
Apache Tomcat 6.0

SSL Configuration HOW-TO

Quick Start

IMPORTANT NOTE: This Howto refers to usage of JSSE, that comes included with jdk

1.5 and higher. When using APR, Tomcat will use OpenSSL, which uses a different

configuration.

The description below uses the variable name $CATALINA_BASE to refer the base directory

against which most relative paths are resolved. If you have not configured Tomcat 6 for multiple

instances by setting a CATALINA_BASE directory, then $CATALINA_BASE will be set to the

value of $CATALINA_HOME, the directory into which you have installed Tomcat 6.

To install and configure SSL support on Tomcat 6, you need to follow these simple steps. For

more information, read the rest of this HOW-TO.

1. Create a certificate keystore by executing the following command:

Windows:

 %JAVA_HOME%\bin\keytool -genkey -alias tomcat -keyalg RSA

Unix:

 $JAVA_HOME/bin/keytool -genkey -alias tomcat -keyalg RSA

and specify a password value of "changeit".

2. Uncomment the "SSL HTTP/1.1 Connector" entry in

$CATALINA_BASE/conf/server.xml and tweak as necessary.

Introduction to SSL

SSL, or Secure Socket Layer, is a technology which allows web browsers and web servers to

communicate over a secured connection. This means that the data being sent is encrypted by one

side, transmitted, then decrypted by the other side before processing. This is a two-way process,

meaning that both the server AND the browser encrypt all traffic before sending out data.

Another important aspect of the SSL protocol is Authentication. This means that during your

initial attempt to communicate with a web server over a secure connection, that server will

present your web browser with a set of credentials, in the form of a "Certificate", as proof the site

is who and what it claims to be. In certain cases, the server may also request a Certificate from

your web browser, asking for proof that you are who you claim to be. This is known as "Client

Authentication," although in practice this is used more for business-to-business (B2B)

transactions than with individual users. Most SSL-enabled web servers do not request Client

Authentication.

SSL and Tomcat

It is important to note that configuring Tomcat to take advantage of secure sockets is usually

only necessary when running it as a stand-alone web server. When running Tomcat primarily as

a Servlet/JSP container behind another web server, such as Apache or Microsoft IIS, it is usually

necessary to configure the primary web server to handle the SSL connections from users.

Typically, this server will negotiate all SSL-related functionality, then pass on any requests

destined for the Tomcat container only after decrypting those requests. Likewise, Tomcat will

return cleartext responses, that will be encrypted before being returned to the user's browser. In

this environment, Tomcat knows that communications between the primary web server and the

client are taking place over a secure connection (because your application needs to be able to ask

about this), but it does not participate in the encryption or decryption itself.

Certificates

In order to implement SSL, a web server must have an associated Certificate for each external

interface (IP address) that accepts secure connections. The theory behind this design is that a

server should provide some kind of reasonable assurance that its owner is who you think it is,

particularly before receiving any sensitive information. While a broader explanation of

Certificates is beyond the scope of this document, think of a Certificate as a "digital driver's

license" for an Internet address. It states what company the site is associated with, along with

some basic contact information about the site owner or administrator.

This "driver's license" is cryptographically signed by its owner, and is therefore extremely

difficult for anyone else to forge. For sites involved in e-commerce, or any other business

transaction in which authentication of identity is important, a Certificate is typically purchased

from a well-known Certificate Authority (CA) such as VeriSign or Thawte. Such certificates can

be electronically verified -- in effect, the Certificate Authority will vouch for the authenticity of

the certificates that it grants, so you can believe that that Certificate is valid if you trust the

Certificate Authority that granted it.

In many cases, however, authentication is not really a concern. An administrator may simply

want to ensure that the data being transmitted and received by the server is private and cannot be

snooped by anyone who may be eavesdropping on the connection. Fortunately, Java provides a

relatively simple command-line tool, called keytool, which can easily create a "self-signed"

Certificate. Self-signed Certificates are simply user generated Certificates which have not been

officially registered with any well-known CA, and are therefore not really guaranteed to be

authentic at all. Again, this may or may not even be important, depending on your needs.

General Tips on Running SSL

The first time a user attempts to access a secured page on your site, he or she is typically

presented with a dialog containing the details of the certificate (such as the company and contact

name), and asked if he or she wishes to accept the Certificate as valid and continue with the

transaction. Some browsers will provide an option for permanently accepting a given Certificate

as valid, in which case the user will not be bothered with a prompt each time they visit your site.

Other browsers do not provide this option. Once approved by the user, a Certificate will be

considered valid for at least the entire browser session.

Also, while the SSL protocol was designed to be as efficient as securely possible,

encryption/decryption is a computationally expensive process from a performance standpoint. It

is not strictly necessary to run an entire web application over SSL, and indeed a developer can

pick and choose which pages require a secure connection and which do not. For a reasonably

busy site, it is customary to only run certain pages under SSL, namely those pages where

sensitive information could possibly be exchanged. This would include things like login pages,

personal information pages, and shopping cart checkouts, where credit card information could

possibly be transmitted. Any page within an application can be requested over a secure socket by

simply prefixing the address with https: instead of http:. Any pages which absolutely require

a secure connection should check the protocol type associated with the page request and take the

appropriate action if https is not specified.

Finally, using name-based virtual hosts on a secured connection can be problematic. This is a

design limitation of the SSL protocol itself. The SSL handshake, where the client browser

accepts the server certificate, must occur before the HTTP request is accessed. As a result, the

request information containing the virtual host name cannot be determined prior to

authentication, and it is therefore not possible to assign multiple certificates to a single IP

address. If all virtual hosts on a single IP address need to authenticate against the same

certificate, the addition of multiple virtual hosts should not interfere with normal SSL operations

on the server. Be aware, however, that most client browsers will compare the server's domain

name against the domain name listed in the certificate, if any (applicable primarily to official,

CA-signed certificates). If the domain names do not match, these browsers will display a

warning to the client user. In general, only address-based virtual hosts are commonly used with

SSL in a production environment.

Configuration

Prepare the Certificate Keystore

Tomcat currently operates only on JKS, PKCS11 or PKCS12 format keystores. The JKS format is

Java's standard "Java KeyStore" format, and is the format created by the keytool command-line

utility. This tool is included in the JDK. The PKCS12 format is an internet standard, and can be

manipulated via (among other things) OpenSSL and Microsoft's Key-Manager.

Each entry in a keystore is identified by an alias string. Whilst many keystore implementations

treat aliases in a case insensitive manner, case sensitive implementations are available. The

PKCS11 specification, for example, requires that aliases are case sensitive. To avoid issues

related to the case sensitivity of aliases, it is not recommended to use aliases that differ only in

case.

To import an existing certificate into a JKS keystore, please read the documentation (in your

JDK documentation package) about keytool. Note that OpenSSL often adds readable

comments before the key, keytooldoes not support that, so remove the OpenSSL comments if

they exist before importing the key using keytool.

To import an existing certificate signed by your own CA into a PKCS12 keystore using

OpenSSL you would execute a command like:

openssl pkcs12 -export -in mycert.crt -inkey mykey.key \

 -out mycert.p12 -name tomcat -CAfile myCA.crt \

 -caname root -chain

For more advanced cases, consult the OpenSSL documentation.

To create a new keystore from scratch, containing a single self-signed Certificate, execute the

following from a terminal command line:

Windows:

 %JAVA_HOME%\bin\keytool -genkey -alias tomcat -keyalg RSA

Unix:

 $JAVA_HOME/bin/keytool -genkey -alias tomcat -keyalg RSA

(The RSA algorithm should be preferred as a secure algorithm, and this also ensures general

compatibility with other servers and components.)

This command will create a new file, in the home directory of the user under which you run it,

named ".keystore". To specify a different location or filename, add the -keystore parameter,

followed by the complete pathname to your keystore file, to the keytool command shown

above. You will also need to reflect this new location in the server.xml configuration file, as

described later. For example:

Windows:

%JAVA_HOME%\bin\keytool -genkey -alias tomcat -keyalg RSA \

 -keystore \path\to\my\keystore

Unix:

http://www.openssl.org/

$JAVA_HOME/bin/keytool -genkey -alias tomcat -keyalg RSA \

 -keystore /path/to/my/keystore

After executing this command, you will first be prompted for the keystore password. The default

password used by Tomcat is "changeit" (all lower case), although you can specify a custom

password if you like. You will also need to specify the custom password in the server.xml

configuration file, as described later.

Next, you will be prompted for general information about this Certificate, such as company,

contact name, and so on. This information will be displayed to users who attempt to access a

secure page in your application, so make sure that the information provided here matches what

they will expect.

Finally, you will be prompted for the key password, which is the password specifically for this

Certificate (as opposed to any other Certificates stored in the same keystore file). You MUST

use the same password here as was used for the keystore password itself. (Currently, the

keytool prompt will tell you that pressing the ENTER key does this for you automatically.)

If everything was successful, you now have a keystore file with a Certificate that can be used by

your server.

Note: your private key password and keystore password should be the same. If they differ, you

will get an error along the lines of java.io.IOException: Cannot recover key, as

documented in Bugzilla issue 38217, which contains further references for this issue.

Edit the Tomcat Configuration File

If you are using APR, you have the option of configuring an alternative engine to OpenSSL.

<Listener className="org.apache.catalina.core.AprLifecycleListener"

SSLEngine="someengine" SSLRandomSeed="somedevice" />

The default value is

<Listener className="org.apache.catalina.core.AprLifecycleListener"

SSLEngine="on" SSLRandomSeed="builtin" />

So to use SSL under APR, make sure the SSLEngine attribute is set to something other than

off. The default value is on and if you specify another value, it has to be a valid engine name.

If you haven't compiled in SSL support into your Tomcat Native library, then you can turn this

initialization off

<Listener className="org.apache.catalina.core.AprLifecycleListener"

SSLEngine="off" />

SSLRandomSeed allows to specify a source of entropy. Productive system needs a reliable

source of entropy but entropy may need a lot of time to be collected therefore test systems could

use no blocking entropy sources like "/dev/urandom" that will allow quicker starts of Tomcat.

http://issues.apache.org/bugzilla/show_bug.cgi?id=38217

The final step is to configure your secure socket in the $CATALINA_BASE/conf/server.xml

file, where $CATALINA_BASE represents the base directory for the Tomcat 6 instance. An

example <Connector> element for an SSL connector is included in the default server.xml file

installed with Tomcat. It will look something like this:

<-- Define a SSL Coyote HTTP/1.1 Connector on port 8443 -->

<!--

<Connector

 port="8443" minSpareThreads="5" maxSpareThreads="75"

 enableLookups="true" disableUploadTimeout="true"

 acceptCount="100" maxThreads="200"

 scheme="https" secure="true" SSLEnabled="true"

 keystoreFile="${user.home}/.keystore" keystorePass="changeit"

 clientAuth="false" sslProtocol="TLS"/>

-->

The example above will throw an error if you have the APR and the Tomcat Native libraries in

your path, as tomcat will try to autoload the APR connector. The APR connector uses different

attributes for SSL keys and certificates. An example of such configuration would be

<-- Define a SSL Coyote HTTP/1.1 Connector on port 8443 -->

<!--

<Connector

 port="8443" minSpareThreads="5" maxSpareThreads="75"

 enableLookups="true" disableUploadTimeout="true"

 acceptCount="100" maxThreads="200"

 scheme="https" secure="true" SSLEnabled="true"

 SSLCertificateFile="/usr/local/ssl/server.crt"

 SSLCertificateKeyFile="/usr/local/ssl/server.pem"

 clientAuth="false" sslProtocol="TLS"/>

-->

To avoid auto configuration you can define which connector to use by specifying a classname in

the protocol attribute.

To define a Java connector, regardless if the APR library is loaded or not do:

<-- Define a blocking Java SSL Coyote HTTP/1.1 Connector on port 8443 -->

<!--

<Connector protocol="org.apache.coyote.http11.Http11Protocol"

 port="8443" minSpareThreads="5" maxSpareThreads="75"

 enableLookups="true" disableUploadTimeout="true"

 acceptCount="100" maxThreads="200"

 scheme="https" secure="true" SSLEnabled="true"

 keystoreFile="${user.home}/.keystore" keystorePass="changeit"

 clientAuth="false" sslProtocol="TLS"/>

-->

<-- Define a non-blocking Java SSL Coyote HTTP/1.1 Connector on port 8443 -

->

<!--

<Connector protocol="org.apache.coyote.http11.Http11NioProtocol"

 port="8443" minSpareThreads="5" maxSpareThreads="75"

 enableLookups="true" disableUploadTimeout="true"

 acceptCount="100" maxThreads="200"

 scheme="https" secure="true" SSLEnabled="true"

 keystoreFile="${user.home}/.keystore" keystorePass="changeit"

 clientAuth="false" sslProtocol="TLS"/>

-->

and to specify an APR connector

<-- Define a APR SSL Coyote HTTP/1.1 Connector on port 8443 -->

<!--

<Connector protocol="org.apache.coyote.http11.Http11AprProtocol"

 port="8443" minSpareThreads="5" maxSpareThreads="75"

 enableLookups="true" disableUploadTimeout="true"

 acceptCount="100" maxThreads="200"

 scheme="https" secure="true" SSLEnabled="true"

 SSLCertificateFile="/usr/local/ssl/server.crt"

 SSLCertificateKeyFile="/usr/local/ssl/server.pem"

 clientAuth="false" sslProtocol="TLS"/>

-->

You will note that the Connector element itself is commented out by default, so you will need to

remove the comment tags around it. Then, you can customize the specified attributes as

necessary. For detailed information about the various options, consult the Server Configuration

Reference. The following discussion covers only those attributes of most interest when setting

up SSL communication.

The port attribute (default value is 8443) is the TCP/IP port number on which Tomcat will

listen for secure connections. You can change this to any port number you wish (such as to the

default port for https communications, which is 443). However, special setup (outside the

scope of this document) is necessary to run Tomcat on port numbers lower than 1024 on many

operating systems.

If you change the port number here, you should also change the value specified for the

redirectPort attribute on the non-SSL connector. This allows Tomcat to automatically

redirect users who attempt to access a page with a security constraint specifying that SSL is

required, as required by the Servlet 2.4 Specification.

There are additional options used to configure the SSL protocol. You may need to add or change

the following attribute values, depending on how you configured your keystore earlier:

Attribute Description

clientAuth

Set this value to true if you want Tomcat to require all SSL clients to

present a client Certificate in order to use this socket. Set this value to want

if you want Tomcat to request a client Certificate, but not fail if one isn't

presented.

http://tomcat.apache.org/tomcat-6.0-doc/config/index.html
http://tomcat.apache.org/tomcat-6.0-doc/config/index.html
http://tomcat.apache.org/tomcat-6.0-doc/config/index.html

SSLEnabled

Use this attribute to enable SSL traffic on a connector. To turn on SSL

handshake/encryption/decryption on a connector set this value to true. The

default value is false. When turning this value true you will want to set

the scheme and the secure attributes as well to pass the correct

request.getScheme() and request.isSecure() values to the servlets

keystoreFile

Add this attribute if the keystore file you created is not in the default place

that Tomcat expects (a file named .keystore in the user home directory

under which Tomcat is running). You can specify an absolute pathname, or

a relative pathname that is resolved against the $CATALINA_BASE

environment variable.

keystorePass
Add this element if you used a different keystore (and Certificate) password

than the one Tomcat expects (changeit).

keystoreType
Add this element if using a keystore type other than JKS. For example the

*.p12 files from OpenSSL can be used using PKCS12.

sslProtocol

The encryption/decryption protocol to be used on this socket. It is not

recommended to change this value if you are using Sun's JVM. It is reported

that IBM's 1.4.1 implementation of the TLS protocol is not compatible with

some popular browsers. In this case, use the value SSL.

ciphers
The comma separated list of encryption ciphers that this socket is allowed to

use. By default, any available cipher is allowed.

algorithm
The X509 algorithm to use. This defaults to the Sun implementation

(SunX509). For IBM JVMs you should use the value IbmX509. For other

vendors, consult the JVM documentation for the correct value.

truststoreFile The TrustStore file to use to validate client certificates.

truststorePass
The password to access the TrustStore. This defaults to the value of

keystorePass.

truststoreType
Add this element if your are using a different format for the TrustStore then

you are using for the KeyStore.

keyAlias
Add this element if your have more than one key in the KeyStore. If the

element is not present the first key read in the KeyStore will be used.

After completing these configuration changes, you must restart Tomcat as you normally do, and

you should be in business. You should be able to access any web application supported by

Tomcat via SSL. For example, try:

 https://localhost:8443

and you should see the usual Tomcat splash page (unless you have modified the ROOT web

application). If this does not work, the following section contains some troubleshooting tips.

Installing a Certificate from a Certificate Authority

To obtain and install a Certificate from a Certificate Authority (like verisign.com, thawte.com or

trustcenter.de), read the previous section and then follow these instructions:

Create a local Certificate Signing Request (CSR)

In order to obtain a Certificate from the Certificate Authority of your choice you have to create a

so called Certificate Signing Request (CSR). That CSR will be used by the Certificate Authority

to create a Certificate that will identify your website as "secure". To create a CSR follow these

steps:

 Create a local Certificate (as described in the previous section):

keytool -genkey -alias tomcat -keyalg RSA \

 -keystore <your_keystore_filename>

 Note: In some cases you will have to enter the domain of your website (i.e.

www.myside.org) in the field "first- and lastname" in order to create a working

Certificate.

 The CSR is then created with:

keytool -certreq -keyalg RSA -alias tomcat -file certreq.csr \

 -keystore <your_keystore_filename>

Now you have a file called certreq.csr that you can submit to the Certificate Authority (look

at the documentation of the Certificate Authority website on how to do this). In return you get a

Certificate.

Importing the Certificate

Now that you have your Certificate you can import it into you local keystore. First of all you

have to import a so called Chain Certificate or Root Certificate into your keystore. After that

you can proceed with importing your Certificate.

 Download a Chain Certificate from the Certificate Authority you obtained the

Certificate from.

For Verisign.com commercial certificates go to:

http://www.verisign.com/support/install/intermediate.html

For Verisign.com trial certificates go to:

http://www.verisign.com/support/verisign-intermediate-

ca/Trial_Secure_Server_Root/index.html

For Trustcenter.de go to:

http://www.trustcenter.de/certservices/cacerts/en/en.htm#server

For Thawte.com go to: http://www.thawte.com/certs/trustmap.html

 Import the Chain Certificate into your keystore

 keytool -import -alias root -keystore <your_keystore_filename> \

 -trustcacerts -file <filename_of_the_chain_certificate>

 And finally import your new Certificate

keytool -import -alias tomcat -keystore <your_keystore_filename> \

 -file <your_certificate_filename>

Troubleshooting

Here is a list of common problems that you may encounter when setting up SSL

communications, and what to do about them.

 I get "java.security.NoSuchAlgorithmException" errors in my log files.

The JVM cannot find the JSSE JAR files. Follow all of the directions to download

and install JSSE.

 When Tomcat starts up, I get an exception like "java.io.FileNotFoundException:

{some-directory}/{some-file} not found".

A likely explanation is that Tomcat cannot find the keystore file where it is

looking. By default, Tomcat expects the keystore file to be named .keystore in

the user home directory under which Tomcat is running (which may or may not

be the same as yours :-). If the keystore file is anywhere else, you will need to add

a keystoreFile attribute to the <Factory> element in the Tomcat configuration

file.

 When Tomcat starts up, I get an exception like "java.io.FileNotFoundException:

Keystore was tampered with, or password was incorrect".

Assuming that someone has not actually tampered with your keystore file, the

most likely cause is that Tomcat is using a different password than the one you

used when you created the keystore file. To fix this, you can either go back and

recreate the keystore file, or you can add or update the keystorePass attribute on

the <Connector> element in the Tomcat configuration file. REMINDER -

Passwords are case sensitive!

 When Tomcat starts up, I get an exception like "java.net.SocketException: SSL

handshake errorjavax.net.ssl.SSLException: No available certificate or key

corresponds to the SSL cipher suites which are enabled."

A likely explanation is that Tomcat cannot find the alias for the server key

withinthe specified keystore. Check that the correct keystoreFile and keyAlias

are specified in the <Connector> element in the Tomcat configuration file.

REMINDER - keyAlias values may be case sensitive!

http://tomcat.apache.org/tomcat-6.0-doc/printer/ssl-howto.html#Download%20and%20Install%20JSSE
http://tomcat.apache.org/tomcat-6.0-doc/printer/ssl-howto.html#Download%20and%20Install%20JSSE
http://tomcat.apache.org/tomcat-6.0-doc/printer/ssl-howto.html#Download%20and%20Install%20JSSE
http://tomcat.apache.org/tomcat-6.0-doc/printer/ssl-howto.html#Edit%20the%20Tomcat%20Configuration%20File
http://tomcat.apache.org/tomcat-6.0-doc/printer/ssl-howto.html#Edit%20the%20Tomcat%20Configuration%20File
http://tomcat.apache.org/tomcat-6.0-doc/printer/ssl-howto.html#Edit%20the%20Tomcat%20Configuration%20File
http://tomcat.apache.org/tomcat-6.0-doc/printer/ssl-howto.html#Prepare%20the%20Certificate%20Keystore
http://tomcat.apache.org/tomcat-6.0-doc/printer/ssl-howto.html#Edit%20the%20Tomcat%20Configuration%20File
http://tomcat.apache.org/tomcat-6.0-doc/printer/ssl-howto.html#Edit%20the%20Tomcat%20Configuration%20File

If you are still having problems, a good source of information is the TOMCAT-USER mailing

list. You can find pointers to archives of previous messages on this list, as well as subscription

and unsubscription information, at http://tomcat.apache.org/lists.html.

Miscellaneous Tips and Bits

To access the SSL session ID from the request, use:
String sslID =

(String)request.getAttribute("javax.servlet.request.ssl_session");
For additional discussion on this area, please see Bugzilla.

http://tomcat.apache.org/lists.html
http://issues.apache.org/bugzilla/show_bug.cgi?id=22679

