The Toolbox

- Chapters 1-5 fill up a “toolbox” with useful criteria for testing software
- To move to level 3 (reducing risk) or level 4 (mental discipline of quality), testing must be integrated into the development process
- Most importantly:
 - In any activity, knowing the tools is only the first step
 - The key is utilizing the tools in effective ways
- Topics:
 - Integrating software components and testing
 - Integrating testing with development
 - Test plans
 - Checking the output
Chapter 6 Outline

1. **Regression Testing**
2. Integration and Testing
3. Test Process
4. Test Plans
5. Identifying Correct Outputs

Regression Testing (6.1)

Definition
The process of re-testing software that has been modified

- Most software today has very little new development
 - Correcting, perfecting, adapting, or preventing problems with existing software
 - Composing new programs from existing components
 - Applying existing software to new situations
- Because of the deep interconnections among software components, changes in one method can cause problems in methods that seem to be unrelated
- Not surprisingly, most of our testing effort is regression testing
- Large regression test suites accumulate as programs (and software components) age
Automation and Tool Support

Regression tests must be automated

• Too many tests to be run by hand
• Tests must be run and evaluated quickly
 – often overnight, or faster for web applications
• Testers do not have time to view the results by inspection
• Types of tools:
 – Capture / Replay – Capture values entered into a GUI and replay those values on new versions
 – Version control – Keeps track of collections of tests, expected results, where the tests came from, the criterion used, and their past effectiveness
 – Scripting software – Manages the process of obtaining test inputs, executing the software, obtaining the outputs, comparing the results, and generating test reports
• Tools are plentiful and inexpensive (often free)

Managing Tests in a Regression Suite

• Test suites accumulate new tests over time
• Test suites are usually run in a fixed, short, period of time
 – Often overnight, sometimes longer, sometimes shorter
• At some point, the number of tests can become unmanageable
 – We cannot finish running the tests in the time allotted
• We can always add more computer hardware
• But is it worth it?
• How many of these tests are really worth running?
Policies for Updating Test Suites

- Which tests to keep can be based on several policies
 - Add a new test for every problem report
 - Ensure that a coverage criterion is always satisfied

- Sometimes harder to choose tests to remove
 - Remove tests that do not contribute to satisfying coverage
 - Remove tests that have never found a fault (risky!)
 - Remove tests that have found the same fault as other tests (also risky!)

- Reordering strategies
 - If a suite of N tests satisfies a coverage criterion, the tests can often be reordered so that the first $N-x$ tests satisfies the criterion – so the remaining tests can be removed

When a Regression Test Fails

- Regression tests are evaluated based on whether the result on the new program P is equivalent to the result on the previous version $P-1$
 - If they differ, the test is considered to have failed

- Regression test failures represent three possibilities:
 - The software has a fault – *Must fix the fix*
 - The test values are no longer valid on the new version – *Must delete or modify the test*
 - The expected output is no longer valid – *Must update the test*

- Sometimes hard to decide which!!
Evolving Tests Over Time

- Changes to external interfaces can sometimes cause all tests to fail
 - Modern capture / replay tools will not be fooled by trivial changes like color, format, and placement
 - Automated scripts can be changed automatically via global changes in an editor or by another script

- Adding one test does not cost much – but over time the cost of these small additions start to pile up

Choosing Which Regression Tests to Run

Change Impact Analysis

How does a change impact the rest of the software?

- When a small change is made in the software, what portions of the software can be impacted by that change?
- More directly, which tests need to be re-run?
 - **Conservative approach**: Run all tests
 - **Cheap approach**: Run only tests whose test requirements relate to the statements that were changed
 - **Realistic approach**: Consider how the changes propagate through the software

- Clearly, tests that never reach the modified statements do not need to be run
- Lots of clever algorithms to perform CIA have been invented
 - Few if any available in commercial tools
Rationales for Selecting Tests to Re-Run

- **Inclusive**: A selection technique is *inclusive* if it includes tests that are "modification revealing"
 - Unsafe techniques have less than 100% inclusiveness
- **Precise**: A selection technique is *precise* if it omits regression tests that are not modification revealing
- **Efficient**: A selection technique is *efficient* if deciding what tests to omit is cheaper than running the omitted tests
 - This can depend on how much automation is available
- **General**: A selection technique is *general* if it applies to most practical situations

Summary of Regression Testing

- We spend far more time on regression testing than on testing new software
- If tests are based on covering criteria, all problems are much simpler
 - We know why each test was created
 - We can make rationale decisions about whether to run each test
 - We know when to delete the test
 - We know when to modify the test
- Automating regression testing will save much more than it will cost
Chapter 6 Outline

1. Regression Testing
2. Integration and Testing
3. Test Process
4. Test Plans
5. Identifying Correct Outputs

Integration and Testing (6.2)

Big Bang Integration

Throw all the classes together, compile the whole program, and system test it

- The polite word for this is risky
 - Less polite words also exist …
- The usual method is to start small, with a few classes that have been tested thoroughly
 - Add a small number of new classes
 - Test the connections between the new classes and pre-integrated classes
- Integration testing: testing interfaces between classes
 - Should have already been tested in isolation (unit testing)
Methods, Classes, Packages

- Integration can be done at the method level, the class level, package level, or at higher levels of abstraction
- Rather than trying to use all the words in every slide …
- Or not using any specific word …
- We use the word component in a generic sense

- A component is a piece of a program that can be tested independently

- Integration testing is done in several ways
 - Evaluating two specific components
 - Testing integration aspects of the full system
 - Putting the system together “piece by piece”

Software Scaffolding

- Scaffolding is extra software components that are created to support integration and testing

- A stub emulates the results of a call to a method that has not been implemented or integrated yet

- A driver emulates a method that makes calls to a component that is being tested
Stubs

- The **first responsibility** of a stub is to allow the CUT to be compiled and linked without error
 - The **signature** must match
- What if the called method needs to **return values**?
- These values will **not be the same** the full method would return
- It may be important for testing that they satisfy certain limited constraints

Approaches:
- Return **constant values** from the stub
- Return **random values**
- Return values from a **table lookup**
- Return values **entered by the tester** during execution
- Processing **formal specifications** of the stubbed method

Drivers

- Many good programmers add drivers to **every class** as a matter of habit
 - Instantiate objects and carry out **simple testing**
 - **Criteria** from previous chapters can be implemented in drivers

- Test drivers can easily be created **automatically**

- Values can be **hard-coded** or read from files
Class Integration and Test Order (CITO)

- **Old programs** tended to be very hierarchical
- **Which order to integrate** was pretty easy:
 - Test the “leaves” of the call tree
 - Integrate up to the root
 - Goal is to minimize the number of stubs needed
- **OO programs** make this more complicated
 - Lots of kinds of dependencies (call, inheritance, use, aggregation)
 - **Circular dependencies**: A inherits from B, B uses C, C aggregates A
- **CITO**: Which order should we integrate and test?
 - Must “break cycles”
 - Common goal: least stubbing
- **Designs** often have few cycles, but cycles creep in during implementation

Chapter 6 Outline

1. Regression Testing
2. Integration and Testing
3. **Test Process**
4. Test Plans
5. Identifying Correct Outputs
Test Process (6.3)

We know what to do ... but now ... how can we do it?

Testing by Programmers

- The important issue is about quality

- Quality cannot be “tested in”!
Changes in Software Production

- **Teamwork** has changed
 - 1970: we built log cabins
 - 1980: we built small buildings
 - 1990: we built skyscrapers
 - 2006: we are building integrated communities of buildings
- We do **more maintenance** than construction
 - Our knowledge base is mostly about testing new software
- We are **reusing code** in many ways
- **Quality vs efficiency** is a constant source of stress
- **Level 4** thinking requires the recognition that quality is usually more crucial than efficiency
 - Requires management buy-in!
 - Requires that programmers respect testers

Test Activities

- **Software requirements** → Define test objectives (criteria)
- **System design** → Design system tests
 - Design acceptance tests
 - Design usability test, if appropriate
- **Intermediate design** → Specify system tests
 - Integration and unit test plans
 - Acquire test support tools
 - Determine class integration order
- **Detailed design** → Create tests or test specifications
Test Activities (2)

- **Implementation**: Create tests, Run tests when units are ready

- **Integration**: Run integration tests

- **System deployment**: Apply system test, Apply acceptance tests, Apply usability tests

- **Operation and maintenance**: Capture user problems, Perform regression testing

Managing Test Artifacts

- Don’t fail because of lack of organization

- Keep track of:
 - Test design documents
 - Tests
 - Test results
 - Automated support

- Use **configuration control**

- Keep track of source of tests – when the source changes, the tests must also change
Professional Ethics

- **Put quality first**: Even if you lose the argument, you will gain respect
- If you can’t test it, don’t build it
- Begin test activities early
- **Decouple**
 - Designs should be independent of language
 - Programs should be independent of environment
 - Couplings are weaknesses in the software!
- **Don’t take shortcuts**
 - If you lose the argument you will gain respect
 - **Document** your objections
 - Vote with your feet
 - Don’t be afraid to be right!

Chapter 6 Outline

1. Regression Testing
2. Integration and Testing
3. Test Process
4. **Test Plans**
5. Identifying Correct Outputs
Test Plans (6.4)

• The most common question I hear about testing is

 “How do I write a test plan?”

• This question usually comes up when the focus is on the document, not the contents
• It’s the contents that are important, not the structure
 – Good testing is more important than proper documentation
 – However – documentation of testing can be very helpful
• Most organizations have a list of topics, outlines, or templates

Standard Test Plan

• ANSI / IEEE Standard 829-1983 is ancient but still used

 Test Plan
 A document describing the scope, approach, resources, and schedule of intended testing activities. It identifies test items, the features to be tested, the testing tasks, who will do each task, and any risks requiring contingency planning.

• Many organizations are required to adhere to this standard
• Unfortunately, this standard emphasizes documentation, not actual testing – often resulting in a well documented vacuum
Types of Test Plans

- **Mission plan** – tells “why”
 - Usually one mission plan per organization or group
 - Least detailed type of test plan

- **Strategic plan** – tells “what” and “when”
 - Usually one per organization, or perhaps for each type of project
 - General requirements for coverage criteria to use

- **Tactical plan** – tells “how” and “who”
 - One per product
 - More detailed
 - Living document, containing test requirements, tools, results and issues such as integration order

Test Plan Contents – System Testing

- **Purpose**
- **Target audience and application**
- **Deliverables**
- **Information included**
 - Introduction
 - Test items
 - Features tested
 - Features not tested
 - Test criteria
 - Pass / fail standards
 - Criteria for starting testing
 - Criteria for suspending testing
 - Requirements for testing restart
 - Hardware and software requirements
 - Responsibilities for severity ratings
 - Staffing & training needs
 - Test schedules
 - Risks and contingencies
 - Approvals
 - Approvals
Test Plan Contents – Tactical Testing

- Purpose
- Outline
- Test-plan ID
- Introduction
- Test reference items
- Features that will be tested
- Features that will not be tested
- Approach to testing (criteria)
- Criteria for pass / fail
- Criteria for suspending testing
- Criteria for restarting testing
- Test deliverables
- Testing tasks
- Environmental needs
- Responsibilities
- Staffing & training needs
- Schedule
- Risks and contingencies
- Approvals

Chapter 6 Outline

1. Regression Testing
2. Integration and Testing
3. Test Process
4. Test Plans
5. **Identifying Correct Outputs**
Identifying Correct Outputs (6.5)

Oracle Problem

Does a program execute correctly on a specific input?

- With simple software methods, we have a very clear idea whether outputs are correct or not
- But for most programs it’s not so easy
- This section presents three general methods for checking outputs:
 - Direct verification
 - Redundant computation
 - Consistency checks
 - Data redundancy

Direct Verification

Using a program to check the answer

- Appealing because it eliminates some human error
- Fairly expensive – requiring more programming
- Verifying outputs is deceptively hard
 - One difficulty is getting the post-conditions right
- Not always possible – we do not always know the correct answer
 - Flow calculations in a stream – the solution is an approximation based on models and guesses; we don’t know the correct answers!
 - Probability of being in a particular state in a Petri net – again, we don’t know the correct answer
Direct Verification Example

• Consider a simple sort method

 • Post-condition: Array is in sorted order

<table>
<thead>
<tr>
<th>Input</th>
<th>8</th>
<th>92</th>
<th>7</th>
<th>14</th>
</tr>
</thead>
<tbody>
<tr>
<td>Output</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>Output</td>
<td>92</td>
<td>14</td>
<td>8</td>
<td>7</td>
</tr>
</tbody>
</table>

 Oops!

• Post-condition: Array sorted from lowest to highest and contains all the elements from the input array

<table>
<thead>
<tr>
<th>Input</th>
<th>87</th>
<th>14</th>
<th>14</th>
<th>87</th>
</tr>
</thead>
<tbody>
<tr>
<td>Output</td>
<td>14</td>
<td>14</td>
<td>14</td>
<td>87</td>
</tr>
</tbody>
</table>

 Oops!

• Post-condition: Array sorted from lowest to highest and is a permutation of the input array

Direct Verification Example – Cont.

Input: Array A
Make copy B of A
Sort A
// Verify A is a permutation of B
Check A and B are of the same size
For each object in A
 Check if object appears in A and B the same number of times
// Verify A is ordered
for each index I but last in A
 Check if A[i] <= A[i+1]

• This is almost as complicated as the sort method under test!
• We can easily make mistakes in the verification methods
Redundant Computation

Computing the answer in a different way

- Write two programs – check that they produce the same answer
- Very expensive!
- What if they have similar mistakes … that is, they fail on the same inputs
 - Unfortunately, researchers have found the “independence assumption” is not valid
- This works best if completely different algorithms can be used

Consistency Checks

Check part of the answer to see if it makes sense

- Check if a probability is negative or larger than one
- Check assertions or invariants
 - No duplicates
 - Cost is greater than zero
- These are only partial solutions and does not always apply, but is very useful within those limits
Data Redundancy

Check for “identities”
- Testing $\sin(x) - \sin(x)^2 + \cos(x)^2 = 1$
- Inserting an element into a structure and removing it

These are only partial solutions and does not always apply, but is very useful within those limits

Summary – Chapter 6

A major obstacle to the adoption of advanced test criteria is that they affect the process
- It is very hard to change a process
- Changing process is required to move to level 3 or level 4 thinking

Most testing is actually regression testing

Test criteria make regression testing much easier to automate

OOP has changed the way in which we integrate and test software components

To be successful, testing has to be integrated throughout the process

Identifying correct outputs is almost as hard as writing the program