/* * Copyright 2001-2006 Stephen Colebourne * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package org.joda.time; import org.joda.time.base.BaseSingleFieldPeriod; import org.joda.time.field.FieldUtils; import org.joda.time.format.ISOPeriodFormat; import org.joda.time.format.PeriodFormatter; /** * An immutable time period representing a number of weeks. *

* Weeks is an immutable period that can only store weeks. * It does not store years, months or hours for example. As such it is a * type-safe way of representing a number of weeks in an application. *

* The number of weeks is set in the constructor, and may be queried using * getWeeks(). Basic mathematical operations are provided - * plus(), minus(), multipliedBy() and * dividedBy(). *

* Weeks is thread-safe and immutable. * * @author Stephen Colebourne * @since 1.4 */ public final class Weeks extends BaseSingleFieldPeriod { /** Constant representing zero weeks. */ public static final Weeks ZERO = new Weeks(0); /** Constant representing one week. */ public static final Weeks ONE = new Weeks(1); /** Constant representing two weeks. */ public static final Weeks TWO = new Weeks(2); /** Constant representing three weeks. */ public static final Weeks THREE = new Weeks(3); /** Constant representing the maximum number of weeks that can be stored in this object. */ public static final Weeks MAX_VALUE = new Weeks(Integer.MAX_VALUE); /** Constant representing the minimum number of weeks that can be stored in this object. */ public static final Weeks MIN_VALUE = new Weeks(Integer.MIN_VALUE); /** The paser to use for this class. */ private static final PeriodFormatter PARSER = ISOPeriodFormat.standard().withParseType(PeriodType.weeks()); /** Serialization version. */ private static final long serialVersionUID = 87525275727380866L; //----------------------------------------------------------------------- /** * Obtains an instance of Weeks that may be cached. * Weeks is immutable, so instances can be cached and shared. * This factory method provides access to shared instances. * * @param weeks the number of weeks to obtain an instance for * @return the instance of Weeks */ public static Weeks weeks(int weeks) { switch (weeks) { case 0: return ZERO; case 1: return ONE; case 2: return TWO; case 3: return THREE; case Integer.MAX_VALUE: return MAX_VALUE; case Integer.MIN_VALUE: return MIN_VALUE; default: return new Weeks(weeks); } } //----------------------------------------------------------------------- /** * Creates a Weeks representing the number of whole weeks * between the two specified datetimes. * * @param start the start instant, must not be null * @param end the end instant, must not be null * @return the period in weeks * @throws IllegalArgumentException if the instants are null or invalid */ public static Weeks weeksBetween(ReadableInstant start, ReadableInstant end) { int amount = BaseSingleFieldPeriod.between(start, end, DurationFieldType.weeks()); return Weeks.weeks(amount); } /** * Creates a Weeks representing the number of whole weeks * between the two specified partial datetimes. *

* The two partials must contain the same fields, for example you can specify * two LocalDate objects. * * @param start the start partial date, must not be null * @param end the end partial date, must not be null * @return the period in weeks * @throws IllegalArgumentException if the partials are null or invalid */ public static Weeks weeksBetween(ReadablePartial start, ReadablePartial end) { if (start instanceof LocalDate && end instanceof LocalDate) { Chronology chrono = DateTimeUtils.getChronology(start.getChronology()); int weeks = chrono.weeks().getDifference( ((LocalDate) end).getLocalMillis(), ((LocalDate) start).getLocalMillis()); return Weeks.weeks(weeks); } int amount = BaseSingleFieldPeriod.between(start, end, ZERO); return Weeks.weeks(amount); } /** * Creates a Weeks representing the number of whole weeks * in the specified interval. * * @param interval the interval to extract weeks from, null returns zero * @return the period in weeks * @throws IllegalArgumentException if the partials are null or invalid */ public static Weeks weeksIn(ReadableInterval interval) { if (interval == null) { return Weeks.ZERO; } int amount = BaseSingleFieldPeriod.between(interval.getStart(), interval.getEnd(), DurationFieldType.weeks()); return Weeks.weeks(amount); } /** * Creates a new Weeks representing the number of complete * standard length weeks in the specified period. *

* This factory method converts all fields from the period to hours using standardised * durations for each field. Only those fields which have a precise duration in * the ISO UTC chronology can be converted. *

* Months and Years are imprecise and periods containing these values cannot be converted. * * @param period the period to get the number of hours from, null returns zero * @return the period in weeks * @throws IllegalArgumentException if the period contains imprecise duration values */ public static Weeks standardWeeksIn(ReadablePeriod period) { int amount = BaseSingleFieldPeriod.standardPeriodIn(period, DateTimeConstants.MILLIS_PER_WEEK); return Weeks.weeks(amount); } /** * Creates a new Weeks by parsing a string in the ISO8601 format 'PnW'. *

* The parse will accept the full ISO syntax of PnYnMnWnDTnHnMnS however only the * weeks component may be non-zero. If any other component is non-zero, an exception * will be thrown. * * @param periodStr the period string, null returns zero * @return the period in weeks * @throws IllegalArgumentException if the string format is invalid */ public static Weeks parseWeeks(String periodStr) { if (periodStr == null) { return Weeks.ZERO; } Period p = PARSER.parsePeriod(periodStr); return Weeks.weeks(p.getWeeks()); } //----------------------------------------------------------------------- /** * Creates a new instance representing a number of weeks. * You should consider using the factory method {@link #weeks(int)} * instead of the constructor. * * @param weeks the number of weeks to represent */ private Weeks(int weeks) { super(weeks); } /** * Resolves singletons. * * @return the singleton instance */ private Object readResolve() { return Weeks.weeks(getValue()); } //----------------------------------------------------------------------- /** * Gets the duration field type, which is weeks. * * @return the period type */ public DurationFieldType getFieldType() { return DurationFieldType.weeks(); } /** * Gets the period type, which is weeks. * * @return the period type */ public PeriodType getPeriodType() { return PeriodType.weeks(); } //----------------------------------------------------------------------- /** * Converts this period in weeks to a period in days assuming a * 7 day week. *

* This method allows you to convert between different types of period. * However to achieve this it makes the assumption that all weeks are * 7 days long. * This may not be true for some unusual chronologies. However, it is included * as it is a useful operation for many applications and business rules. * * @return a period representing the number of days for this number of weeks * @throws ArithmeticException if the number of days is too large to be represented */ public Days toStandardDays() { return Days.days(FieldUtils.safeMultiply(getValue(), DateTimeConstants.DAYS_PER_WEEK)); } /** * Converts this period in weeks to a period in hours assuming a * 7 day week and 24 hour day. *

* This method allows you to convert between different types of period. * However to achieve this it makes the assumption that all weeks are * 7 days long and all days are 24 hours long. * This is not true when daylight savings is considered and may also not * be true for some unusual chronologies. However, it is included * as it is a useful operation for many applications and business rules. * * @return a period representing the number of hours for this number of weeks * @throws ArithmeticException if the number of hours is too large to be represented */ public Hours toStandardHours() { return Hours.hours(FieldUtils.safeMultiply(getValue(), DateTimeConstants.HOURS_PER_WEEK)); } /** * Converts this period in weeks to a period in minutes assuming a * 7 day week, 24 hour day and 60 minute hour. *

* This method allows you to convert between different types of period. * However to achieve this it makes the assumption that all weeks are * 7 days long, all days are 24 hours long and all hours are 60 minutes long. * This is not true when daylight savings is considered and may also not * be true for some unusual chronologies. However, it is included * as it is a useful operation for many applications and business rules. * * @return a period representing the number of minutes for this number of weeks * @throws ArithmeticException if the number of minutes is too large to be represented */ public Minutes toStandardMinutes() { return Minutes.minutes(FieldUtils.safeMultiply(getValue(), DateTimeConstants.MINUTES_PER_WEEK)); } /** * Converts this period in weeks to a period in seconds assuming a * 7 day week, 24 hour day, 60 minute hour and 60 second minute. *

* This method allows you to convert between different types of period. * However to achieve this it makes the assumption that all weeks are * 7 days long, all days are 24 hours long, all hours are 60 minutes long * and all minutes are 60 seconds long. * This is not true when daylight savings is considered and may also not * be true for some unusual chronologies. However, it is included * as it is a useful operation for many applications and business rules. * * @return a period representing the number of seconds for this number of weeks * @throws ArithmeticException if the number of seconds is too large to be represented */ public Seconds toStandardSeconds() { return Seconds.seconds(FieldUtils.safeMultiply(getValue(), DateTimeConstants.SECONDS_PER_WEEK)); } //----------------------------------------------------------------------- /** * Converts this period in weeks to a duration in milliweeks assuming a * 7 day week, 24 hour day, 60 minute hour and 60 second minute. *

* This method allows you to convert from a period to a duration. * However to achieve this it makes the assumption that all weeks are * 7 days long, all days are 24 hours long, all hours are 60 minutes long * and all minutes are 60 seconds long. * This is not true when daylight savings time is considered, and may also * not be true for some unusual chronologies. However, it is included as it * is a useful operation for many applications and business rules. * * @return a duration equivalent to this number of weeks */ public Duration toStandardDuration() { long weeks = getValue(); // assign to a long return new Duration(weeks * DateTimeConstants.MILLIS_PER_WEEK); } //----------------------------------------------------------------------- /** * Gets the number of weeks that this period represents. * * @return the number of weeks in the period */ public int getWeeks() { return getValue(); } //----------------------------------------------------------------------- /** * Returns a new instance with the specified number of weeks added. *

* This instance is immutable and unaffected by this method call. * * @param weeks the amount of weeks to add, may be negative * @return the new period plus the specified number of weeks * @throws ArithmeticException if the result overflows an int */ public Weeks plus(int weeks) { if (weeks == 0) { return this; } return Weeks.weeks(FieldUtils.safeAdd(getValue(), weeks)); } /** * Returns a new instance with the specified number of weeks added. *

* This instance is immutable and unaffected by this method call. * * @param weeks the amount of weeks to add, may be negative, null means zero * @return the new period plus the specified number of weeks * @throws ArithmeticException if the result overflows an int */ public Weeks plus(Weeks weeks) { if (weeks == null) { return this; } return plus(weeks.getValue()); } //----------------------------------------------------------------------- /** * Returns a new instance with the specified number of weeks taken away. *

* This instance is immutable and unaffected by this method call. * * @param weeks the amount of weeks to take away, may be negative * @return the new period minus the specified number of weeks * @throws ArithmeticException if the result overflows an int */ public Weeks minus(int weeks) { return plus(FieldUtils.safeNegate(weeks)); } /** * Returns a new instance with the specified number of weeks taken away. *

* This instance is immutable and unaffected by this method call. * * @param weeks the amount of weeks to take away, may be negative, null means zero * @return the new period minus the specified number of weeks * @throws ArithmeticException if the result overflows an int */ public Weeks minus(Weeks weeks) { if (weeks == null) { return this; } return minus(weeks.getValue()); } //----------------------------------------------------------------------- /** * Returns a new instance with the weeks multiplied by the specified scalar. *

* This instance is immutable and unaffected by this method call. * * @param scalar the amount to multiply by, may be negative * @return the new period multiplied by the specified scalar * @throws ArithmeticException if the result overflows an int */ public Weeks multipliedBy(int scalar) { return Weeks.weeks(FieldUtils.safeMultiply(getValue(), scalar)); } /** * Returns a new instance with the weeks divided by the specified divisor. * The calculation uses integer division, thus 3 divided by 2 is 1. *

* This instance is immutable and unaffected by this method call. * * @param divisor the amount to divide by, may be negative * @return the new period divided by the specified divisor * @throws ArithmeticException if the divisor is zero */ public Weeks dividedBy(int divisor) { if (divisor == 1) { return this; } return Weeks.weeks(getValue() / divisor); } //----------------------------------------------------------------------- /** * Returns a new instance with the weeks value negated. * * @return the new period with a negated value * @throws ArithmeticException if the result overflows an int */ public Weeks negated() { return Weeks.weeks(FieldUtils.safeNegate(getValue())); } //----------------------------------------------------------------------- /** * Is this weeks instance greater than the specified number of weeks. * * @param other the other period, null means zero * @return true if this weeks instance is greater than the specified one */ public boolean isGreaterThan(Weeks other) { if (other == null) { return getValue() > 0; } return getValue() > other.getValue(); } /** * Is this weeks instance less than the specified number of weeks. * * @param other the other period, null means zero * @return true if this weeks instance is less than the specified one */ public boolean isLessThan(Weeks other) { if (other == null) { return getValue() < 0; } return getValue() < other.getValue(); } //----------------------------------------------------------------------- /** * Gets this instance as a String in the ISO8601 duration format. *

* For example, "P4W" represents 4 weeks. * * @return the value as an ISO8601 string */ public String toString() { return "P" + String.valueOf(getValue()) + "W"; } }