Networking Basics
Behind the World Wide Web

Jeff Offutt
http://www.cs.gmu.edu/~offutt/

SWE 642
Software Engineering for the World Wide Web

Adapted from chapter 1 slides for:
Web Technologies: A Computer Science Perspective
by
JEFFREY C. JACKSON

Topics

1. The Internet
2. Internet Protocols
3. World Wide Web Protocols
4. WWW Requests and Responses
5. Client Caching
6. Character Sets
7. Web Clients and Browsers
8. Web Servers
9. Security on the Web
The Internet

• Technical origin: ARPANET (late 1960's)
 – One of earliest attempts to network heterogeneous, geographically dispersed computers
 – Email first available on ARPANET in 1972 (and quickly very popular)

• ARPANET access was limited to select DoD-funded organizations
 – Mostly military bases and top research universities

The Internet

• Open-access networks
 – Regional university networks (e.g., SURAnet)
 – CSNET for CS departments not on ARPANET

• NSFNET (1985-1995)
 – Primary purpose: connect supercomputer centers
 – Secondary purpose: provide backbone to connect regional networks
The Internet

The network of networks connected via the public backbone and communicating using TCP/IP communication protocol

Backbone initially supplied by NSFNET, privately funded (ISP fees) beginning in 1995
Topics

1. The Internet
2. Internet Protocols
3. World Wide Web Protocols
4. WWW Requests and Responses
5. Client Caching
6. Character Sets
7. Web Clients and Browsers
8. Web Servers
9. Security on the Web

Internet Protocols

- Communication protocol: how computers talk
 - For example: Telephone “protocol”: how you answer and end call, what language you speak, etc.
- Internet protocols developed as part of ARPANET research
 - ARPANET began using TCP/IP in 1982
- Designed for use both within local area networks (LANs) and between networks
Internet Protocol (IP)

- IP is the fundamental protocol defining the Internet
- Original IP definition from 1981:
- IP address:
 - 32-bit number (IPv4) or 128-bit (IPv6)
 - Associated with at most one device at a time on the same network
 - although a device may have more than one
 - Written as four dot-separated bytes, e.g. 192.0.34.166

IP

- IP function: Transfer data from source device to destination device
- IP source software creates a packet representing the data
 - Header: source and destination IP addresses, length of data, etc.
 - Data itself
- If destination is on another LAN, packet is sent to a gateway that connects to more than one network
Transmission Control Protocol (TCP)

- Limitations of IP:
 - No guarantee of packet delivery (packets can be dropped)
 - Communication is one-way (source to destination)

- TCP adds concept of a connection on top of IP
 - Provides guarantee that packets delivered
 - Provide two-way (full duplex) communication

- The original TCP definition:
TCP

• TCP adds concept of a port
 – TCP header contains port number representing an application program on the destination computer
 – Some port numbers have standard uses
 • Example: port 25 is normally used for email transmitted using the Simple Mail Transfer Protocol (SMTP)
 • Definitions: http://www.iana.org/assignments/port-numbers
 – Other port numbers are available first-come-first-served to any application
Domain Name Service (DNS)

- DNS is the “phone book” for the Internet
 - Map between host names and IP addresses

- Host names
 - Labels separated by dots, e.g., www.example.org
 - Final label is top-level domain
 - Generic: .com, .org, .edu, …
 - Country-code: .us, .il, .cn, …

- Original definition of DNS:
DNS

• Domains are divided into second-level domains, which can be further divided into subdomains, etc.
 – E.g., in www.example.com, “example” is a second-level domain
 – cs.gmu.edu: “gmu” is second-level, “cs” is third
• A host name plus domain name information is called the fully qualified domain name (FQDN) of the computer

DNS

• nslookup is a program that provides command-line access to DNS (on most systems)
• Looking up a host name given an IP address is known as a reverse lookup
 – Recall that a single host may have multiple IP addresses
 – Address returned is the canonical IP address specified in the DNS system
Analogy to Telephone Network

- IP ~ the telephone network
- TCP ~ calling someone who answers, having a conversation, and hanging up
- UDP ~ calling someone and leaving a message
- DNS ~ directory assistance

Higher-level Protocols

- Many protocols build on TCP
 - Telephone analogy: TCP specifies how we initiate and terminate the phone call, but another protocol needs to specify how we carry on the actual conversation
- Examples:
 - SMTP (email)
 - FTP (file transfer)
 - HTTP (transfer of Web documents)
World Wide Web

- Originally, one of several systems for organizing information on the Internet
 - Competitors: WAIS, Gopher, ARCHIE

- Distinctive feature of Web: support for hypertext
 - Text containing links
 - Communication via Hypertext Transport Protocol (HTTP)
 - Document representation using Hypertext Markup Language (HTML)
World Wide Web

• The Web is the collection of machines (Web servers) on the Internet that provide information, initially HTML documents, via HTTP

• Machines that access information on the Web are known as Web clients

• A Web browser is software that lets users access the Web

Hypertext Transport Protocol (HTTP)

• HTTP is based on the request-response communication model:
 – Client sends a request
 – Server sends a response

• HTTP is a stateless protocol:
 – The protocol does not require the server to remember anything about the client between requests

• The original standards proposal for HTTP:
HTTP

- Normally implemented over a TCP connection
 - 80 is standard port number for HTTP

- Typical browser-server interaction:
 - User enters Web address in browser
 - Browser uses DNS to locate IP address
 - Browser opens TCP connection to server
 - Browser sends HTTP request over connection
 - Server sends HTTP response to browser over connection
 - Browser displays body of response in the client area of the browser window

HTTP

- The information transmitted using HTTP is often entirely text
- Can use the Internet’s Telnet protocol to simulate browser request and view server response
HTTP

$ telnet www.example.org 80
Trying 192.0.34.166...
Connected to www.example.org (192.0.34.166).
Escape character is '^['].

GET / HTTP/1.1
Host: www.example.org

HTTP/1.1 200 OK
Date: Thu, 09 Oct 2003 20:30:49 GMT
...

Topics

1. The Internet
2. Internet Protocols
3. World Wide Web Protocols
4. WWW Requests and Responses
5. Client Caching
6. Character Sets
7. Web Clients and Browsers
8. Web Servers
9. Security on the Web
HTTP Request

Clients send requests to servers to ask for a resource (usually a file or to run a program)

Structure of the request:
1. start line
2. header field(s)
3. blank line
4. optional body

Example: GET http://cs.gmu.edu/~offutt HTTP/1.1

HTTP Request

1. start line
2. header field(s)
3. blank line
4. optional body

- Start line
 - Example: GET / HTTP/1.1
- Three space-separated parts:
 - HTTP request method
 - Request-URI
 - HTTP version
 - We will cover 1.1
HTTP Request

1. start line
 - Request-URI
2. header field(s)
3. blank line
4. optional body

Uniform Resource Identifier (URI)

- Syntax: `scheme : scheme-depend-part`
 - Ex: In `http://www.example.com/` the scheme is `http`
 - `URI specification`

- Request-URI is the portion of the requested URI that follows the host name
 - supplied by the required Host header field
 - Ex: “/” is Request-URI portion of `http://www.example.com/`
 - “/~offutt/” is Request-URI of `http://www.cs.gmu.edu/~offutt/`

URI

URIs come in two types:

- **Uniform Resource Name (URN)**
 - Used to identify resources with unique names, such as books (which have unique ISBNs)
 - Scheme is `urn`
 - `URN specification`

- **Uniform Resource Locator (URL)**
 - Specifies location where a resource can be found
 - In addition to `http`, some other URL schemes are `https`, `ftp`, `mailto`, and `file`
 - `URL specification`
HTTP Request

1. **Start line**
 - *http request method*
2. **Header field(s)**
3. **Blank line**
4. **Optional body**

Common request methods:

- **GET**
 - Used if link is clicked or address typed in browser
 - No body in request with GET method
- **POST**
 - Used when submit button is clicked on a form
 - Form information contained in body of request
- **HEAD**
 - Requests that only header fields (no body) be returned in the response
 - We will use GET and POST in this class

HTTP Request

1. **Start line**
2. **Header field(s)**
3. **Blank line**
4. **Optional body**

- **Header field structure:**
 - *field name*: *field value*
- **Syntax**
 - Field name is not case sensitive
 - Field value may continue on multiple lines by starting continuation lines with white space
 - Field values may contain MIME types, quality values, and wildcard characters (*)
Multipurpose Internet Mail Extensions (MIME)

1. start line
2. header field(s)
3. blank line
4. optional body

• Convention for specifying content type of a message
 – In HTTP, typically used to specify content type of the body of the response

• MIME content type syntax:
 – top-level type / subtype

• Examples: text / html, image / jpeg

• MIME Standard:

HTTP Quality Values and Wildcards

1. start line
2. header field(s)
3. blank line
4. optional body

• Example header field with quality values:
 accept:
 text/xml,text/html;q=0.9,
 text/plain;q=0.8, image/jpeg,
 image/gif;q=0.2,*/*;q=0.1

• Quality value applies to all preceding items
• Higher values mean higher preferences
• Wildcards specify quality 0.1 for any MIME type not specified earlier
HTTP Request

1. start line
2. header field(s)
3. blank line
4. optional body

Common header fields:
- Host: host name from URL (required)
- User-Agent: type of browser sending request
- Accept: MIME types of acceptable documents
- Connection: value close tells server to close connection after single request/response
- Content-Type: MIME type of (POST) body, normally application/x-www-form-urlencoded
- Content-Length: bytes in body
- Referrer: URL of document containing link that supplied URI for this HTTP request

HTTP Response

Servers send responses to clients with result of request (error code, a file output of a program)

Structure of the response:
1. status line
2. header field(s)
3. blank line
4. optional body
HTTP Response

1. status line
2. header field (s)
3. blank line
4. optional body

- Status line
 - Example: HTTP/1.1 200 OK
- Three space-separated parts:
 - HTTP version
 - status code
 - reason phrase (intended for human use)

Status code:

- Three-digit number
- First digit is class of the status code:
 - 1 = Informational
 - 2 = Success
 - 3 = Redirection (alternate URL is supplied)
 - 4 = Client Error
 - 5 = Server Error
- Other two digits provide additional information
HTTP Response

Common header fields:
- Connection, Content-Type, Content-Length
- Date: date and time at which response was generated (required)
- Location: alternate URI if status is redirection
- Last-Modified: date and time the requested resource was last modified on the server
- Expires: date and time after which the client’s copy of the resource will be out-of-date
- ETag: a unique identifier for this version of the requested resource

Topics

1. The Internet
2. Internet Protocols
3. World Wide Web Protocols
4. WWW Requests and Responses
5. [Client Caching](#)
6. Character Sets
7. Web Clients and Browsers
8. Web Servers
9. Security on the Web
Client Caching

- A cache is a local copy of information obtained from some other source.

- Most web browsers store requested resources so subsequent requests to the same resource will not require an HTTP request / response.
 - Ex: icon appearing multiple times in a Web page.

- This works fine for static files (icons, HTML), but not so well for outputs from programs (web applications).
 - Most browsers have a way for users to override cache (shift-reload in Firefox).

Diagram:

1. HTTP request for image
2. HTTP response containing image
3. Store image in cache

... or the fast way
Client Caching

- **Cache advantages**
 - Faster than HTTP request/response
 - Less network traffic
 - Less load on server

- **Cache disadvantage**
 - Cached copy of resource may be invalid
 (inconsistent with remote version)

Validating cached resource:
- Send HTTP HEAD request and check Last-Modified or ETag header in response
- Compare current date / time with Expires header sent in response containing resource
- If no Expires header was sent, use heuristic algorithm to estimate value for Expires
 - Ex: Expires = 0.01 * (Date – Last-Modified) + Date

- Sometimes routers have a separate cache
 - Ex: A router that serves all clients in the same company
Topics

1. The Internet
2. Internet Protocols
3. World Wide Web Protocols
4. WWW Requests and Responses
5. Client Caching
6. Character Sets
7. Web Clients and Browsers
8. Web Servers
9. Security on the Web

Character Sets

- Every document is represented by a string of integer values (code points)
- The mapping from code points to characters is defined by a character set
- Some header fields have character set values:
 - Accept-Charset: request header listing character sets that the client can recognize
 - Ex: accept-charset: ISO-8859-1,utf-8;q=0.7,*;q=0.7
 - Content-Type: can include character set used to represent the body of the HTTP message
 - Ex: Content-Type: text/html; charset=UTF-8
Character Sets

- Technically, many “character sets” are actually character encodings
 - An encoding represents code points using variable-length byte strings
 - Most common examples are Unicode-based encodings UTF-8 and UTF-16
- IANA maintains complete list of Internet-recognized character sets / encodings
 - http://www.iana.org/assignments/character-sets

Character Sets

- Typical US PCs produces ASCII documents
- US-ASCII character set can be used for such documents, but is not recommended
 - English has one of the smallest character sets of any human language
- UTF-8 and ISO-8859-1 are supersets of US-ASCII and provide international compatibility
 - Unicode has a code for all characters in all human languages
 - UTF-8 represents all ASCII characters with a single byte each and arbitrary Unicode characters with up to 4 bytes
 - ISO-8859-1 is 1-byte code that includes many characters common in Western European languages, such as é
Topics

1. The Internet
2. Internet Protocols
3. World Wide Web Protocols
4. WWW Requests and Responses
5. Client Caching
6. Character Sets
7. Web Clients and Browsers
8. Web Servers
9. Security on the Web

Web Clients

• Many possible web clients:
 – Text-only “browser” (lynx)
 – Mobile phones
 – Robots (software-only clients, e.g., search engine “crawlers”)
 – etc.

• We will focus on traditional web browsers
 – Firefox, Explorer, Opera, Chrome, …
Web Browsers

First graphical browser running on general-purpose platforms: Mosaic (1993)
Web Browsers

Primary tasks:
- Convert web addresses (URLs) to HTTP requests
- Communicate with web servers via HTTP
- Render (appropriately display) documents returned by a server

HTTP URLs

http://www.example.org:56789/a/b/c.txt?t=win&s=chess#para5

- Browser uses authority to connect via TCP
- Request-URI included in start line (/ used for path if none supplied)
- Fragment identifier not sent to server (used to scroll browser client area)
Web Browsers

Standard features
- Save web page to disk
- Find string in page
- Fill forms automatically (passwords, CC numbers, …)
- Set preferences (language, character set, cache and HTTP parameters)
- Modify display style (e.g., increase font sizes)
- Display raw HTML and HTTP header info (e.g., Last-Modified)
- Choose browser themes (skins)
- View history of web addresses visited
- Bookmark favorite pages for easy return

Web Browsers

Additional functionality:
- Execution of scripts (drop-down menus)
- Event handling (mouse clicks)
- GUI for controls (buttons)
- Secure communication with servers
- Display of non-HTML documents (PDF) via plug-ins
Topics

1. The Internet
2. Internet Protocols
3. World Wide Web Protocols
4. WWW Requests and Responses
5. Client Caching
6. Character Sets
7. Web Clients and Browsers
8. Web Servers
9. Security on the Web

Web Servers

Basic functionality:
- Receive HTTP request via TCP
- Map Host header to specific virtual host
 - one of possibly many host names sharing an IP address
- Map Request-URI to specific resource associated with the virtual host
 - File: Return file in HTTP response
 - Program: Run program and return output in HTTP response
- Map type of resource to appropriate MIME type and use to set Content-Type header in HTTP response
- Log information about the request and response
Web Servers

• httpd : UIUC, primary Web server c. 1995
• Apache : “A patchy” version of httpd, now the most widely used server (esp. on Linux platforms)
• IIS : Microsoft Internet Information Server
• Tomcat :
 – Java-based
 – Provides container (Catalina) for running Java servlets (HTML-generating programs) as back-end to Apache or IIS
 – Can run stand-alone using Coyote HTTP front-end
 – http://tomcat.apache.org/

Some Coyote communication parameters :
 – Allowed / blocked IP addresses
 – Max. simultaneous active TCP connections
 – Max. queued TCP connection requests
 – “Keep-alive” time for inactive TCP connections

Modify parameters to tune server performance

Some Catalina container parameters :
 – Virtual host names and associated ports
 – Logging preferences
 – Mapping from Request-URI’s to server resources
 – Password protection of resources
 – Use of server-side caching
Tomcat Web Server

- HTML-based server administration
- Browse to http://localhost:8080 and click on Server Administration link
 - localhost is a special host name that means “this machine”

Some connector fields:
- Port Number: port "owned" by this connector
- Max Threads: max connections processed simultaneously
- Connection Timeout: keep-alive time
Tomcat Web Server

Access control:
- Password protection (e.g., admin pages)
 - Users and roles defined in `conf/tomcat-users.xml`
- Deny access to machines
 - Useful to denying access to certain users by denying access from their machines
 - List of denied machines maintained in `RemoteHostValve` (deny by host name) or `RemoteAddressValve` (deny by IP address)

Topics

1. The Internet
2. Internet Protocols
3. World Wide Web Protocols
4. WWW Requests and Responses
5. Client Caching
6. Character Sets
7. Web Clients and Browsers
8. Web Servers
9. Security on the Web
Secure Servers

- Since HTTP messages typically travel over a public network, private information (such as credit card numbers) should be encrypted to prevent eavesdropping.
- https URL scheme tells browser to use encryption.
- Common encryption standards:
 - Secure Socket Layer (SSL)
 - Transport Layer Security (TLS)

![Diagram of Secure Servers](image-url)
Secure Servers
Man-in-the-Middle Attack

What's IP address for www.example.org?
100.1.1.1

My credit card number is…

Real
www.example.org

Secure Servers
Preventing Man-in-the-Middle

What's IP address for www.example.org?
100.1.1.1

?? Send me a certificate of identity ??

Real
www.example.org
WWW Networking Summary

- The goal of the WWW networking design is to make using the WWW easy
 - Robust, reliable, efficient, simple
- Programmers must have a general idea how the network works
 ... but ...
- A major goal of the development technologies is to simplify development of distributed, heterogeneous, multi-layer software
 - CGI / Perl, PHP, J2EE, ASP / .NET, ...
- J2EE insulates us from most networking details