed us to defer the most difficult of
the five issues listed above (the birth and death of species) and concentrate on
designing and testing the remaining four features of the proposed system.

3 Cooperative Coevolutionary Function Optimization

If we think of a solution to a function optimization problem as consisting of
specifying the value of N parameters (variables), a natural decomposition is to
maintain N subpopulations (species) each of which contains competing values
for a particular parameter. One can then assign fitness to a particular value
(member) of a particular subpopulation by assembling it along with selected

members of the other subpopulations to form one or more N-dimensional vectors
whose fitness can be computed in the normal fashion, and using those results to
assign fitness to the individual component being evaluated. That is, the fitness
of a particular member of a particular species is computed by estimating how
well it “cooperates” with other subspecies to produce good solutions.

As a first test of these ideas, the traditional GA shown in figure 1 was ex-
tended to the CCGA-1 model given in figure 2.

gen = 0
Pop(gen) = randomly initialized population
evaluate fitness of each individual in Pop(gen)
while termination condition = false do begin

gen = gen + 1
select Pop(gen) from Pop(gen − 1) based on fitness
apply genetic operators to Pop(gen)
evaluate fitness of each individual in Pop(gen)
end

Fig. 1. Traditional GA

gen = 0
for each species s do begin

Pops(gen) = randomly initialized population
evaluate fitness of each individual in Pops(gen)
end

while termination condition = false do begin

gen = gen + 1
for each species s do begin

select Pops(gen) from Pops(gen − 1) based on fitness
apply genetic operators to Pops(gen)
evaluate fitness of each individual in Pops(gen)
end

end

Fig. 2. CCGA-1

CCGA-1 begins by initializing a separate population of individuals for each
function variable. The initial fitness of each subpopulation member is computed
by combining it with a random individual from each of the other species and
applying the resulting vector of variable values to the target function.

After this startup phase, each of the individual subpopulations in CCGA-1
is coevolved in a round-robin fashion using a traditional GA. The fitness of a
subpopulation member is obtained by combining it with the current best subcom-
ponents of the remaining (temporarily frozen) subpopulations. This is certainly

the simplest form of credit assignment one could imagine. It has some poten-
tial problems (such as undersampling and “greediness”), but gives us a starting
point for further refinements.

Although this sequential version of the algorithm could be characterized more
accurately as quasi-coevolutionary, a fully coevolutionary implementation is also
possible (and on our list to explore at a later date) in which each species only
occasionally communicates with the other species. Such an asynchronous version
of the algorithm would be particularly well suited to a parallel implementation
in which each species is evolved on a separate processor.

4 Experimental Results

We evaluated CCGA-1 by comparing its performance with the performance of a
standard GA on several function optimization problems. The coevolutionary and
standard GA differ only as to whether they utilize multiple species as described in
the previous section. All other aspects of the algorithms are equal and are held
constant over all experiments. Specifically, the algorithms have the following
characteristics:

representation: binary (16 bits per function variable)
selection: fitness proportionate

fitness scaling: scaling window technique (width of 5)
elitist strategy: single copy of best individual preserved

genetic operators: two-point crossover and bit-flip mutation
mutation probability: 1/chromlength
crossover probability: 0.6

population size: 100

All the functions used in these experiments have been defined such that their
global minimums are zero. The primary performance metric used in evaluating
the algorithms is the minimum function value found after a fixed number of
function evaluations. Each of the results reported for this metric represents an
average computed over fifty runs.

The first set of experiments is performed on four highly multimodal func-
tions that have been used in other experimental comparisons of evolutionary
algorithms [13, 6, 1]. We will refer to these functions by the names of the re-
searchers who first proposed them—Rastrigin, Schwefel, Griewangk, and Ackley.
The Rastrigin function is defined as

f(x) = 3.0n +

n
∑

i=1

x2

i
− 3.0 cos(2πxi),

where n = 20 and −5.12 ≤ xi ≤ 5.12. The global minimum of zero is at the
point x = (0, 0, · · ·). The primary characteristic of this function is the existence
of many suboptimal peaks whose values increase as the distance from the global

optimum point increases. The Schwefel function is defined as

f(x) = 418.9829n +
n
∑

i=1

xi sin
(

√

|xi|
)

,

where n = 10 and −500.0 ≤ xi ≤ 500.0. The global minimum of zero is at the
point x = (420.9687, 420.9687, · · ·). The interesting characteristic of this function
is the presence of a second-best minimum far away from the global minimum—
intended to trap optimization algorithms on a suboptimal peak. The Griewangk
function is defined as

f(x) = 1 +

n
∑

i=1

x2

i

4000
−

n
∏

i=1

cos

(

xi√
i

)

,

where n = 10 and −600.0 ≤ xi ≤ 600.0. The global minimum of zero is at
the point x = (0, 0, · · ·). This function has a product term, introducing an in-
terdependency between the variables. This is intended to disrupt optimization
techniques that work on one function variable at a time. The Ackley function is
defined as

f(x) = 20 + e − 20 exp



−0.2

√

√

√

√

1

n

n
∑

i=1

x2

i



− exp

(

1

n

n
∑

i=1

cos (2πxi)

)

,

where n = 30 and −30.0 ≤ xi ≤ 30.0. The global minimum of zero is at the point
x = (0, 0, · · ·). At a low resolution the landscape of this function is unimodal;
however, the second exponential term covers the landscape with many small
peaks and valleys.

The graphs in figure 3 show the minimum value found (best individual) as
a function of the number of function evaluations averaged over fifty runs using
the Rastrigin, Schwefel, Griewangk, and Ackley functions. Both algorithms were
terminated after 100,000 function evaluations. In all cases CCGA-1 significantly
outperformed the standard GA both in the minimum value found and in the
speed of convergence to zero. The statistical significance of these results was
verified using a two sample t test.

Recall that CCGA-1 evolves each species (function variable) in a round-robin
fashion using the current best values from the other species. This is quite similar
in style to the family of numerical optimization techniques which proceed by
optimizing one function variable at a time while holding the other variables
constant. It is well known that such procedures work well on functions whose
variables are reasonably independent, but have difficulties with functions with
interacting variables.

On closer inspection, we noticed that CCGA-1 demonstrated slightly less of
an advantage over the standard GA on the Griewangk function than on the other
three functions. We hypothesize that this due to the interdependencies between
the function variables introduced by the Griewangk product term, and selected
an additional function (F2) from the original De Jong test suite [5] that has

function evaluations

be
st

 in
di

vi
du

al

Rastrigin Function

0 20000 40000 60000 80000 100000
0

10.0

20.0

30.0

40.0

 standard GA
 CCGA-1

function evaluations

be
st

 in
di

vi
du

al

Schwefel Function

0 20000 40000 60000 80000 100000
0

100.0

200.0

300.0

400.0

 standard GA
 CCGA-1

function evaluations

be
st

 in
di

vi
du

al

Griewangk Function

0 20000 40000 60000 80000 100000
0

2.0

4.0

6.0

8.0

 standard GA
 CCGA-1

function evaluations

be
st

 in
di

vi
du

al

Ackley Function

0 20000 40000 60000 80000 100000
0

4.0

8.0

12.0

16.0

 standard GA
 CCGA-1

Fig. 3. Comparisons of standard GA and CCGA-1 performance

even stronger variable interactions than the Griewangk function. This function
is called the Rosenbrock function and is defined as

f(x) = 100(x2

1
− x2)

2 + (1 − x1)
2,

where −2.048 ≤ xi ≤ 2.048. The global minimum of zero is at the point (1, 1).
The Rosenbrock function is characterized by an extremely deep valley along the
parabola x2

1
= x2 that leads to the global minimum.

As illustrated in figure 4, CCGA-1 performed much worse than the standard
GA on the Rosenbrock function, supporting our hypothesis that interacting vari-
ables (product terms) would present difficulties.

We felt that much of the source of this difficulty was due to the simple credit
assignment algorithm in CCGA-1. To test this hypothesis, we modified the credit
assignment algorithm as follows. Each individual in a subpopulation is evaluated
by combining it with the best known individual from each of the other species
and with a random selection of individuals from each of the other species. The
two resulting vectors are then applied to the target function and the better of
the two values is returned as the offspring’s fitness.

We evaluated this variant (CCGA-2) on the Rosenbrock and the earlier Ras-
trigin function to see to what extent performance is improved on interacting
variable problems, and to assess what performance penalty (if any) is observed
on a representative of the non-interacting variable problems.

function evaluations

be
st

 in
di

vi
du

al

Rosenbrock Function

0 2000 4000 6000 8000 10000
0

0.2

0.4

0.6

0.8

 standard GA
 CCGA-1
 CCGA-2

function evaluations

be
st

 in
di

vi
du

al

Rastrigin Function

0 20000 40000 60000 80000 100000
0

10.0

20.0

30.0

40.0

 standard GA
 CCGA-1
 CCGA-2

Fig. 4. Comparisons of standard GA, CCGA-1, and CCGA-2 performance

As illustrated in figure 4, CCGA-2 performed as well as the standard GA on
the Rosenbrock function, but at the expense of a slight decrease in performance
from CCGA-1 on the non-interacting variable problem. These results were tested
as before for significance.

Although we have emphasized the number of function evaluations as a mea-
sure of cost, the amount of computation required to perform the experiments
should also be briefly mentioned. Because the standard GA represents the entire
set of function variables in each of its chromosomes while the CCGA algorithms
only represent a single function variable in each of their chromosomes, there is
much more overhead in a standard GA associated with the genotype to phe-
notype mapping process. To evaluate each new individual, the standard GA
performs a genotype to phenotype mapping on all function variables while the
CCGA algorithms only need to apply the mapping to a single function variable.
As the dimensionality of the problem increases, this additional overhead becomes
considerable. As an illustration, while optimizing the Ackley function of thirty
dimensions the standard GA took approximately six times longer to complete a
given number of fitness evaluations than the CCGA counterpart.

5 Discussion, Conclusions and Future Work

The results presented here are preliminary in nature, but provide initial evi-
dence of the potential problem solving capabilities of cooperative coevolutionary
systems. To make any strong claims concerning their value for function opti-
mization, further refinement of the approach is required as well as additional
comparisons with other existing optimization techniques. There are, however,
several aspects of this approach that deserve some attention.

First, note that any evolutionary algorithm (EA) can be used to evolve the
subpopulations—GAs just happen to be our favorite choice. Hence we encourage
others to explore the potential of extending their own favorite EA to a CCEA.
The evidence presented here suggests that the result may be improved problem
solving capabilities at lower computational costs.

A second feature of these systems is a natural mapping onto coarsely grained
parallel architectures. We plan to utilize networked workstations to coevolve the
species in parallel on more difficult problem classes.

Finally, we feel that the real potential of these cooperative coevolutionary
systems will become apparent when applied to domains requiring the evolution
of more complex structures such as neural networks and sets of rules. We hope
to provide such evidence in the near future.

References

1. Bäck, T., Schwefel, H.-P.: An overview of evolutionary algorithms for parameter
optimization. Evolutionary Computation 1(1) (1993) 1–23

2. Cohoon, J.P., Hegde, S.U., Martin, W.N., Richards, D.: Punctuated equilibria: a
parallel genetic algorithm. Proceedings of the Second International Conference on
Genetic Algorithms (1987) 148–154

3. Davidor, Y.: A naturally occuring niche & species phenomenon: the model and first
results. Proceedings of the Fourth International Conference on Genetic Algorithms
(1991) 257–263

4. Deb, K., Goldberg, D.E.: An investigation of niche and species formation in ge-
netic function optimization. Proceedings of the Third International Conference on
Genetic Algorithms (1989) 42–50

5. DeJong, K.A.: Analysis of Behavior of a Class of Genetic Adaptive Systems. PhD
thesis, University of Michigan, Ann Arbor, MI (1975)

6. Gordon, V.S., Whitley, D.: Serial and parallel genetic algorithms as function opti-
mizers. Proceedings of the Fifth International Conference on Genetic Algorithms
(1993) 177–183

7. Grefenstette, J.J.: A system for learning control strategies with genetic algorithms.
Proceedings of the Third International Conference on Genetic Algorithms (1989)
183–190

8. Grosso, P.B.: Computer Simulations of Genetic Adaptation: Parallel Subcompo-
nent Interaction in a Multilocus Model. PhD thesis, University of Michigan, Ann
Arbor, MI (1985)

9. Hills, D.W.: Co-evolving parasites improve simulated evolution as an optimization
procedure. In C.G. Langton, C. Taylor, J.D. Farmer, and S. Rasmussen, editors,
Artificial Life II (1990) 313–324

10. Holland, J.H.: Adaptation in Natural and Artificial Systems (1975)
11. Holland, J.H., Reitman, J.S.: Cognitive systems based on adaptive algorithms. In

D.A. Waterman and F. Hayes-Roth, editors, Pattern-Directed Inference Systems
(1978)

12. Husbands, P., Mill, F.: Simulated co-evolution as the mechanism for emergent
planning and scheduling. Proceedings of the Fourth International Conference on
Genetic Algorithms (1991) 264–270

13. Mühlenbein, H.: The parallel genetic algorithm as function optimizer. Proceedings
of the Fourth International Conference on Genetic Algorithms (1991) 271–278

14. Smith, S.F.: Flexible learning of problem solving heuristics through adaptive
search. Proceedings of the Eighth International Joint Conference on Artificial In-
telligence (1983) 422–425

15. Tanese, R.: Distributed genetic algorithms. Proceedings of the Third International
Conference on Genetic Algorithms (1989) 434–439

16. Whitley, D., Starkweather, T.: Genitor II: a distributed genetic algorithm. Journal
of Experimental and Theoretical Artificial Intelligence 2 (1990) 189–214

