
Ideally, properly implemented securitymechanisms will also provide the following
functionality:

n Easy to administer
n Transparent to system users
n Interoperable across application and enterprise boundaries

Characteristics of Application Security

Java EE applications consist of components that can contain both protected and unprotected
resources. Often, you need to protect resources to ensure that only authorized users have access.
Authorization provides controlled access to protected resources. Authorization is based on
identi cation and authentication. Identi cation is a process that enables recognition of an entity
by a system, and authentication is a process that veri es the identity of a user, device, or other
entity in a computer system, usually as a prerequisite to allowing access to resources in a system.

Authorization and authentication are not required for an entity to access unprotected
resources. Accessing a resource without authentication is referred to as unauthenticated or
anonymous access.

These and several other well-de ned characteristics of application security that, when properly
addressed, help tominimize the security threats faced by an enterprise, include the following:

n Authentication: Themeans by which communicating entities (for example, client and
server) prove to one another that they are acting on behalf of speci c identities that are
authorized for access. This ensures that users are who they say they are.

n Authorization, orAccess Control: Themeans by which interactions with resources are
limited to collections of users or programs for the purpose of enforcing integrity,
con dentiality, or availability constraints. This ensures that users have permission to
perform operations or access data.

n Data integrity: Themeans used to prove that information has not beenmodi ed by a third
party (some entity other than the source of the information). For example, a recipient of
data sent over an open networkmust be able to detect and discardmessages that were
modi ed after they were sent. This ensures that only authorized users canmodify data.

n Con dentiality orData Privacy: Themeans used to ensure that information is made
available only to users who are authorized to access it. This ensures that only authorized
users can view sensitive data.

n Non-repudiation: Themeans used to prove that a user performed some action such that the
user cannot reasonably deny having done so. This ensures that transactions can be proven to
have happened.

n Quality of Service (QoS): Themeans used to provide better service to selected network
tra!c over various technologies.

Overview of Java EE Security

The Java EE 5Tutorial • September 2007770

n Auditing: Themeans used to capture a tamper-resistant record of securityrelated events for
the purpose of being able to evaluate the e"ectiveness of security policies andmechanisms.
To enable this, the systemmaintains a record of transactions and security information.

Security ImplementationMechanisms
The characteristics of an application should be considered when deciding the layer and type of
security to be provided for applications. The following sections discuss the characteristics of the
commonmechanisms that can be used to secure Java EE applications. Each of these
mechanisms can be used individually or with others to provide protection layers based on the
speci c needs of your implementation.

Java SE Security ImplementationMechanisms

Java SE provides support for a variety of security features andmechanisms, including:

n Java Authentication andAuthorization Service (JAAS): JAAS is a set of APIs that enable
services to authenticate and enforce access controls upon users. JAAS provides a pluggable
and extensible framework for programmatic user authentication and authorization. JAAS is
a core Java SE API and is an underlying technology for Java EE securitymechanisms.

n Java Generic Security Services (Java GSS-API): Java GSS-API is a token-based API used to
securely exchangemessages between communicating applications. The GSS-API o"ers
application programmers uniform access to security services atop a variety of underlying
securitymechanisms, including Kerberos.

n Java Cryptography Extension (JCE): JCE provides a framework and implementations for
encryption, key generation and key agreement, andMessage Authentication Code (MAC)
algorithms. Support for encryption includes symmetric, asymmetric, block, and stream
ciphers. Block ciphers operate on groups of bytes while stream ciphers operate on one byte
at a time. The software also supports secure streams and sealed objects.

n Java Secure Sockets Extension (JSSE): JSSE provides a framework and an implementation
for a Java version of the SSL and TLS protocols and includes functionality for data
encryption, server authentication, message integrity, and optional client authentication to
enable secure Internet communications.

n Simple Authentication and Security Layer (SASL): SASL is an Internet standard (RFC
2222) that speci es a protocol for authentication and optional establishment of a security
layer between client and server applications. SASL de nes how authentication data is to be
exchanged but does not itself specify the contents of that data. It is a framework into which
speci c authenticationmechanisms that specify the contents and semantics of the
authentication data can t.

Java SE also provides a set of tools formanaging keystores, certi cates, and policy les;
generating and verifying JAR signatures; and obtaining, listing, andmanaging Kerberos tickets.

Security ImplementationMechanisms

Chapter 28 • Introduction to Security in the Java EE Platform 771

Formore information on Java SE security, visit its web page at
http://java.sun.com/javase/6/docs/technotes/guides/security/.

Java EE Security ImplementationMechanisms

Java EE security services are provided by the component container and can be implemented
using declarative or programmatic techniques (container security is discussedmore in
“Securing Containers” on page 774). Java EE security services provide a robust and easily
con gured securitymechanism for authenticating users and authorizing access to application
functions and associated data at many di"erent layers. Java EE security services are separate
from the securitymechanisms of the operating system.

Application-Layer Security

In Java EE, component containers are responsible for providing application-layer security.
Application-layer security provides security services for a speci c application type tailored to
the needs of the application. At the application layer, application rewalls can be employed to
enhance application protection by protecting the communication stream and all associated
application resources from attacks.

Java EE security is easy to implement and con gure, and can o"er ne-grained access control to
application functions and data. However, as is inherent to security applied at the application
layer, security properties are not transferable to applications running in other environments
and only protect data while it is residing in the application environment. In the context of a
traditional application, this is not necessarily a problem, but when applied to a web services
application, where data often travels across several intermediaries, you would need to use the
Java EE securitymechanisms along with transport-layer security andmessage-layer security for
a complete security solution.

The advantages of using application-layer security include the following:

n Security is uniquely suited to the needs of the application.
n Security is ne-grained, with application-speci c settings.

The disadvantages of using application-layer security include the following:

n The application is dependent on security attributes that are not transferable between
application types.

n Support formultiple protocols makes this type of security vulnerable.

n Data is close to or contained within the point of vulnerability.

Formore information on providing security at the application layer, read “Securing
Containers” on page 774.

Security ImplementationMechanisms

The Java EE 5Tutorial • September 2007772

Transport-Layer Security

Transport-layer security is provided by the transport mechanisms used to transmit information

over the wire between clients and providers, thus transport-layer security relies on secure

HTTP transport (HTTPS) using Secure Sockets Layer (SSL). Transport security is a

point-to-point securitymechanism that can be used for authentication, message integrity, and

con dentiality.When running over an SSL-protected session, the server and client can

authenticate one another and negotiate an encryption algorithm and cryptographic keys before

the application protocol transmits or receives its rst byte of data. Security is “live” from the

time it leaves the consumer until it arrives at the provider, or vice versa, even across

intermediaries. The problem is that it is not protected once it gets to its destination. One

solution is to encrypt themessage before sending.

Transport-layer security is performed in a series of phases, which are listed here:

n The client and server agree on an appropriate algorithm.

n A key is exchanged using public-key encryption and certi cate-based authentication.

n A symmetric cipher is used during the information exchange.

Digital certi cates are necessary when running secure HTTP transport (HTTPS) using Secure

Sockets Layer (SSL). TheHTTPS service of most web servers will not run unless a digital

certi cate has been installed. Digital certi cates have already been created for the Application

Server. If you are using a di"erent server, use the procedure outlined in “Working with Digital

Certi cates” on page 788 to set up a digital certi cate that can be used by your web or

application server to enable SSL.

The advantages of using transport-layer security include the following:

n Relatively simple, well understood, standard technology.
n Applies tomessage body and attachments.

The disadvantages of using transport-layer security include the following:

n Tightly-coupled with transport-layer protocol.

n All or nothing approach to security. This implies that the securitymechanism is unaware of

message contents, and as such, you cannot selectively apply security to portions of the

message as you can withmessage-layer security.

n Protection is transient. Themessage is only protected while in transit. Protection is removed

automatically by the endpoint when it receives themessage.

n Not an end-to-end solution, simply point-to-point.

Formore information on transport-layer security, read “Establishing a Secure Connection

Using SSL” on page 785.

Security ImplementationMechanisms

Chapter 28 • Introduction to Security in the Java EE Platform 773

This section discusses setting up users so that they can be correctly identi ed and either given

access to protected resources, or denied access if the user is not authorized to access the

protected resources. To authenticate a user, you need to follow these basic steps:

1. The ApplicationDeveloper writes code to prompt the user for their user name and

password. The di"erentmethods of authentication are discussed in “Specifying an

AuthenticationMechanism” on page 858.

2. The ApplicationDeveloper communicates how to set up security for the deployed

application by use of a deployment descriptor. This step is discussed in “Setting Up Security

Roles” on page 782.

3. The Server Administrator sets up authorized users and groups on the Application Server.

This is discussed in “Managing Users andGroups on the Application Server” on page 781.

4. The ApplicationDeployermaps the application’s security roles to users, groups, and

principals de ned on the Application Server. This topic is discussed in “Mapping Roles to

Users andGroups” on page 784.

WhatAreRealms, Users, Groups, andRoles?

A realm is de ned on a web or application server. It contains a collection of users, whichmay or

may not be assigned to a group, that are controlled by the same authentication policy.

Managing users on the Application Server is discussed in “Managing Users andGroups on the

Application Server” on page 781.

An application will often prompt a user for their user name and password before allowing

access to a protected resource. After the user has entered their user name and password, that

information is passed to the server, which either authenticates the user and sends the protected

resource, or does not authenticate the user, in which case access to the protected resource is

denied. This type of user authentication is discussed in “Specifying an Authentication

Mechanism” on page 858.

In some applications, authorized users are assigned to roles. In this situation, the role assigned

to the user in the applicationmust bemapped to a group de ned on the application server.

Figure 28–6 shows this. More information onmapping roles to users and groups can be found

in “Setting Up Security Roles” on page 782.

Workingwith Realms, Users, Groups, and Roles

The Java EE 5Tutorial • September 2007778

The following sections providemore information on realms, users, groups, and roles.

What Is a Realm?

For a web application, a realm is a complete database of users and groups that identify valid users

of a web application (or a set of web applications) and are controlled by the same authentication

policy.

The Java EE server authentication service can govern users inmultiple realms. In this release of

the Application Server, the file, admin-realm, and certificate realms come precon gured

for the Application Server.

In the file realm, the server stores user credentials locally in a le named keyfile. You can use
the Admin Console tomanage users in the file realm.

When using the file realm, the server authentication service veri es user identity by checking

the file realm. This realm is used for the authentication of all clients except for web browser

clients that use the HTTPS protocol and certi cates.

User 1

User 2 User 3

User 1

User 2 User 3

Group 1

Application

Role 1

Role 2

Application

Role 1

Role 2

User 1

User 2 User 3

User 1

User 2 User 3

Group 1

Create users
and/or groups

Define roles
in application

Map roles to users
and/or groups

FIGURE 28–6 MappingRoles toUsers andGroups

Workingwith Realms, Users, Groups, and Roles

Chapter 28 • Introduction to Security in the Java EE Platform 779

In the certificate realm, the server stores user credentials in a certi cate database.When
using the certificate realm, the server uses certi cates with the HTTPS protocol to
authenticate web clients. To verify the identity of a user in the certificate realm, the
authentication service veri es an X.509 certi cate. For step-by-step instructions for creating
this type of certi cate, see “Working with Digital Certi cates” on page 788. The common name
 eld of the X.509 certi cate is used as the principal name.

The admin-realm is also a FileRealm and stores administrator user credentials locally in a le
named admin-keyfile. You can use the Admin Console tomanage users in this realm in the
same way youmanage users in the file realm. Formore information, see “Managing Users and
Groups on the Application Server” on page 781.

What Is aUser?

A user is an individual (or application program) identity that has been de ned in the
Application Server. In a web application, a user can have a set of roles associated with that
identity, which entitles them to access all resources protected by those roles. Users can be
associated with a group.

A Java EE user is similar to an operating system user. Typically, both types of users represent
people. However, these two types of users are not the same. The Java EE server authentication
service has no knowledge of the user name and password you provide when you log on to the
operating system. The Java EE server authentication service is not connected to the security
mechanism of the operating system. The two security services manage users that belong to
di"erent realms.

What Is aGroup?

A group is a set of authenticated users, classi ed by common traits, de ned in the Application
Server.

A Java EE user of the file realm can belong to an Application Server group. (A user in the
certificate realm cannot.) AnApplication Server group is a category of users classi ed by
common traits, such as job title or customer pro le. For example, most customers of an
e-commerce applicationmight belong to the CUSTOMER group, but the big spenders would
belong to the PREFERRED group. Categorizing users into groupsmakes it easier to control the
access of large numbers of users.

AnApplication Server group has a di"erent scope from a role. An Application Server group is
designated for the entire Application Server, whereas a role is associated only with a speci c
application in the Application Server.

What Is a Role?

A role is an abstract name for the permission to access a particular set of resources in an
application. A role can be compared to a key that can open a lock.Many peoplemight have a
copy of the key. The lock doesn’t care who you are, only that you have the right key.

Workingwith Realms, Users, Groups, and Roles

The Java EE 5Tutorial • September 2007780

OverviewofWebApplication Security

In the Java EE platform,web components provide the dynamic extension capabilities for a web

server.Web components are either Java servlets, JSP pages, JSF pages, or web service endpoints.

The interaction between a web client and a web application is illustrated in Figure 30–1.

Web components are supported by the services of a runtime platform called aweb container. A

web container provides services such as request dispatching, security, concurrency, and

life-cycle management.

Certain aspects of web application security can be con gured when the application is installed,

or deployed, to the web container. Annotations and/or deployment descriptors are used to relay

information to the deployer about security and other aspects of the application. Specifying this

information in annotations or in the deployment descriptor helps the deployer set up the

appropriate security policy for the web application. Any values explicitly speci ed in the

deployment descriptor override any values speci ed in annotations. This chapter provides

more information on con guring security for web applications.

For secure transport, most web applications use the HTTPS protocol. Formore information on

using the HTTPS protocol, read “Establishing a Secure ConnectionUsing SSL” on page 785.

Web
Client

HttpServlet
Request

HttpServlet
Response

Web Server

HTTP
Request

HTTP
Response

1

Web
Components

Web
Components

Web
Components

Web
Components

Web
Components

JavaBeans
Components

2

3

4

5

4

6

FIGURE 30–1 JavaWebApplicationRequestHandling

Overview ofWebApplication Security

The Java EE 5Tutorial • September 2007840

Workingwith Security Roles

If you read “Working with Realms, Users, Groups, and Roles” on page 777, you will remember
the following de nitions:

n In applications, roles are de ned using annotations or in application deployment
descriptors such as web.xml, ejb-jar.xml, and application.xml.
A role is an abstract name for the permission to access a particular set of resources in an
application. Formore information, read “What Is a Role?” on page 780.

Formore information on de ning roles, see “Declaring Security Roles” on page 841.

n On the Application Server, the following options are con gured using the Admin Console:

n A realm is a complete database of users and groups that identify valid users of a web
application (or a set of web applications) and are controlled by the same authentication
policy. Formore information, read “What Is a Realm?” on page 779.

n A user is an individual (or application program) identity that has been de ned in the
Application Server. On the Application Server, a user generally has a user name, a
password, and, optionally, a list of groups to which this user has been assigned. Formore
information, read “What Is a User?” on page 780.

n A group is a set of authenticated users, classi ed by common traits, de ned in the
Application Server. Formore information, read “What Is a Group?” on page 780.

n A principal is an entity that can be authenticated by an authentication protocol in a
security service that is deployed in an enterprise.

Formore information on con guring users on the Application Server, read “Managing
Users andGroups on the Application Server” on page 781.

n During deployment, the deployer takes the information provided in the application
deployment descriptor andmaps the roles speci ed for the application to users and groups
de ned on the server using the Application Server deployment descriptors sun-web.xml,
sun-ejb-jar.xml, or sun-application.xml.
Formore information, read “Mapping Security Roles to Application Server Groups” on
page 844.

Declaring Security Roles

You can declare security role names used in web applications using either the @DeclareRoles
annotation (preferred) or the security-role-ref elements of the deployment descriptor.
Declaring security role names in this way enables you to link the security role names used in the
code to the security roles de ned for an assembled application. In the absence of this linking
step, any security role name used in the code will be assumed to correspond to a security role of
the same name in the assembled application.

Workingwith Security Roles

Chapter 30 • SecuringWebApplications 841

myCart.getTotal();
//....

}
}
//....
}

The @RunAs annotation is equivalent to the run-as element in the deployment descriptor.

Declaring Security Requirements in aDeployment
Descriptor

Web applications are created by application developers who give, sell, or otherwise transfer the
application to an application deployer for installation into a runtime environment. Application
developers communicate how the security is to be set up for the deployed application
declaratively by use of the deployment descriptormechanism. A deployment descriptor enables
an application’s security structure, including roles, access control, and authentication
requirements, to be expressed in a form external to the application.

A web application is de ned using a standard Java EE web.xml deployment descriptor. A
deployment descriptor is an XML schema document that conveys elements and con guration
information for web applications. The deployment descriptormust indicate which version of
the web application schema (2.4 or 2.5) it is using, and the elements speci ed within the
deployment descriptormust comply with the rules for processing that version of the
deployment descriptor. Version 2.5 of the Java Servlet Speci cation, which can be downloaded
at SRV.13, Deployment Descriptor (http://jcp.org/en/jsr/detail?id=154), containsmore
information regarding the structure of deployment descriptors.

The following code is an example of the elements in a deployment descriptor that apply
speci cally to declaring security for web applications or for resources within web applications.
This example comes from section SRV.13.5.2,An Example of Security, from the Java Servlet
Speci cation 2.5.

<?xml version="1.0" encoding="ISO-8859-1"?>
<web-app xmlns="http://java.sun.com/xml/ns/j2ee"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://java.sun.com/xml/ns/j2ee
http://java.sun.com/xml/ns/j2ee/web-app_2_5.xsd"
version="2.5">

<display-name>A Secure Application</display-name>

<!-- SERVLET -->
<servlet>
<servlet-name>catalog</servlet-name>
<servlet-class>com.mycorp.CatalogServlet</servlet-class>

De ning Security Requirements forWebApplications

Chapter 30 • SecuringWebApplications 851

<init-param>
<param-name>catalog</param-name>
<param-value>Spring</param-value>

</init-param>
<security-role-ref>
<role-name>MGR</role-name>
<!-- role name used in code -->
<role-link>manager</role-link>

</security-role-ref>
</servlet>

<!-- SECURITY ROLE -->
<security-role>
<role-name>manager</role-name>

</security-role>

<servlet-mapping>
<servlet-name>catalog</servlet-name>
<url-pattern>/catalog/*</url-pattern>

</servlet-mapping>

<!-- SECURITY CONSTRAINT -->
<security-constraint>
<web-resource-collection>
<web-resource-name>CartInfo</web-resource-name>
<url-pattern>/catalog/cart/*</url-pattern>
<http-method>GET</http-method>
<http-method>POST</http-method>

</web-resource-collection>
<auth-constraint>
<role-name>manager</role-name>

</auth-constraint>
<user-data-constraint>
<transport-guarantee>CONFIDENTIAL</transport-guarantee>

</user-data-constraint>
</security-constraint>

<!-- LOGIN CONFIGURATION-->
<login-config>
<auth-method>BASIC</auth-method>

</login-config>
</web-app>

De ning Security Requirements forWebApplications

The Java EE 5Tutorial • September 2007852

As shown in the preceding example, the <web-app> element is the root element for web

applications. The <web-app> element contains the following elements that are used for

specifying security for a web application:

n <security-role-ref>
The security role reference element contains the declaration of a security role reference in the

web application’s code. The declaration consists of an optional description, the security role

name used in the code, and an optional link to a security role.

The security role name speci ed here is the security role name used in the code. The value of

the role-name elementmust be the String used as the parameter to the

HttpServletRequest.isUserInRole(String role) method. The container uses the

mapping of security-role-ref to security-rolewhen determining the return value of

the call.

The security role link speci ed here contains the value of the name of the security role that

the usermay bemapped into. The role-link element is used to link a security role

reference to a de ned security role. The role-link elementmust contain the name of one of

the security roles de ned in the security-role elements.

Formore information about security roles, read “Working with Security Roles” on page 841.

n <security-role>
A security role is an abstract name for the permission to access a particular set of resources in

an application. A security role can be compared to a key that can open a lock.Many people

might have a copy of the key. The lock doesn’t care who you are, only that you have the right

key.

The security-role element is used with the security-role-ref element tomap roles

de ned in code to roles de ned for the web application. Formore information about

security roles, read “Working with Security Roles” on page 841.

n <security-constraint>
A security constraint is used to de ne the access privileges to a collection of resources using

their URLmapping. Read “Specifying Security Constraints” on page 854 formore detail on

this element. The following elements can be part of a security constraint:

n <web-resource-collection> element:Web resource collections describe a URL pattern

andHTTPmethod pair that identify resources that need to be protected.

n <auth-constraint> element:Authorization constraints indicate which users in speci ed

roles are permitted access to this resource collection. The role name speci ed heremust

either correspond to the role name of one of the <security-role> elements de ned for

this web application, or be the specially reserved role name *, which is a compact syntax

for indicating all roles in the web application. Role names are case sensitive. The roles

de ned for the applicationmust bemapped to users and groups de ned on the server.

Formore information about security roles, read “Working with Security Roles” on

page 841.

De ning Security Requirements forWebApplications

Chapter 30 • SecuringWebApplications 853

n <user-data-constraint> element:User data constraints specify network security
requirements, in particular, this constraint speci es how data communicated between
the client and the container should be protected. If a user transport guarantee of
INTEGRAL or CONFIDENTIAL is declared, all user name and password information
will be sent over a secure connection usingHTTP over SSL (HTTPS). Network security
requirements are discussed in “Specifying a Secure Connection” on page 857.

n <login-config>
The login con guration element is used to specify the user authenticationmethod to be used
for access to web content, the realm in which the user will be authenticated, and, in the case
of form-based login, additional attributes.When speci ed, the usermust be authenticated
before access to any resource that is constrained by a security constraint will be granted. The
types of user authenticationmethods that are supported include basic, form-based, digest,
and client certi cate. Read “Specifying an AuthenticationMechanism” on page 858 formore
detail on this element.

Some of the elements of web application securitymust be addressed in server con guration les
rather than in the deployment descriptor for the web application. Con guring security on the
Application Server is discussed in the following sections and books:

n “Securing the Application Server” on page 777
n “Managing Users andGroups on the Application Server” on page 781
n “Installing and Con guring SSL Support” on page 785
n “Deploying Secure Enterprise Beans” on page 819
n Sun Java SystemApplication Server 9.1 Administration Guide
n Sun Java SystemApplication Server 9.1 Developer’s Guide

The following sections providemore information on deployment descriptor security elements:

n “Specifying Security Constraints” on page 854
n “Working with Security Roles” on page 841
n “Specifying a Secure Connection” on page 857
n “Specifying an AuthenticationMechanism” on page 858

Specifying Security Constraints

Security constraints are a declarative way to de ne the protection of web content. A security
constraint is used to de ne access privileges to a collection of resources using their URL
mapping. Security constraints are de ned in a deployment descriptor. The following example
shows a typical security constraint, including all of the elements of which it consists:

<security-constraint>
<display-name>ExampleSecurityConstraint</display-name>
<web-resource-collection>
<web-resource-name>
ExampleWRCollection

</web-resource-name>

De ning Security Requirements forWebApplications

The Java EE 5Tutorial • September 2007854

<url-pattern>/example</url-pattern>
<http-method>POST</http-method>
<http-method>GET</http-method>

</web-resource-collection>
<auth-constraint>
<role-name>exampleRole</role-name>

</auth-constraint>
<user-data-constraint>
<transport-guarantee>CONFIDENTIAL</transport-guarantee>

</user-data-constraint>
</security-constraint>

As shown in the example, a security constraint (<security-constraint> in deployment
descriptor) consists of the following elements:

n Web resource collection (web-resource-collection)
A web resource collection is a list of URL patterns (the part of a URL after the host name and
port which you want to constrain) andHTTP operations (themethods within the les that
match the URL pattern which you want to constrain (for example, POST, GET)) that describe
a set of resources to be protected.

n Authorization constraint (auth-constraint)
An authorization constraint establishes a requirement for authentication and names the
roles authorized to access the URL patterns andHTTPmethods declared by this security
constraint. If there is no authorization constraint, the containermust accept the request
without requiring user authentication. If there is an authorization constraint, but no roles
are speci ed within it, the container will not allow access to constrained requests under any
circumstances. The wildcard character * can be used to specify all role names de ned in the
deployment descriptor. Security roles are discussed in “Working with Security Roles” on
page 841.

n User data constraint (user-data-constraint)
A user data constraint establishes a requirement that the constrained requests be received
over a protected transport layer connection. This guarantees how the data will be
transported between client and server. The choices for type of transport guarantee include
NONE, INTEGRAL, and CONFIDENTIAL. If no user data constraint applies to a request, the
containermust accept the request when received over any connection, including an
unprotected one. These options are discussed in “Specifying a Secure Connection” on
page 857.

Security constraints work only on the original request URI and not on calls made throug a
RequestDispatcher (which include <jsp:include> and <jsp:forward>). Inside the
application, it is assumed that the application itself has complete access to all resources and
would not forward a user request unless it had decided that the requesting user also had access.

Many applications feature unprotected web content, which any caller can access without
authentication. In the web tier, you provide unrestricted access simply by not con guring a

De ning Security Requirements forWebApplications

Chapter 30 • SecuringWebApplications 855

security constraint for that particular request URI. It is common to have some unprotected
resources and some protected resources. In this case, you will de ne security constraints and a
loginmethod, but they will not be used to control access to the unprotected resources. Users
won’t be asked to log in until the rst time they enter a protected request URI.

The Java Servlet speci cation de nes the request URI as the part of a URL after the host name
and port. For example, let’s say you have an e-commerce site with a browsable catalog that you
would want anyone to be able to access, and a shopping cart area for customers only. You could
set up the paths for your web application so that the pattern /cart/* is protected but nothing
else is protected. Assuming that the application is installed at context path /myapp, the following
are true:

n http://localhost:8080/myapp/index.jsp is not protected.
n http://localhost:8080/myapp/cart/index.jsp is protected.

A user will not be prompted to log in until the rst time that user accesses a resource in the
cart/ subdirectory.

Specifying Separate Security Constraints for Di erent Resources

You can create a separate security constraint for di"erent resources within your application. For
example, you could allow users with the role of PARTNER access to the POSTmethod of all
resources with the URL pattern /acme/wholesale/*, and allow users with the role of CLIENT
access to the POSTmethod of all resources with the URL pattern /acme/retail/*. An example
of a deployment descriptor that would demonstrate this functionality is the following:

// SECURITY CONSTRAINT #1
<security-constraint>
<web-resource-collection>
<web-resource-name>wholesale</web-resource-name>
<url-pattern>/acme/wholesale/*</url-pattern>
<http-method>GET</http-method>
<http-method>POST</http-method>

</web-resource-collection>
<auth-constraint>
<role-name>PARTNER</role-name>

</auth-constraint>
<user-data-constraint>
<transport-guarantee>CONFIDENTIAL</transport-guarantee>

</user-data-constraint>
</security-constraint>

// SECURITY CONSTRAINT #2
<security-constraint>
<web-resource-collection>
<web-resource-name>retail</web-resource-name>
<url-pattern>/acme/retail/*</url-pattern>

De ning Security Requirements forWebApplications

The Java EE 5Tutorial • September 2007856

<http-method>GET</http-method>
<http-method>POST</http-method>

</web-resource-collection>
<auth-constraint>
<role-name>CLIENT</role-name>

</auth-constraint>
</security-constraint>

When the same url-pattern and http-method occur inmultiple security constraints, the
constraints on the pattern andmethod are de ned by combining the individual constraints,
which could result in unintentional denial of access. Section 12.7.2 of the Java Servlet 2.5
Speci cation (downloadable from http://jcp.org/en/jsr/detail?id=154) gives an example
that illustrates the combination of constraints and how the declarations will be interpreted.

Specifying a Secure Connection

Auser data constraint (<user-data-constraint> in the deployment descriptor) requires that
all constrainedURL patterns andHTTPmethods speci ed in the security constraint are
received over a protected transport layer connection such as HTTPS (HTTP over SSL). A user
data constraint speci es a transport guarantee (<transport-guarantee> in the deployment
descriptor). The choices for transport guarantee include CONFIDENTIAL, INTEGRAL, or NONE. If
you specify CONFIDENTIAL or INTEGRAL as a security constraint, that type of security constraint
applies to all requests that match the URL patterns in the web resource collection and not just to
the login dialog box. The following security constraint includes a transport guarantee:

<security-constraint>
<web-resource-collection>
<web-resource-name>wholesale</web-resource-name>
<url-pattern>/acme/wholesale/*</url-pattern>
<http-method>GET</http-method>
<http-method>POST</http-method>

</web-resource-collection>
<auth-constraint>
<role-name>PARTNER</role-name>

</auth-constraint>
<user-data-constraint>
<transport-guarantee>CONFIDENTIAL</transport-guarantee>

</user-data-constraint>
</security-constraint>

The strength of the required protection is de ned by the value of the transport guarantee.
Specify CONFIDENTIALwhen the application requires that data be transmitted so as to prevent
other entities from observing the contents of the transmission. Specify INTEGRALwhen the
application requires that the data be sent between client and server in such a way that it cannot
be changed in transit. Specify NONE to indicate that the containermust accept the constrained
requests on any connection, including an unprotected one.

De ning Security Requirements forWebApplications

Chapter 30 • SecuringWebApplications 857

The user data constraint is handy to use in conjunction with basic and form-based user
authentication.When the login authenticationmethod is set to BASIC or FORM, passwords are
not protected, meaning that passwords sent between a client and a server on an unprotected
session can be viewed and intercepted by third parties. Using a user data constraint with the
user authenticationmechanism can alleviate this concern. Con guring a user authentication
mechanism is described in “Specifying an AuthenticationMechanism” on page 858.

To guarantee that data is transported over a secure connection, ensure that SSL support is
con gured for your server. If your server is the Sun Java SystemApplication Server, SSL support
is already con gured. If you are using another server, consult the documentation for that server
for information on setting up SSL support. More information on con guring SSL support on
the Application Server can be found in “Establishing a Secure ConnectionUsing SSL” on
page 785 and in the Sun Java SystemApplication Server 9.1 Administration Guide.

Note –Good Security Practice: If you are using sessions, after you switch to SSL you should
never accept any further requests for that session that are non-SSL. For example, a shopping site
might not use SSL until the checkout page, and then it might switch to using SSL to accept your
card number. After switching to SSL, you should stop listening to non-SSL requests for this
session. The reason for this practice is that the session ID itself was not encrypted on the earlier
communications. This is not so bad when you’re only doing your shopping, but after the credit
card information is stored in the session, you don’t want a bad guy trying to fake the purchase
transaction against your credit card. This practice could be easily implemented using a lter.

Specifying anAuthenticationMechanism

To specify an authenticationmechanism for your web application, declare a login-config
element in the application deployment descriptor. The login-config element is used to
con gure the authenticationmethod and realm name that should be used for this application,
and the attributes that are needed by the form loginmechanismwhen form-based login is
selected. The sub-element auth-method con gures the authenticationmechanism for the web
application. The element contentmust be either BASIC, DIGEST, FORM, CLIENT-CERT, or a
vendor-speci c authentication scheme. The realm-name element indicates the realm name to
use for the authentication scheme chosen for the web application. The form-login-config
element speci es the login and error pages that should be used when FORMbased login is
speci ed.

The authenticationmechanism you choose speci es how the user is prompted to login. If the
<login-config> element is present, and the <auth-method> element contains a value other
than NONE, the usermust be authenticated before it can access any resource that is constrained
by the use of a security-constraint element in the same deployment descriptor (read
“Specifying Security Constraints” on page 854 formore information on security constraints). If
you do not specify an authenticationmechanism, the user will not be authenticated.

De ning Security Requirements forWebApplications

The Java EE 5Tutorial • September 2007858

When you try to access a web resource that is constrained by a security-constraint element,
the web container activates the authenticationmechanism that has been con gured for that
resource. To specify an authenticationmethod, place the <auth-method> element between
<login-config> elements in the deployment descriptor, like this:

<login-config>
<auth-method>BASIC</auth-method>

</login-config>

An example of a deployment descriptor that constrains all web resources for this application (in
italics below) and requires HTTP basic authentication when you try to access that resource (in
bold below) is shown here:

<?xml version="1.0" encoding="UTF-8"?>
<web-app version="2.5"

xmlns="http://java.sun.com/xml/ns/javaee"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://java.sun.com/xml/ns/j2ee
http://java.sun.com/xml/ns/javaee/web-app_2_5.xsd">

<display-name>basicauth</display-name>
<servlet>
<display-name>index</display-name>
<servlet-name>index</servlet-name>
<jsp-file>/index.jsp</jsp-file>

</servlet>
<security-role>
<role-name>loginUser</role-name>

</security-role>
<security-constraint>
<display-name>SecurityConstraint1</display-name>
<web-resource-collection>
<web-resource-name>WRCollection</web-resource-name>
<url-pattern>/*</url-pattern>

</web-resource-collection>
<auth-constraint>
<role-name>loginUser</role-name>

</auth-constraint>
</security-constraint>
<login-config>
<auth-method>BASIC</auth-method>

</login-config>
</web-app>

Before you can authenticate a user, youmust have a database of user names, passwords, and
roles con gured on your web or application server. For information on setting up the user
database, refer to “Managing Users andGroups on the Application Server” on page 781 and the
Sun Java SystemApplication Server 9.1 Administration Guide.

De ning Security Requirements forWebApplications

Chapter 30 • SecuringWebApplications 859

The authenticationmechanisms are discussed further in the following sections:

n “HTTP Basic Authentication” on page 860
n “Form-Based Authentication” on page 861
n “HTTPS Client Authentication” on page 863
n “Digest Authentication” on page 866

HTTPBasic Authentication

HTTP Basic Authentication requires that the server request a user name and password from the

web client and verify that the user name and password are valid by comparing them against a

database of authorized users.When basic authentication is declared, the following actions

occur:

1. A client requests access to a protected resource.

2. The web server returns a dialog box that requests the user name and password.

3. The client submits the user name and password to the server.

4. The server authenticates the user in the speci ed realm and, if successful, returns the

requested resource.

Figure 30–2 shows what happens when you specify HTTP basic authentication.

The following example shows how to specify basic authentication in your deployment

descriptor:

<login-config>
<auth-method>BASIC</auth-method>

</login-config>

ServerClient 2

Requests username:password

3

Sends username:password

4

Returns requested resource

1

Requests a protected resource

FIGURE 30–2 HTTPBasicAuthentication

De ning Security Requirements forWebApplications

The Java EE 5Tutorial • September 2007860

HTTP basic authentication is not a secure authenticationmechanism. Basic authentication

sends user names and passwords over the Internet as text that is Base64 encoded, and the target

server is not authenticated. This form of authentication can expose user names and passwords.

If someone can intercept the transmission, the user name and password information can easily

be decoded. However, when a secure transport mechanism, such as SSL, or security at the

network level, such as the IPSEC protocol or VPN strategies, is used in conjunction with basic

authentication, some of these concerns can be alleviated.

“Example: Basic Authentication with JAX-WS” on page 885 is an example application that uses

HTTP basic authentication in a JAX-WS service. “Example: Using Form-Based Authentication

with a JSP Page” on page 868 can be easily modi ed to demonstrate basic authentication. To do

so, replace the text between the <login-config> elements with those shown in this section.

Form-BasedAuthentication

Form-based authentication allows the developer to control the look and feel of the login

authentication screens by customizing the login screen and error pages that anHTTP browser

presents to the end user.When form-based authentication is declared, the following actions

occur:

1. A client requests access to a protected resource.

2. If the client is unauthenticated, the server redirects the client to a login page.

3. The client submits the login form to the server.

4. The server attempts to authenticate the user.

a. If authentication succeeds, the authenticated user’s principal is checked to ensure it is in

a role that is authorized to access the resource. If the user is authorized, the server

redirects the client to the resource using the stored URL path.

b. If authentication fails, the client is forwarded or redirected to an error page.

Figure 30–3 shows what happens when you specify form-based authentication.

De ning Security Requirements forWebApplications

Chapter 30 • SecuringWebApplications 861

The following example shows how to declare form-based authentication in your deployment

descriptor:

<login-config>
<auth-method>FORM</auth-method>
<realm-name>file</realm-name>
<form-login-config>
<form-login-page>/logon.jsp</form-login-page>
<form-error-page>/logonError.jsp</form-error-page>

</form-login-config>
</login-config>

The login and error page locations are speci ed relative to the location of the deployment

descriptor. Examples of login and error pages are shown in “Creating the Login Form and the

Error Page” on page 869.

Form-based authentication is not particularly secure. In form-based authentication, the content

of the user dialog box is sent as plain text, and the target server is not authenticated. This form

of authentication can expose your user names and passwords unless all connections are over

SSL. If someone can intercept the transmission, the user name and password information can

easily be decoded. However, when a secure transport mechanism, such as SSL, or security at the

network level, such as the IPSEC protocol or VPN strategies, is used in conjunction with

form-based authentication, some of these concerns can be alleviated.

The section “Example: Using Form-Based Authentication with a JSP Page” on page 868 is an

example application that uses form-based authentication.

ServerClient

2

Redirected to
login page

3

Form submitted

1

Requests protected resource

j_security_check

?

login.jsp

4

Redirected to source

error.jsp

Success

Error page returned

Failure

FIGURE 30–3 Form-BasedAuthentication

De ning Security Requirements forWebApplications

The Java EE 5Tutorial • September 2007862

Using Login Forms

When creating a form-based login, be sure tomaintain sessions using cookies or SSL session

information.

As shown in “Form-Based Authentication” on page 861, for authentication to proceed

appropriately, the action of the login formmust always be j_security_check. This restriction
is made so that the login formwill work nomatter which resource it is for, and to avoid

requiring the server to specify the action eld of the outbound form. The following code snippet

shows how the form should be coded into the HTML page:

<form method="POST" action="j_security_check">
<input type="text" name="j_username">
<input type="password" name="j_password">
</form>

HTTPSClientAuthentication

HTTPS Client Authentication requires the client to possess a Public Key Certi cate (PKC). If

you specify client authentication, the web server will authenticate the client using the client’s

public key certi cate.

HTTPS Client Authentication is amore securemethod of authentication than either basic or

form-based authentication. It uses HTTP over SSL (HTTPS), in which the server authenticates

the client using the client’s Public Key Certi cate (PKC). Secure Sockets Layer (SSL) technology

provides data encryption, server authentication, message integrity, and optional client

authentication for a TCP/IP connection. You can think of a public key certi cate as the digital

equivalent of a passport. It is issued by a trusted organization, which is called a certi cate

authority (CA), and provides identi cation for the bearer.

Before usingHTTPClient Authentication, youmustmake sure that the following actions have

been completed:

n Make sure that SSL support is con gured for your server. If your server is the Sun Java

SystemApplication Server 9.1, SSL support is already con gured. If you are using another

server, consult the documentation for that server for information on setting up SSL support.

More information on con guring SSL support on the application server can be found in

“Establishing a Secure ConnectionUsing SSL” on page 785 and the Sun Java System

Application Server 9.1 Administration Guide.

n Make sure the client has a valid Public Key Certi cate. Formore information on creating

and using public key certi cates, read “Working with Digital Certi cates” on page 788.

The following example shows how to declare HTTPS client authentication in your deployment

descriptor:

De ning Security Requirements forWebApplications

Chapter 30 • SecuringWebApplications 863

<login-config>
<auth-method>CLIENT-CERT</auth-method>

</login-config>

Mutual Authentication

Withmutual authentication, the server and the client authenticate one another. There are two

types of mutual authentication:

n Certi cate-basedmutual authentication (see Figure 30–4)
n User name- and password-basedmutual authentication (see Figure 30–5)

When using certi cate-basedmutual authentication, the following actions occur:

1. A client requests access to a protected resource.

2. The web server presents its certi cate to the client.

3. The client veri es the server’s certi cate.

4. If successful, the client sends its certi cate to the server.

5. The server veri es the client’s credentials.

6. If successful, the server grants access to the protected resource requested by the client.

Figure 30–4 shows what occurs during certi cate-basedmutual authentication.

De ning Security Requirements forWebApplications

The Java EE 5Tutorial • September 2007864

In user name- and password-basedmutual authentication, the following actions occur:

1. A client requests access to a protected resource.

2. The web server presents its certi cate to the client.

3. The client veri es the server’s certi cate.

4. If successful, the client sends its user name and password to the server, which veri es the

client’s credentials.

5. If the veri cation is successful, the server grants access to the protected resource requested

by the client.

Figure 30–5 shows what occurs during user name- and password-basedmutual authentication.

ServerClient

server.keystore

server.cert

3

Verifies
certificate

1

Requests protected resource

2

Presents certificate

4

Presents certificate

6

Accesses protected resource

client.keystore

client.cert

trustStore

server.cert

client.cert

5

Verifies
certificate

6

FIGURE 30–4 Certi cate-BasedMutualAuthentication

De ning Security Requirements forWebApplications

Chapter 30 • SecuringWebApplications 865

Digest Authentication

Like HTTP basic authentication,HTTPDigest Authentication authenticates a user based on a

user name and a password. However, the authentication is performed by transmitting the

password in an encrypted formwhich is muchmore secure than the simple Base64 encoding

used by basic authentication. Digest authentication is not currently in widespread use, and is

not implemented in the Application Server, therefore, there is no further discussion of it in this

document.

ServerClient

trustStore

server.cert

server.keystore

server.cert
3

Verifies
certificate

1

Requests protected resource

2

Presents certificate

4

Sends username:password

5

Accesses protected resource

FIGURE 30–5 UserName- and Password-BasedMutual Authentication

De ning Security Requirements forWebApplications

The Java EE 5Tutorial • September 2007866

