
1

March 19, 2008 1

Search Engine Optimization

SWE 642, Spring 2008

Nick Duan

Overview
Understanding Index Structure

Lucene Index Structure

Indexing APIs

Indexing with Metadata

Distributed Indexing

Distributed indexing in Nutch

MapReduce Concepts

Directory-based Search

Adding category information as a separate Field

TermQuery and BooleanQuery in Lucene

Summary

March 19, 2008 Nick Duan 2

2

March 19, 2008 Nick Duan 3

Understanding Index Structure

Indexing of text beyond inverted index
Inverted index establishes a basic mechanism
(reference pointers of term-to-document) for indexing
text, but it is not sufficient to accommodate search
needs

Terms have to be arranged to enable efficient searches
(sorting, hashing, etc..)

Index file structure to be optimized (with respect to
hardware specs) to speed up searches and save space

Indexing of metadata to augment additional search
options

Database: Any field can be indexed!

Textual Documents: User-defined metadata as fields
Lucene index file structure

Terminology of Lucene
Document

A document, representing a index target or
entity, consists of one or more fields. The
text content of the document is one of the
fields

Field
A field is a name/value pair, with the value
representing a sequence of terms

Indexing is performed on a field-by-field basis

Term
A term is a word or string

March 19, 2008 Nick Duan 4

3

Lucene Index Structure

March 19, 2008 Nick Duan 5

Title: Angle and Daemon

Author: Dan Brown

ISBN: 3473948710-09

Publisher: Pocket Star

Title: The Da Vinci Code

Author: Dan Brown

ISBN: 348765907-09

Publisher: Anchor

Document as Index Card

….

….

Field Value Doc Freq

Title Da Vinci 1

code 1

angle 1

daemon 1

Author Dan

Brown

2

Publisher Anchor 1

Pocket

Star

1

Doc #1

Doc #2

Index File with Fields

Each entry
represents a Field

Lucene Index Files
Segment: A physical grouping of index files. An index entity in Lucence consists of
one or more segments

Field names (.fnm): Containing the set of field names used in the index.

Stored Field values (.fdx and .fdt): Containing a list of attribute-value pairs for each
document, where the attributes are field names.

Term dictionary (.tls): Containing all of the terms used in all of the indexed fields of all
of the documents, as well as the number of documents which contain the term, and
pointers to the term's frequency and proximity data.

Term Frequency (.frq): Containing the numbers of all the documents that contain
each of the terms defined in the dictionary, and the frequency of the term in that
document.

Term Proximity (.prx): For each term in the dictionary, the positions that the term
occurs in each document.

Normalization factors (.nrm): For each field in each document, a value (a single byte
value) is stored that is multiplied into the score for hits on that field.

Term Vectors (.tvx): A term vector consists of term text and term frequency for each
field (to be dynamically configured via Field API)

Deleted documents (.del): An optional file indicating which documents are deleted.

March 19, 2008 Nick Duan 6

4

March 19, 2008 Nick Duan 7

Index APIs in Lucene
org.apache.lucene.store.Directory

A single Lucene Index, represented in different forms: RAMDirectory,
FSDirectory

org.apache.lucene.document.Document
A single index target

org.apache.lucene.document.Field
A single name/value pair as the basic component of an index

Nested classes: Field.Store, Field.Index, Field.TermVector

org.apache.lucene.index.IndexWriter
Create and maintain an index

org.apache.lucene.search.IndexSearcher
Implements search on a single index

org.apache.lucene.queryParser.QueryParser
Tokenizes and normalizes a query string

org.apache.lucene.analysis.Analyzer
Builds token streams and performs analysis on the terms. Used by both
IndexWriter and IndexSearcher

March 19, 2008 Nick Duan 8

Integrating with Search Applications

General Steps:

Create Documents by adding Fields;

Create an IndexWriter and add documents

to it with addDocument();

Call QueryParser.parse() to build a query

from a string; and

Create an IndexSearcher and pass the

query to its search() method.

5

Indexing Steps

Analyzer analyzer = new StandardAnalyzer();

Directory directory = new RAMDirectory();

//Directory directory = FSDirectory.getDirectory("/tmp/

testindex");

IndexWriter iwriter = new IndexWriter(directory, analy

zer, true);

iwriter.setMaxFieldLength(25000);

Document doc = new Document();

String text = "This is the text to be indexed.";

doc.add(new Field("fieldname", text, Field.Store.YES,

Field.Index.TOKENIZED));

iwriter.addDocument(doc);

iwriter.optimize();

iwriter.close();
March 19, 2008 Nick Duan 9

Store index in

memory

Store index on file system

Search Steps
IndexSearcher isearcher = new IndexSearcher(directory);

// Parse a simple query that searches for "text":

QueryParser parser = new QueryParser("fieldname", analyzer);

Query query = parser.parse("text");

Hits hits = isearcher.search(query);

// Iterate through the results:

for (int i = 0; i < hits.length(); i++) {
Document hitDoc = hits.doc(i);
System.out.println(hitDoc.get("fieldname"));

// should print out “This is the text to be indexed.“

}

isearcher.close();

directory.close();

March 19, 2008 Nick Duan 10

The field name
used during
indexing

The search
term

6

March 19, 2008 Nick Duan 11

Index could be a lengthy and time-
consuming task when dealing with millions
of data records

Simple solution: Divide and concur
Partition the index space into small sections

Assign each section to a single CPU or
machine

Machines work in parallel to perform indexing

Sections can be re-assigned if a machine is
deadlocked or slow

Distributed Indexing

March 19, 2008 Nick Duan 12

MapReduce Algorithm

Used by Google for implementing large-scale,
index clusters

Inherit from the Map and Reducer data structure of
Lisp

Basic concept:
A map is defined as a list of key/value pairs. A key
could have multiple values

Reduce the list to have each key correspond to its
value list

Perform indexing on the reduced key/value list pairs

Implemented in Nutch through its Hadoop
subproject

7

MapReduce on Large Cluster

March 19, 2008 Nick Duan 13

Split

Split

Split

Split

Worker

Worker

Worker

Worker
Input files

Map phase

Worker

Worker

Reduce phase

Immediate Files

Output files

Master Scheduler

Implementing Directory-based Search

Objective: Reduce search space by adding category

information

Intersection of both searches on content and

category

There are multiple implementations

Creating a where clause with two query fields in an AND

condition

Creating an intersection of two result sets of two sub-queries

Category information to be defined as a separate

index field in addition to content

Construct a BooleanQuery to search on both content

and category fields (equivalent to constructing a

where clause)

March 19, 2008 Nick Duan 14

8

Define Category Field for Indexing

Document doc = new Document();

/* Define category as a index field without tokenizing it

*/

doc.add(new Field(“category", getCategory(),
Field.Store.YES, Field.Index.UN_TOKENIZED));

/* Add the contents of the file to a field named "contents".
Specify a Reader, so that the text of the file is tokenized
and indexed, but not stored. Note that FileReader expects
the file to be in the system's default encoding. If that's not
the case searching for special characters will fail.

*/

doc.add(new Field("contents", new FileReader(f)));

March 19, 2008 Nick Duan 15

Construct a BooleanQuery

TermQuery contentQuery = new TermQuery(new
Term(“content”, “bank”);

TermQuery catQuery = new TermQuery (new
Term(“category”, “news/financial”);

BooleanQuery bQuery = new BooleanQuery();

bQuery.add(contentQuery,
BooleanClause.Occur.MUST);

bQuery.add(catQuery,
BooleanClause.Occur.SHOULD);

IndexSearcher searcher = new
IndexSearcher(indexDir);

Hits hits = searcher.search(bQuery);

March 19, 2008 Nick Duan 16

9

March 19, 2008 Nick Duan 17

Online References
Apache Lucene

http://lucene.apache.org/java/2_3_1

http://wiki.apache.org/lucene-java

The Anatomy of a Large-Scale Hypertextual Web Search
Engine, by Sergey Brin and Lawrence Page

http://infolab.standford.edu/~backrub/google.html

Chapter 4 of Introduction to Information Retrieval, by
Manning, et.al

http://www-csli.stanford.edu/~hinrich/information-retrieval-
book.html

Lucene in Action, by Otis Gospodnetic & Eric
Hatcher, Manning publications, 2005 (examples are
using old APIs)

Summary

Search engine can be optimized by constructing
the right index fields and search queries

What you search for is what you have indexed

Reducing search space and increase search accuracy
by creating the right index fields

Using various Query types to construct the right search
query based on indices

Distributed Indexing is a common way to reduce
the complexity and workload of indexing

MapReduce algorithm to divide and concur

Applicable to large computer clusters to perform
parallel computing

March 19, 2008 Nick Duan 18

http://lucene.apache.org/java/2_3_1
http://wiki.apache.org/lucene-java
http://wiki.apache.org/lucene-java
http://wiki.apache.org/lucene-java
http://infolab.standford.edu/~backrub/google.html
http://www-csli.stanford.edu/~hinrich/information-retrieval-book.html
http://www-csli.stanford.edu/~hinrich/information-retrieval-book.html
http://www-csli.stanford.edu/~hinrich/information-retrieval-book.html
http://www-csli.stanford.edu/~hinrich/information-retrieval-book.html
http://www-csli.stanford.edu/~hinrich/information-retrieval-book.html
http://www-csli.stanford.edu/~hinrich/information-retrieval-book.html
http://www-csli.stanford.edu/~hinrich/information-retrieval-book.html

10

Quiz

What are the basic steps in Lucene to
perform indexing on a directory of docs?

What are the basic steps in Lucene to
search a term in a content field?

Download Lucene and write a simple
program to index two or more
documents in different categories, and
perform search on both content and
categories

March 19, 2008 Nick Duan 19

