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Abstract

TOWARDS AUTOMATICALLY LOCALIZING AND REPAIRING SQL FAULTS

Yun Guo, PhD

George Mason University, 2018

Dissertation Co-Director: Jeff Offutt

Dissertation Co-Director: Amihai Motro

As the standard database language, SQL statements can be complex and expensive

to debug by hand. Automated fault localization and repair techniques have the potential

to reduce cost significantly. I propose a novel fault localization and repair technique to

repair faulty SQL statements. It targets faults in two common SQL constructs, JOIN and

WHERE. It identifies the fault location and type precisely, and then creates a patch to

fix the fault. I implemented this technique in a tool, and evaluated it on five medium

to large-scale databases using 825 faulty queries with various complexity and faulty types.

Experimental results showed that this technique can identify and repair WHERE faults more

precisely than previous techniques, and also repair JOIN faults that previous techniques

could not. Moreover, patches generated by this approach are more acceptable to engineers,

and the tool is much faster.



Chapter 1: Introduction

1.1 Introduction

Database management systems (DBMS) were first created in the 1970s to help people man-

age information. With the advances of software technologies, almost all modern applications

use database system to persist and analyze information. SQL (Structured Query Language)

is the standard language used to retrieve and manipulate data in DBMSs. It was ranked as

the most in-demand programming language in 2016 [1].

The volume of data stored in today’s databases is increasing. A JPMorgan Chase

Institute survey [2] reported that the data volume increased 42% in one year. It predicted

that “more data will be produced in the next two years than has been produced from the

dawn of civilization through today.” As one of the largest database users in the world [3],

AT&T hosts 1.9 trillion phone call records and more than 323 terabytes of data. The

number is still increasing daily. As the volume of data increases, SQL evolved with DBMS

in two directions: it has become more frequently used and more complex. Large amount

of data often means large number of end users and busy system. The largest e-commerce

company Alibaba processed 325,000 transactions per second at peak [4]. Each transaction

requires multiple queries to retrieve or update their MySQL databases. In addition to simple

data retrieval tasks, business analyst perform data analysis tasks to make business decisions

and predict future performance. The data analysis tasks involve bringing data from various

resources, transforming the data to complex structures, and loading the data into other data

stores. These operations often consist of large number of complicated queries. I surveyed

a software-as-service company of about 2500 employees with 143 project repositories, more

than 20 terabytes of data, and 75 databases in production. They have in total 834,796

SQL scripts, each containing multiple queries. I randomly examined 143 queries from the
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834,796 SQL scripts and found 89 of them to be complex queries (a complex query joins

more than 6 tables and more than 8 clauses in the WHERE condition).

Debugging large number of complex queries is laborious and resource intensive. I inves-

tigated the efficiency of manual debugging. I invited a developer with domain knowledge

to debug three queries. It took him 59 seconds to debug a simple query (with 3 clauses),

5 minutes 3 seconds for a medium query (with 6 clauses), and 9 minutes and 17 seconds

for complex query (with 10 clauses). This experiment is presented in Chapter 9. Imagine a

company with 500 developers with hourly wage of $40 and each developer spends 20 minutes

a day to debug SQL faults. The total amount spend on debugging SQL queries is $6,667

daily. If this process can be automated, it has the potential to reduce cost significantly.

Although many papers have been published on automatically repairing general program

code [5–9], only one attempt has been made to debug and repair SQL queries [10]. As

a declarative language, SQL differs from procedural programming languages in two ways:

(1) SQL is designed to process tabular data sets; and (2) SQL allows engineers to specify

information to be retrieved (e.g., the table and column names), but not the algorithm for

retrieving the information. Thus, debugging and repairing SQL queries is very different

from general program debugging. The automated fault localization and program repairing

techniques used in general programming languages are often ineffective when applied to

SQL queries.

The human cost of manual debugging and ineffectiveness of existing techniques has mo-

tivated this research to find an effective and efficient fault localization and repair technique

specifically targeting SQL faults.

1.2 Problem Statement

This research addresses the problem of localizing and repairing faults in two fundamental

constructs of SQL queries: WHERE and JOIN clauses. Section 1.2.1 describes the re-

search problem in this research: automatic fault localization and repair in SQL queries.
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Section 1.2.2 shows a simple example to illustrate the research problem. Section 1.2.3 and

section 1.2.4 explains the two problem in detail.

1.2.1 Problem Description

In database applications containing many complex SQL queries with many clauses, manual

debugging SQL queries is laborious. My study found that given a faulty WHERE predicate

with ten clauses, manual fault localization took almost ten minutes. After the fault is

identified, developers need to spend more time to analyze and fix the fault. Applying

automated fault localization and repair techniques in SQL queries can greatly reduce the

effort. As SQL queries are used to process tabular data sets, a test case is a database row,

and the test oracle evaluates whether the test data should be included in the result.

Researchers have studied how to automatically identify faults in database applica-

tions [11–13]. However, those papers consider the entire SQL statement as one line of

code, indicating that the entire SQL statement contains errors. This is the first research

to look for faults in individual components of SQL statements such as clauses. The state-

of-the-art SQL query repair technique was proposed by Gopinath et al. [10]. It adopted a

decision tree-based approach to generate patches from test suites and test oracles. However,

the patches generated by this approach can not be accepted because it completely rewrites

the query with unrelated clauses instead of fixing the faults. In addition, to the best of my

knowledge, there is no fully automated technique that streamlines the entire process from

fault localization to repairing SQL queries.

Problem Statement:

Currently, debugging and repairing complex SQL queries has three signifi-

cant problems. First, existing fault localization techniques are not very effective

or efficient at finding faulty entities (clauses) in SQL queries. Second, the ex-

isting methods to automatically fix the faulty queries are limited by quality

and inefficiency. Third, there is no technique that integrates automatic fault

localization and automatic fault repair.
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Table 1.1: Order Table O

CustId OrderId Year Price Discount ZipCode

1 1 2008 110 0 22102
1 2 2014 120 10 22102
2 3 2013 110 5 20017
6 4 2006 80 5 20017
2 5 2014 90 0 10007

Table 1.2: Customer Table C

CustId Name

1 Linda
2 David
3 Andrew

1.2.2 Example

This section shows an example that is used to illustrate the SQL query fault localization

and repair problem. Table 1.1 lists product orders purchased by customers and Table 1.2

provides additional information on the customers. The request is to retrieve orders placed

after 2009 and priced greater than $100, or orders shipped to zip code 10007 with no

discount. Now assume the programmer misinterpreted this request, retrieving instead orders

placed after 2007 (with price greater than $100) plus orders shipped to zipcode 10008 (with

no discount). Figure 1.1 shows the incorrect query, with comments, starting with “#”, that

give the correct version.

SELECT ∗
FROM Order

WHERE ( Year > 2007 AND Pr ice > 100 )

# Year > 2007 should be Year > 2009

OR ( Zipcode = 10008 AND Discount = 0 )

# Zipcode = 10008 should be Zipcode = 10007

Figure 1.1: Faulty Query 1
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The orders that satisfy the request are OrderId 2, 3, and 5, whereas the orders that are

returned by the incorrect query are OrderId 1, 2, and 3. Table 1.3 compares these answers.

An outcome P (Pass) indicates a row that was expected and retrieved (true positive) or

not expected and not retrieved (true negative). An outcome F (Fail) indicates an expected

row that was not retrieved (false negative) or an unexpected row that was retrieved (false

positive).

Table 1.3: Answer Comparison

Orderid Outcome Type

1 F false positive (superfluous)
2 P true positive
3 P true positive
4 P true negative
5 F false negative (absent)

1.2.3 The SQL Query Fault Localization Problem

Given an incorrect query as shown in Figure 1.1 and a set of test data as in Table 1.1,

assume there are test oracles that can determine whether each test data passes or fails as

shown in Table 1.3. The goal of the query fault localization problem is to identify the faulty

clauses Y ear > 2007 and Zipcode = 10008.

I define the query fault localization problem formally as following.

Given the below information:

1. An incorrect query Q

2. A set of test data R with each row denoted ri; when Q is applied to R, it determines

whether the row ri is included or excluded in the result (for example, Q(ri) = Included

or Q(ri) = Excluded)

3. A test oracle O that can be used to evaluate the test result of each row (for example,

O(ri) = Passing or O(ri) = Failing)
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The fault localization technique uses the above information to localize faulty components

in JOIN or WHERE clauses in query Q.

Previous research for localizing faults in data centric applications treated the entire

SQL query or the WHERE predicate as a program entity. While these methods may

discover that an entire predicate is faulty, they do not locate the individual clauses that

are faulty. Moreover, these techniques apply statement coverage-based fault localization

technique. That is, they are based on the assumption that the entities executed by more

failed tests are more likely to contain faults. Although this assumption has been useful

in localizing faults in general programming statements, it does NOT hold in SQL clause

fault localization. Test rows are executed equally by all clauses. This research address

the problem of how to automate the SQL query fault localization to identify faulty clauses

effectively and efficiently. Section 1.3.1 will discuss the approaches and hypotheses for

solving the problem.

1.2.4 The SQL Query Repair Problem

Automatic program repair technique attempts to fix the faulty code by generating a patch,

which is a replacement for part of the program (in this case, part of the SQL query).

Most automated program repair techniques are based on test suites [14], that is, a patch is

considered as a “correct” fix when all test suites have passed. In this research, the query

repair problem follows the same rule and tries to generate a query that is “correct” with

respect to the given test suite.

However, correctness is not sufficient for evaluating the quality of a patch. Monperrus

proposed an additional evaluation criterion, acceptability [14]. A patch may pass the test

suite but contains nonsensical code. This patch is not acceptable because it fails to preserve

the logic in the requirement.

In addition, SQL query repair uses database rows as test cases. When databases can

contain large number of rows, the repair efficiency may be severely impacted.

One previous research effort used decision tree-based technique to generate patches
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for an SQL-like language [10]. Although a good start, this research was limited by the

quality and efficiency. That research uses a decision tree learning algorithm to derive the

classification rule from test data instead of fully localizing faults and repairing the faults.

It generated patches that failed to reflect the correct logic, thus were not acceptable to

engineers. Specifically, the patches often include undesired clauses or miss desired clauses.

In addition, the decision tree algorithm is resource intensive. It took 2.6 hours to find a

patch in a database of 3,039,969 rows.

This research addresses the problem of automatically repairing SQL faults. Moreover,

it aims to solve the acceptability and efficiency problem.

1.3 Approaches and Hypotheses

My approach to solve the research problem includes two components: First, I propose a

novel technique to accurately localize the faults, second, I use the fault localization result

to automatically fix the faulty query. I introduce the two components in the following

subsections.

1.3.1 SQL Query Fault Localization

The general process of localizing the faulty components in a program is to analyze the failing

tests’ execution traces and identify the abnormality in the execution traces. Since SQL

queries consist of boolean conditions, the abnormality may be identified by examining the

boolean evaluation results of the failing test cases. If I can compute the boolean evaluation

result of each component for the failing tests and compare them with the expected evaluation

results, I may be able to identify the faulty components.

Based on this motivation, I propose to localize faults in WHERE clauses in two steps.

First, I discover suspect clauses in the predicate with row-based dynamic slicing, and then

exonerate unjustly suspected clauses with delta debugging. These two techniques and how

I apply them are explained briefly below.
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Program slicing finds statements that are relevant to the values of given variables, delet-

ing the parts of the program that are irrelevant to those values, and thus reducing the search

domain from the entire program to a particular program slice [15]. Discovering slices by

examining only the source code is referred to as static slicing, whereas discovering slices

by analyzing specific execution traces of the program is referred to as dynamic slicing. I

used row-based dynamic slicing to identify suspect clauses: I executed each test row against

the query and recorded the boolean result of each individual clause. Then I counted the

number of failing rows of each clause as the suspiciousness counter.

Delta debugging is a methodology for isolating failure-inducing inputs [16] to identify

the clause most likely to have the fault. Inspired by this technique, I mutate column values

of failing rows and replace them with the corresponding values from passing rows. If the

mutated row passes, then the clause containing this column is considered to be at fault. As

the result, only the clauses containing the fault-inducing columns are returned as suspicious

clauses. The rest of the clauses are exonerated.

To localize JOIN clause faults, I categorize JOIN clause faults into two groups: JOIN

condition faults and JOIN type faults. Both types of faults can be identified by analyzing

failing test rows and the faulty queries. Essentially, JOIN conditions and JOIN types

are transformed into boolean conditions and the boolean conditions are evaluated against

failing rows. By analyzing whether the failing rows should or should not satisfy the boolean

condition, I can determine whether the related component is faulty.

To evaluate the proposed SQL query fault localization technique, I form the following

hypothesis:

SQL Query Fault Localization Hypotheses:

The SQL query fault localization technique is effective and efficient at repairing

WHERE clause and JOIN clause faults.

The effectiveness is defined in terms of accuracy of finding faulty faults. The efficiency

is defined in terms of execution time. The detailed metrics are described in Section 9.4.

This research conducted experimental evaluations to verify the hypotheses by comparing
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the SQL query fault localization technique with nine well-known existing fault localiza-

tion techniques. The techniques are carefully selected from three categories: theoretically

proved optimal techniques [17], superior techniques in an empirical study [18], and the fre-

quently used techniques [19,20]. The experiments are designed to address following research

questions:

• RQ1: Which technique is the most effective?

• RQ2: Which technique is the most efficient?

1.3.2 SQL Query Repair

The fault localization approach proposed in Section 1.3.1 precisely identifies the faulty

components. The repair step can greatly benefit from the fault localization result. As a

test suite based repair technique, it will mutate the faulty components to generate a patch

that does not produce any failing rows.

I use the test oracles to group test cases into two groups: rows that should be included

and rows that should be excluded. Then, I compute the statistics for rows in these two

groups such as the minimum value, maximum values, number of distinct values, the number

of null values, etc. The statistics are used to repair the faulty components. To repair

WHERE clauses, I developed a set of repair rules that target the most commonly used data

types and the 11 SQL comparison operators. The statistics are checked against the repair

rules to generate a patch. Similarly, to repair JOIN faults, I check the null values statistics

of failing rows and the statistics of passing rows against a set of repair rules.

To evaluate the proposed SQL query fault repair technique, I form the following hy-

pothesis:

SQL Query Repair Hypotheses:

The SQL query repair technique is effective and efficient at repairing WHERE

clause and JOIN clause faults.
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I compared my query repair technique with the only existing SQL query repair tech-

nique: the DT approach [10]. I evaluated effectiveness from two aspects: correctness and

acceptability. The patch generated is evaluated against all test rows, if all test rows pass

then the patch is considered as a correct repair. The patch is also compared with the cor-

rect query. The patches that are more similar to a correct query are more acceptable. The

efficiency is defined in terms of the time spent to repair the fault. Two research questions

were raised and answered in the experiment:

• RQ1 (Effectiveness): Is the SQL query fault repair technique more effective than the

DT approach for all fault classes?

– RQ1a (Correctness): Can the patches generated by the SQL query fault repair

technique pass all test rows for more queries than the DT approach?

– RQ1b (Acceptability): Are the patches generated by the SQL query fault repair

technique more acceptable to users than the DT approach?

• RQ2 (Efficiency): Is the SQL query fault repair technique more efficient than the

baseline in terms of execution time?

1.4 Structure of this Dissertation

The remainder of this dissertation is organized as follows. Chapter 2 provides background

on two related research topics: automatic fault localization and program repair. Because

this research focuses on the JOIN and WHERE clauses in SQL queries, Chapter 2 also

introduces the basic structures of JOIN and WHERE clauses with examples. Next, it

discusses issues in existing techniques.

Chapter 3 reviews research papers that target automatic fault localization and program

repair problems, and compares my technique with these papers.

Chapter 4, 5, 6, and 7 describes the fault localization and repairing techniques. Chapter 4

introduces the fault localization technique for WHERE predicate faults. It defines WHERE
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fault types, studies how to apply existing SFL techniques to WHERE faults localization, and

presented my fault localization algorithms–ALTAR and ALTAR2. The main content of this

chapter has been developed into two papers: one is published in the tenth International

Conference on Software Testing, Verification, and Validation (ICST 2017) [21] and the

other one is undergoing revision for Journal of Systems and Software [22]. After I identified

faulty clauses, in Chapter 5 I present how to repair faults in WHERE predicates. Similarly,

I explain JOIN clause fault localization in Chapter 6 and then demonstrate how to repair

JOIN clause faults in Chapter 7. The content in Chapter 5, 6, and 7 is published in the

18th International Conference on Software Quality, and Security (QRS 2018) [23].

To evaluate the proposed techniques, I implemented them into a tool. Chapter 8 presents

the implementation detail. I designed experiments to evaluate the fault localization tech-

nique and fault repair techniques separately. Chapter 9 illustrates the experiments for

evaluating the fault localization techniques. It describes the experiment subjects, compar-

ison techniques, and the procedure and metrics. Next, it shows the experimental results

followed by analysis and interpretations of the result. Similarly, Chapter 10 illustrates the

experiments for evaluating the fault repair techniques.

Finally, the dissertation summarizes the contributions and concludes future research

directions.
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Chapter 2: Backgroud

2.1 Automatic Fault Localization and Program Repair

Program repair consists of four steps: failure detection, fault diagnosis, fault localization,

and repair inference [24]. A failure represents unexpected behavior of the software and

indicates that the program contains a fault [25]. A failure can be revealed to the tester

with proper test oracles [26]. Fault diagnosis is part of fault localization. Fault diagnosis

observes internal program state and fault localization finds the exact location of the fault.

Repair inference attempts to fix the fault.

With advances in automating test design, test generation, and test execution, the first

step has been largely automated. However, fault diagnosis, localization, and repair are

still usually done by hand. This manual process is time-consuming, labor-intensive, and

technically challenging. To reduce costs, researchers have been targeting the last three steps:

developing ways to automatically diagnose, locate [15, 19, 20, 30, 33], and repair software

faults [5–7].

Fault localization is the process of searching the program code to find suspicious entities

such as blocks, statements, and predicates that are related to the program failure. To avoid

manually searching complicated and large programs, automatic fault localization (AFL)

techniques are applied to analyze the program entities and eliminate “innocent” program

entities. This allows programmers to only examine a refined set of “suspicious” entities.

The precision of the automatic fault localization technique is an important criteria. The

more precise the fault localization result is, the fewer entities need to be manually reviewed.

Automatic program repair (APR) attempts to find a fix to a program failure without

human intervention. Unlike AFL, the search space of APR may be infinite. To guide the

search, APR techniques usually require a report containing the suspicious program entities
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that may be generated by AFL or gathered from manual debugging, a test suite and test

oracles to distinguish failure behaviors from expected behaviors. Manual repair is technically

challenging because the engineer must deeply understands the code. It is also resource

intensive because each repair attempt can take significant time and effort to fix and verify.

Automated program repair, on the other hand, relies on a very limited “understanding”

of the program (that is, whether a set of tests passes or not), but repair attempts are

completely automated and therefore very inexpensive. Thus, automated program repair

can try many more possible corrections than manual repair can, giving it the potential to

save significant resources. Many APR techniques adopt a generate-validate approach: a

modified version of the program is generated and is validated against the test suite and test

oracle. If the patch fails then another is generated and validated. This process repeats until

a passing patch is generated.

2.2 SQL Queries

Structured Query Language (SQL), the standard database language, was ranked as the

most in-demand programming language in 2016 [1]. Applications use SQL to persist and

retrieve data. Because SQL is a declarative language, programming and debugging are quite

different from procedural programming languages.

SQL queries retrieve data from tables with clauses such as SELECT, FROM, JOIN, and

WHERE. A SELECT clause specifies the columns from which the data are retrieved. A

FROM clause specifies the source tables. A JOIN clause concatenates rows from multiple

source tables to produce a larger table. A WHERE clause defines a predicate (condition)

that the data retrieved must satisfy. This section briefly reviews the JOIN and WHERE

clauses with examples.

2.2.1 The JOIN Clause

SQL uses five JOIN types to connect two tables in different ways: CROSS JOIN, INNER

JOIN, FULL JOIN, LEFT JOIN, and RIGHT JOIN. A JOIN clause can connect more

13



than two tables using different JOIN types. The left table in the JOIN keyword is referred

to as LT and the right table as RT. A condition (starting with the ON keyword) can be

used to specify how the rows in LT and RT should be matched.

CROSS JOIN is a Cartesian product of LT and RT. It combines every row of LT with

every row of RT. Table 2.1 is the cross join of tables O (Table 1.1) and C (Table 1.2).

Table 2.1: CROSS JOIN Result Table

CustId OrderId Year Price Discount ZipCode CustId Name

1 1 2008 110 0 22102 1 Linda
1 2 2014 120 10 22102 1 Linda
2 3 2013 110 5 20017 1 Linda
6 4 2006 80 5 20017 1 Linda
2 5 2014 90 0 10007 1 Linda
1 1 2008 110 0 22102 2 David
1 2 2014 120 10 22102 2 David
2 3 2013 110 5 20017 2 David
6 4 2006 80 5 20017 2 David
2 5 2014 90 0 10007 2 David
1 1 2008 110 0 22102 3 Andrew
1 2 2014 120 10 22102 3 Andrew
2 3 2013 110 5 20017 3 Andrew
6 4 2006 80 5 20017 3 Andrew
2 5 2014 90 0 10008 3 Andrew

INNER JOIN is a special case of CROSS JOIN because it specifies a JOIN condition.

Only rows that satisfy the JOIN condition are retrieved. The columns used for matching are

the JOIN keys. Figure 2.1 shows an SQL query that retrieves the customers listed in table

Customer C with the orders they placed, as listed in table Order O. It combines the Order

O and Customer C tables using INNER JOIN. The join condition O.CustId = C.CustId

specifies the orders should be matched to the customer with the same CustId. In this

example the join keys are O.CustId and C.CustId. The result is shown in Table 2.2.

FULL JOIN, LEFT JOIN, and RIGHT JOIN are similar to INNER JOIN except that

rows of either table that do not satisfy the join condition are still preserved in the result,

by “matching” them with rows of nulls. LEFT JOIN preserves only unmatched rows of LT,

whereas RIGHT JOIN preserves only unmatched rows of RT. FULL JOIN preserves both
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SELECT ∗
FROM Order O

INNER JOIN Customer C

ON O. CustId = C. CustId

Figure 2.1: Query with JOIN Clause

Table 2.2: INNER JOIN Result Table

CustId OrderId Year Price Discount ZipCode CustId Name

1 1 2008 110 0 22102 1 Linda
1 2 2014 120 10 22102 1 Linda
2 3 2013 110 5 20017 2 David
2 5 2014 90 0 10008 2 David

unmatched rows of LT and RT. Table 2.3 shows the result of a full join. The tables for

LEFT and RIGHT JOIN are similar: The LEFT JOIN result would exclude the last row of

Table 2.3 (an unmatched row of RT) and the RIGHT JOIN result would exclude the fourth

row (an unmatched row of LT).

Table 2.3: FULL JOIN Result Table

CustId OrderId Year Price Discount ZipCode CustId Name

1 1 2008 110 0 22102 1 Linda
1 2 2014 120 10 22102 1 Linda
2 3 2013 110 5 20017 2 David
6 4 2006 80 5 20017 null null
2 5 2014 90 0 10008 2 David

null null null null null null 3 Andrew

2.2.2 The WHERE Clause

WHERE clauses consist of the WHERE keyword followed by a Boolean predicate. This

predicate connects Boolean clauses with OR, AND, or NOT. Each clause is of the form

column opr constant or column opr column, where opr is a comparator.

Figure 2.2 shows a query using WHERE clause to retrieve orders placed after 2009 and
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price greater than $100, or orders shipped to zip code 10008 with no discount. Table 2.4

shows the query result.

SELECT ∗
FROM Order O

WHERE ( Year>2009 AND Price >100)

OR ( Zipcode =10008 AND Discount=0)

Figure 2.2: Query with WHERE Clause

Table 2.4: WHERE Query Result Table

CustId OrderId Year Price Discount ZipCode

1 2 2014 120 10 22102
2 3 2013 110 5 20017
2 5 2014 90 0 10008

I transform the predicate to a monotone Boolean function by eliminating NOT opera-

tors. For example, NOT (Y ear > 2008) is transformed to Y ear ≤ 2007, then to disjunctive

normal form (DNF), which is a disjunction of conjunctive clauses. The DNF can be fur-

ther reduced to an equivalent irredundant disjunctive normal form (IDNF), which is unique

for monotone Boolean functions [27]. The final predicate consists of conjunctive predicates

(CP). A CP is a list of clauses connected by AND operators. The last two lines in Fig-

ure 2.2 shows an IDNF predicate with two CPs, each of which contains two clauses, CP1

(Y ear > 2007 AND Price > 100) and CP2 (ZipCode = 10008 AND Discount = 0).

2.3 Issues with Existing Techniques

2.3.1 Issues with Existing SQL Query Fault Localization Techniques

Previous studies have attempted to apply SFL techniques to database applications by treat-

ing an entire SQL query or an SQL structure (often of considerable size) as a program entity.

For example, Nguyen et al. [12] located faults in WHERE predicates. While these methods
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could discover that an entire predicate is faulty, they do not locate the individual clauses

that are faulty.

Moreover, the approach used by Nguyen et al. [12] and other techniques [11, 13] are

based on statement coverage. Specifically, they are based on the assumption that entities

executed by more failed tests are more likely to contain faults. Although this assumption

has been useful in localizing faults in general programming statements, it does NOT hold

in SQL clause fault localization. Test rows are executed equally by all clauses.

I illustrate the limitations of the existing techniques for finding faults in clauses with

a small example. Nguyen et al. [12] adopted the Tarantula [19] metrics in their fault

localization technique. The Tarantula metric is shown in Equation 2.1. It calculates a sus-

piciousness score S(c) of a program entity c by combining two proportions: (1) The number

of test cases for which the program behaved correctly and in which the particular statement

was executed (Passed(c)), relative to the total number of test cases for which the program

behaved correctly (TotalPassed); and (2) the number of test cases for which the program be-

haved incorrectly and in which the particular statement was executed (Failed(c)), relative

to the total number of test cases for which the program behaved incorrectly (TotalFailed).

In my research, the WHERE predicate is the program, each clause is a program entity, and

database rows serve as test cases.

S(c) =
Failed(c)

TotalFailed
Failed(c)

TotalFailed + Passed(c)
TotalPassed

(2.1)

Following the approach used by Nguyen et al. [12], I separate each clause into a “true

case” and a “false case” and associate a suspiciousness counter with each. The suspiciousness

score of each part indicates the likelihood of an error when the clause evaluates to true or

to false. Table 2.5 illustrates the computation of these suspiciousness scores. The column

Clause lists the four clauses and their true and false evaluations. The column Individual

Row shows the five rows, identified by Orderid. For each row, if a clause is evaluated to

true, then the true position is checked; otherwise, the false position is checked. The final
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row indicates the test result for each row. The column Suspiciousness Score shows the

suspiciousness score of each clause.

As an example, consider the true evaluations of the clause Y ear > 2007. TotalPassed

= 3 (orders 2, 3 and 4) and TotalFailed = 2 (orders 1 and 5). From the three rows that

passed, two were executed (2 and 3), and from the two rows that failed, two were executed

(1 and 5). Altogether the suspiciousness score is 2
2/(

2
2 + 2

3) = 0.6.

Table 2.5: Suspiciousness Score Computation

Clause Individual Row Suspiciousness
1 2 3 4 5 Score

1 Y ear > 2007
true X X X X 0.6
false X 0

2 Price > 100
true X X X 0.42
false X X 0.6

3 Zipcode = 10008
true 0
false X X X X X 0.5

4 Discount = 0
true X X 1
false X X X 0

Test Result F P P P F

This attempt is clearly flawed. The suspiciousness scores calculated for true and false

evaluations are not meaningful. Even if the suspiciousness of a clause is presented with the

average of its true and false scores, the results still fail to correctly prioritize the clauses

by their suspiciousness. For example, the incorrect clauses Y ear > 2007 and Zipcode =

10008 receive suspiciousness scores (0.6 + 0)/2 = 0.3 and (0 + 0.5)/2 = 0.25, which are

lower than the scores for the correct clauses Price > 100 and Discount = 0, which are

(0.42 + 0.6)/2 = 0.51 and (1 + 0)/2 = 0.5. The Tarantula metric is based on the premise

that a statement that is executed by more failed tests than passed tests is more likely to

contain faults. However, in this case all clauses in a WHERE predicate are evaluated for

each test row.
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The example demonstrates that the Tarantula metric is not effective for localizing faults

in SQL predicates. To address this issue, I propose a novel SQL fault localization technique

and describe it in Chapters 4 and 6

2.3.2 Issues with Existing SQL Query Repair Techniques

Only one paper [10] presented results on automatic repair in data-centric applications with

an SQL-like language, called ABAP. This research uses a decision tree learning algorithm

to generate a completely new query rather than fixing the faulty components. Although a

start, the generated patches are limited by quality and efficiency.

The decision tree learning algorithm is widely used in the knowledge discovery field. It

learns from the labeled data, and induces a classification function that can correctly split the

data by their labels. Gopinath et al. [10] apply the decision tree algorithm to automatically

repair WHERE predicate faults in an SQL-like language. I call this “the DT approach.”

The DT approach adopts a decision tree algorithm called the ID3 [28] algorithm. With the

test oracle, test rows are labeled as included or excluded to indicate whether the row should

be included by the correct query. The learning process works as follows. Columns are

used to generate classification rules that predicts rows into included and excluded groups.

ID3 picks a column with the highest predictiveness accuracy. If any predicted group is

not accurate (for example, an included row is predicted to be in excluded group), another

column will be chosen to further separate this group. The process is recursively executed

until either all predicted groups are accurate or all columns have been used.

I illustrate the DT approach with an example below showing that it does not analyze

the faulty query but relies only on test rows and oracles. Table 2.6 shows a labeled data

set with five rows. The first and second columns are two attributes, and the last column

labels each row with “included” (+) or “excluded” (−). Based on the attribute values in

Table 2.6, the DT approach derives classification rules to split the rows into “included” and

“excluded” subsets as in Figure 2.3. Non-leaf nodes are attributes (columns), branches are

classification rules, and leaf nodes are the labels of the split subsets. Combining the branches
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and non-leaf nodes leading to the “included” node results in the patch Y ear > 2007 AND

Price > 100.

Table 2.6: Labeled Data Set

Year Price Label

2008 110 +
2014 120 +
2007 110 -
2005 80 -
2012 100 -

Figure 2.3: Decision Tree Example

This technique has two major problems. First, the generated patch could be very

different from the desired correct query, that is, the patch has low acceptability. Note that

the DT approach is independent of the original query. Rather than identifying fault types

and localizing faults in the original query, the technique directly derives a new query from

the labeled data. This means, for a given set of labeled data, the DT approach always

generates the same patch. However, distinct queries can produce the same labeled data.

For example, a query with the condition Y ear IN (2008, 2014) produces the same data in

Table 2.6 as the query Y ear > 2007 AND Price > 100. Assume the DT approach generates

a patch Y ear > 2007 AND Price > 100 when the correct query is Y ear IN (2008, 2014).

The patch cannot be accepted as it does not correctly fix the fault.

The “overfitting” problem is another cause for low acceptability. The DT approach may

attempt to generate the classification rule that fits the given labeled data tightly, but is less

general. For example, it may use the most selective attribute to generate a tree with many

leaves; or it may use many unnecessary clauses to generate a deep tree with many levels.

The overfitting problem may result in a “nonsensical” patch.

The second major problem with the DT approach is that it is computationally inten-

sive. It enumerates all attributes and analyzes all possible splitting values to find the best

classification rule. When applying DT as part of my experiment, I observed that it can take

over 50 minutes to generate a patch on a table with 5 columns and 127,348 rows.
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To address these two problems, I propose a novel approach that can efficiently and

precisely fix the faults. These are described in Chapters 5 and 7.
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Chapter 3: Related Work

In this chapter, I review related work in two areas: fault localization techniques and auto-

matic program repair techniques.

3.1 Fault Localization

A recent survey [29] classified fault localization techniques in eight categories:

1) Slice-based 5) Machine learning-based

2) Spectrum-based 6) Data mining-based

3) Statistics-based 7) Model-based

4) Program state-based 8) Miscellaneous

My fault localization method is related to the slice-based, spectrum-based, and program

state-based categories, which are discussed below.

3.1.1 Slice-based Fault Localization

Program slicing was initially introduced by Weiser [15]. It finds statements that are relevant

to the values of given variables, deleting the parts of the program that are irrelevant to

those values, and thus reducing the search domain from the entire program to a particular

program slice. Discovering slices by examining the source code only is referred to as static

slicing, whereas discovering slices by analyzing specific execution traces of the program is

referred to as dynamic slicing. The execution slicing is a variation of dynamic slicing. It

counts the statements actually executed without consideration of a specification. Agrawal

et al. [30] presented an execution slicing approach for C programs. It constructs slices

based on the executions of failed and successful test cases. My fault localization method
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identifies program slices (suspect clauses), with a specification (evaluations of clauses over

rows). Thus, my method is in the dynamic slice-based category.

3.1.2 Spectrum-based Fault Localization

A program entity is a part of a program. It can be at different granularities, such as a

statement, a block, a predicate, or a clause. A program spectrum is the detailed execution

information of a program entity [31]. For example, it can be the coverage of a statement or

the boolean evaluation of a predicate. Spectrum-based fault localization (SFL) techniques

use the program spectrum information to analyze whether the associated entities are more

likely to be faulty. These techniques have been studied extensively because they have a

lower overhead comparing to other techniques. According to Souza et al. [32], there are two

major categories of SFL techniques: similarity-based and statistic-based. Similarity-based

techniques use the coefficient formulas while statistic-based techniques applies statistical

models. In fact, similarity-based and statistics-based techniques are very similar. The ma-

jor difference is the suspiciousness formulas used. They use the suspiciousness formulas to

calculate the suspiciousness score for each program entity and then rank them by suspi-

ciousness score. The key difference between my method and other spectrum-based methods

is that mine finds suspect clauses and exonerates innocent clauses, instead of calculating

rankings for all the clauses. The exoneration is especially useful when multiple faults exist.

In the ranking approach, developers must fix the top ranked fault, then execute the fault

localization technique again to obtain a new suspiciousness ranking, then fix the new top

ranked fault. This process repeats until all faults are correctly fixed. In contrast, my ap-

proach directly locates all the suspicious clauses, which enables developers to fix all faults

at once. I studied nine SFL techniques [19,20,33–38] and will present how to apply them in

SQL fault localization in Section 4.2. I also compared my fault localization technique with

the nine techniques through comprehensive experiments in Chapter 9.
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3.1.3 Program State-based Fault Localization

Program state-based techniques identify suspect statements by investigating program states.

One program state-based technique is delta debugging [16], in which failure-inducing inputs

are identified by comparing program states of a passing test execution with that of a failing

test execution. Delta debugging has been used in combination with dynamic slicing [39]

and the cause transition method [40]. Jeffery et al. [41] and Zhang et al. [42] applied delta

debugging to general program statements and predicates, respectively. My method uses

delta debugging differently in three aspects. First, I alter the column values in failed rows,

whereas Jeffery et al.’s technique [41] replaces the values of program variables and Zhang

et al.’s technique [42] changes predicates rather than values. Second, to look for faults

that have missing columns and composite faults, my method replaces the values of different

combinations of columns, whereas their methods do not identify specific types of faults or

replace values with different combinations. Third, I exonerate innocent clauses that are

not related to the fault-inducing columns, whereas their methods calculate suspiciousness

rankings for all statements.

3.1.4 Miscellaneous

In addition to the above three fault localization techniques, my approach is also related to

mutation-based fault localization and database application fault localization. Unlike the

other fault localization technique, research works in these two categories are relatively new

and thin.

Mutation-based Fault Localization: Spectrum-based fault localization relies heavily on

the availability of program spectrum data. When spectrum data are limited, the accuracy

of the statistical model could be badly skewed. MUtation-baSEd (MUSE) [43] attempts

to alleviate this problem by mutating the Program Under Test (PUT). The intuition is

that mutating an already faulty statement is more likely to make failed tests pass than

mutating a correct statement. Thus, by evaluating the failing and passing test cases before

and after mutating PUT, MUSE is able to identify faulty statements. My approach differs
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from MUSE in that I do not mutate PUT (in my case PUT is the SQL predicate), but

rather, I mutate the test data in failing test cases.

Database Application Fault Localization: Clark et al. [11], Nguyen et al. [12], and Saha et

al. [13] apply fault localization techniques to database and data-centric applications. Clark

et al.’s technique [11] counts executed embedded SQL and regular statements for test rows

and computes suspiciousness scores. It studied applications in which SQL queries could be

constructed dynamically, so a query could have different SQL statements. The technique

proposed by Nguyen et al. [12] not only captures executions of SQL statements, but also

evaluates the result of predicates of WHERE clauses using row-based slicing method. It

treats an entire predicate as one program entity, whereas I consider each clause in the

predicate as one entity. Saha et al. [13] apply a field-row sensitive slicing algorithm to

generate execution traces. A key-based slicing approach is used to further remove irrelevant

statements. Then, it computes sequential and semantic differences between correct and

incorrect slices to identify faulty statements. Overall, none of these methods can be used

to localize faults in individual components (clauses) in SQL predicates. They are based on

the coverage assumption, that is, a program entity executed by more failing test cases than

passing test cases are more likely to be faulty. However, this assumption does not hold in

SQL fault localization, because all clauses are equally executed by all tests. Moreover, these

methods can only reveal the existence of a fault, whereas my method can further identify

specific types of faults.

It is worth mentioning that detecting faults in queries and suggesting possible corrections

has also been studied in the database community. The detection is often done automatically

at query time (that is, there is no testing phase): An error is suspected when a query

returns an empty answer or an answer that is unusually small. It is then followed up

automatically with additional queries in an attempt to pinpoint erroneous presuppositions

of the programmer regarding the database structure and the stored data [44,45].

As described in mutation analysis, a test set is adequate if it can cause all faulty versions

of the program to fail [46]. Test set adequacy is crucial to my fault localization technique. In
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my experiment, I used large databases with millions of rows and manually created additional

data sets to improve test case adequacy. This process can be improved by using automatic

database test case generation techniques. For example, Vemasani et al. [47] proposed a

sound and complete test database generation algorithm to distinguish conjunctive queries

with equalities. Li et al. [48] suggested an approach to generate test data for data-centric

applications from the original database and the requirements. These techniques can generate

small yet effective test data sets, which can further improve the efficiency and effectiveness

of the fault localization technique.

3.2 Automatic Program Repair

The most closely related work to my work in automatic program repair was Gopinath et

al.’s DT approach [10], which I will quantitatively compare with my query repair technique

in Chapter 10. Here I present qualitative comparisons with that work and others.

3.2.1 Fault Classes

There are five basic components in SQL queries: the SELECT clause defines the columns

to be retrieved; the FROM clause specifies the source tables; the JOIN clause concatenates

rows from the source tables to produce a larger table; the WHERE clause defines a predicate

(condition) that the data retrieved must satisfy; and the GROUP-BY clause aggregates the

rows. I classify five fault classes based on each of the five components.

As the most fundamental element in an SQL query, faults in FROM clause are trivial

to identify and rarely committed into source code repositories. I investigated 116 real

SQL faults from industry applications, and found no faulty FROM clause. Thus I do not

consider faults in FROM clauses. SELECT clause faults indicate columns are incorrectly

retrieved. Repairing faults in SELECT clause can benefit from Brodsky et al.’s research

work on regression database [49]. They proposed to augment traditional relational database

tables with an unknown attribute: the learned attributes. The linear least squares regression

technique is used to derive the relationship between the learned attribute and the existing
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attributes. This technique can be applied to fix incorrectly retrieved columns in SELECT

clauses. Gopinath et al. investigated repairing faults in GROUP-BY clauses [10]. The

aggregation functions combine multiple rows and compute a single value such as average,

sum, or count. As the test oracle only specifies the expected value of the aggregated result,

it is difficult to identify the failing rows. Gopinath et al. proposed a novel approach to

address this issue with a semi-supervised learning algorithm for inducing the failing rows

from the aggregation result.

To complement the regression database approach and DT approach, I propose a novel

fault localization and repairing approach focusing on JOIN faults and WHERE clause faults.

The DT approach claims that it can repair JOIN condition faults and WHERE clause

faults. However, my experiments showed that it is only feasible for small databases and the

generated patches are not acceptable to developers. My approach is more efficient than the

DT approach and the generated patch queries are highly effective and efficient.

3.2.2 Fault Localization

It is common for automatic program repair techniques to adopt fault localization methods

to minimize the repair. Genprog [5] calculates a weighted path to narrow down the repair

search space to code segments visited in failing test cases. SemFix [7] relies on a ranked

suspicious report with the Tarantula [19] fault localization technique. BugFix [6] uses the

Value Replacement-based fault localization technique [41].

I apply the exoneration-based fault localization technique to individual components in

SQL query. It is more precise than the previous ranking-based fault localization tech-

niques [19,20], which rank clauses by the likelihood of containing fault.

The DT approach does not include a fault localization step, but rather directly derives

a new patch by learning from the test data. Although the new patch may satisfy the test

data, it has low acceptability because the change often fails to meet the requirements.
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3.2.3 Fault Repair

Many test suite-based behavior repair techniques, including GenProg [5] and Debroy and

Wong’s [8], use search and mutation-based approaches. Template based approaches [6, 9]

learn from previous fault fixes, and leverage the learned patterns to generate new patches.

Gopinath et al. [10] analyzed the search and mutation-based approach and concluded

that it is less efficient than the DT approach. Therefore, I did not compare the search and

mutation-based approach in my experiments.

The DT approach is the only prior research that repairs SQL faults. The DT approach

relies only on test data and test oracles. Instead of repairing the faulty elements, it gener-

ates a new query that satisfies the test oracles. My repair technique is built on the fault

localization result. It investigates the test data distribution statistics and failing row types

to generate patches with only minor changes.

3.2.4 Evaluation Criteria

Gopinath et al. evaluated their approach on seven queries with 274 to 90,346 test rows. My

experiments were evaluated on 825 queries with different complexities and fault classes, and

the test rows ranged from 211,681 to almost four million in a database. Moreover, Gopinath

et al. only used correctness and efficiency as the metrics, while I also evaluate acceptability.

It is a known issue that automatically generated patches may contain “nonsensical” code

[9, 24]. Thus, it is important to assess the patch quality beyond the correctness. Kim et

al. [9] related the concept of patch acceptability to human understandability and prefer-

ence. They evaluated the acceptability by surveying people who are not original developers.

Monperrus [24] argued that this evaluation approach is not reliable due to the reviewers’

lack of domain knowledge. I avoid this issue by obtaining the correct SQL query, and using

a similarity formula to measure the difference between the correct query and the patch.
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Chapter 4: Localizing WHERE Predicate Faults

4.1 WHERE Fault Types

To determine that a WHERE predicate is faulty, I need at least one failing test case that

has an oracle. The test data is a set of database rows R, with each row denoted ri. The

test oracle evaluates whether a test row should be included in the result. A test oracle can

be the SQL query asserts to be true if a given row should be included. Given the test data

and oracles, rows can be divided into four groups:

Ri: Rows expected to be included that are included (included).

Re: Rows expected to be excluded that are excluded (excluded).

Rs: Rows expected to be excluded but are included (superfluous).

Ra: Rows expected to be included but are excluded (absent).

Rows Ri and Re are passing rows and rows Rs and Ra are failing rows.

I defined six fault classes for the WHERE clause:

E1: Incorrect constant (e.g., a string was misspelled or a decimal point was misplaced)

E2: Incorrect operator (e.g., > was used instead of ≥)

E3: Incorrect column (a different column should have been used)

E4: Missing clauses (that should be present)

E5: Superfluous clauses (that should be removed)

E6: Composite faults with more than one single type
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E1 through E5 are single faults that satisfy complete and disjoint properties. They cover

all possible single faults in clauses (thus are complete). Clauses have three components and

only three components: constants, operators, and columns. E1 through E3 represent faults

in each of the three components, which cover all possibilities that a component is wrong. E4

and E5 are faults where the entire clause is missing or unnecessary, which cover the faults

related to existence of a clause. These five fault types also apply to different elements, so

do not overlap (thus are disjoint). E6 is added to allow for multiple faults in the same

query. It can also be used to explain faults that involve incorrect AND or OR operators.

For example, if a AND b is incorrectly written as a OR b, that can be interpreted as an

unnecessary clause b that should be removed (E5) and a missing clause b that should be

added with an OR (E4).

4.2 Applying Existing SFL Techniques

To the best of my knowledge, there are no previous research papers on localizing faulty

clauses in WHERE predicates. A few papers have attempted to localize faults in database

applications using spectrum-based fault localization (SFL) techniques [11–13]. Unlike my

approach, which considers the clauses as program entities, they treat the entire SQL state-

ment or the entire WHERE predicate as a program entity. To investigate the effectiveness

of these SFL techniques when applied to clauses, I studied nine well-known techniques

(Tarantula [19], Ochiai [20], Naish2 [33], Wong1 [34], Kulczynski2 [33], Crosstab [35], Li-

blit [36], SOBER [37], and Mann-Whitney [38]) and how they can be applied at clause

level. I adopt the categorization method by Souza et al. [32] and discuss them in two

groups: similarity-based and statistic-based. All the similarity-based and statistics-based

techniques are similar in how they work. First, a suspiciousness score is calculated for each

program entity. A higher suspiciousness score indicates that the program entity is more

likely to be faulty. The techniques then rank the program entities by their suspiciousness

scores and return the ranked result. The SFL techniques are discussed in the rest of this
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section.

4.2.1 Similarity-based SFL

Coefficient formulas are used in statistics to measure the relationship between two variables.

For example, the coefficient formula x = 0.4y describes a linear relationship between variable

x and y. It can also be extended to indicate the similarity between variables. Similarity-

based techniques use coefficient formulas to distinguish faulty program entities from correct

program entities.

My study investigated five similarity-based techniques from two previous research pa-

pers [17,18]. In a theoretical study, Xie et al. [17] investigated 30 similarity-based techniques

and concluded that five techniques should be more effective than the others. Xie et al. placed

these five techniques into two groups, ER1 and ER5, and showed that the techniques in each

group are equivalent. Consequently, I selected a representative from each group: Naish2

from ER1 and Wong1 from ER5. To these I added Tarantula [19] and Ochiai [20]. In

an empirical study, Le et al. [18] compared the five theoretically superior techniques with

Tarantula and Ochiai, finding that Ochiai was the most effective. I also added Kulczynski2

[33], which the theoretical study showed to be better than Tarantula and Ochiai (though

worse than the techniques in ER1 and ER5).

These five techniques are summarized in Table 4.1. They are ordered according to the

effectiveness claimed by Xie et al. [17]: Naish2 and Wong1 are the most effective, followed

by Kulczynski2, Ochiai, and Tarantula (the names are also taken from that paper).

The suspiciousness formulas use four variables. Tf is the total number of failing tests

and Tp is the total number of passing tests. For a program entity c, cef is the number of

times c is executed by the failing tests and cep is the number of times it is executed by

the passing tests. Although these techniques were originally designed to rank statements,

Nguyen et al. [12] applied Tarantula to SQL predicates and calculated suspiciousness for

true and false evaluations separately. I adopted the same methodology and applied these

techniques to clauses. For a clause c, I compute the suspiciousness score’s true evaluation
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Table 4.1: Selected Similarity-based Techniques

Order Name Suspiciousness Formulas

1 Naish2 S(c) = cef − cep
Tp+1

1 Wong1 S(c) = cef

2 Kulczynski2 S(c) = 1
2 ∗ (

cef
Tf

+
cef

cef+cep
)

3 Ochiai S(c) =
cef√

Tf∗(cef+cep)

4 Tarantula S(c) =
cef/Tf

cef/Tf+cep/Tp

St(c) and false evaluation Sf (c). St(c) represents the suspiciousness of a clause when the

clause is evaluated to true. Thus, in St(c), a clause is deemed to be “related” only if it

evaluates to true. cep is the number of passing tests that resulted in true and cef is the

number of failing tests that resulted in true. Similarly, in Sf (c), a clause is deemed to be

“related” only if it evaluates to false. cep is the number of passing tests that resulted in

false and cef is the number of failing tests that resulted in false. I then calculate the final

suspiciousness score as the sum S(c) = St(c) + Sf (c).

Section 1.2.3 demonstrated how to apply Tarantula in locating faulty clauses. The other

methods are similar. The only difference is the suspiciousness formulas used.

4.2.2 Statistics-based SFL

Statistics-based fault localization applies statistical models to spectrum data and generates

suspiciousness rankings. I studied four statistics-based techniques, Crosstab [35], Liblit [36],

SOBER [37], and Mann-Whitney [38]. Crosstab was originally applied to statements. As

explained in Section 4.2.1, Crosstab can also be applied to predicates or clauses. Lib-

lit, SOBER, and Mann-Whitney were originally applied to logical predicates in program

decision statements. Since clauses are essentially elementary predicates without logical op-

erators, these techniques can be directly applied to clauses. In addition, they can also be

applied to statements. When they were used to identify faulty statements [35,38], the pred-

icates were ranked first, and the corresponding statements in top ranked predicates were
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considered to be suspicious.

Crosstab

Wong et al. [35] used “crosstab” to refer to a cross tabulation-based analysis. Each statement

is associated with a table that contains four variables that indicate the number of times the

statement is executed or not executed in passing and failing tests. Based on the crosstab, it

proposes a null hypothesis that the execution result is independent of whether the statement

was covered. Then it uses the chi-square test to see if the null hypothesis can be rejected.

The chi-square statistical model is shown in Equation 4.1, where Eef =
(cef+cep)∗Tf

Tp+Tf
, Eep =

(cef+cep)∗Tp

Tp+Tf
, Enf =

((Tf−cef )+(Tp−cep))∗Tf

Tp+Tf
, and Enp =

((Tf−cef )+(Tp−cep))∗Tp

Tp+Tf
.

χ2(c) = (cef − Eef )2/Eef + (cep − Eep)
2/Eep

+ (Tp − cep − Enp)
2/Enp + (Tf − cef − Enf )2/Enf

(4.1)

χ2(c) is then compared with the chi-square critical value χ2 found in the chi-square dis-

tribution table at a given level of significance. If χ2(c) > χ2, the null hypothesis is rejected.

It also means that the execution result depends on the statement coverage. In other words,

the statement is associated with the fault. To evaluate the degree of association between

the statement and the execution result, the suspiciousness score, ζ(c), is calculated. ϕ(c),

calculated in Equation 4.2, is then used to compute the suspiciousness ζ(c) in Equation 4.3.

ϕ(c) =
cef/Tf
cep/Tp

(4.2)
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ζ(c) =


χ2(c)/(Tf + Tp) if ϕ(c) > 1

0 if ϕ(c) = 1

−χ2(c)/(Tf + Tp) if ϕ(c) < 1

(4.3)

Applying Crosstab to clauses is similar to similarity-based techniques. I calculate suspi-

ciousness scores for true and false evaluations and get the final suspiciousness by summing

them: ζ(c) = ζt(c) + ζt(c).

Liblit

Liblit [36] assumes that predicates that evaluated only to true in failing tests are more sus-

picious than other predicates. For a predicate p, Liblit calculates a difference, Increase(p)

in Equation 4.6, between the probability of how likely p can fail tests, Context(p) in Equa-

tion 4.4, and the probability of how likely p can fail tests when evaluated to true, Failure(p)

in Equation 4.5. The predicate with the larger difference is more suspicious. When applying

Liblit to clause c, the definition of Increase(c) remains the same as Increase(p).

Context(p) = Pr(Crash| p observed) (4.4)

Failure(p) = Pr(Crash| p observed true) (4.5)

Increase(p) = Failure(p)− Context(p) (4.6)

SOBER

SOBER [37] works by defining what it calls an evaluation bias, which estimates the prob-

ability that a predicate p will evaluate to true during execution. Let nt be the number of

times a predicate p evaluates to true and nf be the number of times p evaluates to false
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Table 4.2: Evaluation Bias

Clause Individual Row
1 2 3 4 5

1 Y ear > 2007 1 1 1 0 1
2 Price > 100 1 1 1 0 0
3 ZipCode = 10008 0 0 0 0 0
4 Discount = 0 1 0 0 0 0

Test Result F P P P F

over a set of test executions. The evaluation bias, π(p), is given by Equation 4.7, SOBER

then calculates the distribution of evaluation bias for p on passing tests and failing tests,

denoted as f(X|θp) and f(X|θf ). If the difference between f(X|θp) and f(X|θf ) is large,

p is suspicious. Equation 4.8 calculates the similarity L(P ) between f(X|θp) and f(X|θf )

(Sim), and Equation 4.9 computes the suspiciousness score S(P ) from L(P ).

π(p) =
nt

nt + nf
(4.7)

L(P ) = Sim(f(X|θp), f(X|θf )) (4.8)

S(P ) = −log(L(P ) (4.9)

When using SOBER for a clause c, if the clause evaluates to true, then nt is 1 and nf

is 0, thus π(c) is 1. Similarly, when c evaluates to false, π(c) is 0. The evaluation bias

for the running example in Figure 1.1 is shown in Table 4.2. For clause Y ear > 2007, the

passing test evaluation bias set is {1,1,0} and the failing test evaluation bias set is {1,1}.

SOBER then characterizes the distributions f(X|θp) and f(X|θf ) for passing and failing

test evaluation bias sets using mean and variance assuming normal distribution.

Mann-Whitney

Zhang et al. [38] observed that the evaluation bias for predicates may not be distributed

normally, so applied the non-parametric statistic tests Wilcoxon and Mann-Whitney to
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compare the similarity between f(X|θp) and f(X|θf ). Because Wilcoxon is used for paired

data and the evaluation bias of failing and passing tests are not paired, I used Mann-Whitney

in this study.

Mann-Whitney is calculated for clauses in two steps. First, it calculates evaluation bias

sets Vp for passing tests P and Vf for failing tests F , then ranks Vp and Vf . Then it creates

ranking sets Rp and Rf that have the rankings for Vp and Vf . For the clause Y ear > 2007,

Vf is {1, 1} and Vp is {1, 1, 0}. Among the five elements in Vf and Vp, the rank of element

0 in Vp is 1 and the rank of each of the other elements is 2.251. Mapping the rank-values

back to the evaluation bias sets Vp and Vf , I get the rank-value sets Rf = {2.25, 2.25} and

Rp = {2.25, 2.25, 1}. Second, Mann-Whitney measures the difference between Rf and Rp

by enumerating all possible rank-value sets. Let m denote the number of elements in Vp

and n denote the number of elements in Vf . Mann-Whitney enumerates all possible sets

Si containing m elements from the m + n elements of Vp and Vf . The total number of

such sets is K =
(
n+m
m

)
. Let Kl be the number of sets whose sum of rankings is less than

that of Rp, and Kh be the number of sets whose sum of rankings is greater than that of

Rp. The suspiciousness ranking for p is the negative of the minimum of Kl/K and Kh/K

in Equation 4.10. The larger R(p) indicates the predicate p is more suspicious.

R(p) = −min(Kl/K,Kh/K) (4.10)

For clause Y ear > 2007, m = 2 and n = 3 and K =
(
n+m
m

)
= 10. This union of all

elements from Vp and Vf is {2.25, 2.25, 2.25, 2.25, 1}. Kl = 0 and Kh = 10. Thus, R(p) =

−min(Kl/K,Kh/K) = 0. R(p) can be calculated in a similar fashion for the other clauses.

1The average rank is calculated by adding 1 / (number of elements with the same value) to its original

rank. In this example, the average rank for element 1 is 2 + 1/4 = 2.25.
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4.3 ALTAR Algorithm

Unlike previous SFL techniques, which were applied to general programs, I designed an

exoneration-based technique that specifically targets faulty clauses in SQL predicates. I

implemented this approach in a tool, named Automated sqL predicaTe fAult localizeR (AL-

TAR). I will use ALTAR to refer to this exoneration-based technique.

4.3.1 Basic Approach

This section reviews the basic approach. It consists of two steps, creating slices of suspect

clauses in failing rows and exonerating innocent clauses from the suspect clauses.

Slicing

A slice refers to a set of program entities that are relevant to some computed values such

as test results [15]. ALTAR first creates slices according to binary evaluations of clauses

with only failing rows. Each clause is associated with a suspiciousness counter, which is

initialized to zero. The failing rows are evaluated against each clause and the suspiciousness

is incremented if the clause is identified as suspect. A clause with a positive suspiciousness

counter is a suspect clause.

Specifically, clauses are sliced as follows. ALTAR checks each failing row to determine

if it is superfluous (Rs) or absent (Ra). For a correct query, a superfluous row should

evaluate to false in at least one clause in each CP. For an incorrect query, the superfluous

row evaluates to true for all the clauses in at least one CP. Therefore, in each CP that

is “all-true,” every clause is suspect. Similarly, for a correct query, an absent row should

satisfy all the clauses in at least one CP. For an incorrect query, the absent row evaluates

to false in all CPs. Therefore, in each CP, all the failing clauses are suspect.

I illustrate finding suspect clauses with the running example from Figure 1.1 and the

incorrect predicate ((Y ear>2007)∧ (Price>100))∨ ((ZipCode=10008)∧ (Discount=0)).

I refer to the four clauses in this predicate as C1, C2, C3, and C4. This predicate consists

of two conjunctions: CP1 =C1∧C2 and CP2 =C3∧C4. Row Orderid = 1 in Table 1.1 was
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Table 4.3: Finding Suspicious Clauses with Slicing

Clause Row Eval. Suspiciousness
1 (Rs) 5 (Ra) Counter

C1 Y ear > 2007 T 1
C2 Price > 100 T F 2
C3 ZipCode = 10008 F 1
C4 Discount = 0 0

classified as superfluous (Rs), so it should have failed on at least one clause in each CP. It

failed on one clause of CP2, but passed both clauses of CP1. Consequently, both clauses of

CP1 (C1 and C2) are suspect, and their suspiciousness counters are incremented. Similarly,

row Orderid = 5 was classified as absent (Ra), so it should have passed at least one of the

CPs. It failed both: It failed C2 in CP1 and it failed C3 in CP2. Consequently both C2

and C3 are suspect, and their counters are incremented. Table 4.3 shows the clauses, the

evaluation results, and their suspiciousness counters.

Exoneration

The row-based slicing technique reduces the search domain from all clauses to a set of

suspect clauses. However, some of the suspect clauses identified in the slicing step may be

innocent. For example, the innocent clause C2 is identified as a suspect clause in Table 4.3.

The goal of exoneration is to remove innocent clauses. The exoneration technique of ALTAR

is inspired by delta debugging [16]. ALTAR replaces column values of a failing row with

corresponding values from a passing row. In other words, ALTAR mutates [25] the failing

row, resulting in a mutant. The passing row used in the mutant is called a replacement

row. ALTAR then checks whether the mutant becomes a passing row. Specifically, for a

superfluous row (Rs), the goal is to find a mutant that is correctly included (Ri); for an

absent row (Ra), the goal is to find a mutant that is correctly excluded (Re). If so, the

columns of the mutated values are fault-inducing. A clause with a fault-inducing column

is a blamed clause; the other clauses are exonerated by decrementing their counters. If the

counter of a clause is 0, this clause becomes innocent.
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Table 4.4: Superfluous Row Mutants

Type Orderid Year Price Discount Zipcode Group

Original 1 2008 110 0 22102 Rs

Replacement 2 2014 120 10 22102 Ri

Mutant 1 2014 110 0 22102 Ri

Mutant 1 2008 120 0 22102 Rs

I demonstrate the process of exonerating superfluous rows with an example. Returning

to our running example from Figure 1.1, with the predicate ((Y ear > 2007) ∧ (Price >

100))∨ ((Zipcode=10008)∧ (Discount=0)), the Rs row Orderid=1 implicated the clauses

C1 and C2. To determine which should be blamed, I choose the row Orderid = 2 from

group Ri as a replacement. First, I mutate the column Year from C1 by substituting the

value of Year from the replacement row. If the mutated row belongs to group Ri, then C1

is the correct suspect and C2 is exonerated. Otherwise, I mutate the column Price from

C2. If the mutated row belongs to Ri, then C2 is the correct suspect and C1 is exonerated.

Table 4.4 shows the original and mutated rows. Column Group indicates the group of the

rows, and column Type shows if a row is an original row, a replacement row, or a mutated

row. Mutated values are shown in bold font. Since the mutant on Y ear is in group Ri, I

conclude that C1 is responsible for the failure of row 1 and exonerate C2.

Similarly, to exonerate suspected clauses in absent rows (Ra), the goal is to find a

mutant in the excluded group Re. The Ra row Orderid = 5, which implicated C2 and C3,

is suspicious. To determine which is innocent, I choose the row Orderid=4 from group Re

as a replacement. First, I mutate the column Price from C2 by substituting the value of

Price from the replacement row. If the mutated row is excluded (Re), then C2 is suspect

and C3 is exonerated. Otherwise, I mutate the column Zipcode from C3. If the mutated

row belongs to group Re, then C3 is the correct suspect and C2 is exonerated. Table 4.5

shows the original, replacement, and mutated rows. Since the mutation on C3 is placed in

Re, I conclude that C3 is responsible for the failure of row 5 and exonerate C2.

After the exoneration process, the only positive suspiciousness counters are C1 and C3
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Table 4.5: Absent Row Mutants

Type Orderid Year Price Discount Zipcode Group

Original 5 2014 90 0 10007 Ra

Replacement 4 2006 80 5 20017 Re

Mutant 5 2014 80 0 10007 Ra

Mutant 5 2014 90 0 20017 Re

(the counters for C2 and C4 are zero). The faulty clauses have been identified accurately.

4.3.2 Advanced Approach

The basic approach is effective at detecting faults if the failing row is associated with

one fault-inducing column. However, it cannot exonerate suspect clauses when multiple

fault-inducing columns are associated with the same failing row. I explain why with the

incorrect SQL query in Figure 4.1 . Assume there is a row (Orderid = 6) shown in the

first row of Table 4.6. The column Group shows the group to which the row belongs. The

column Type represents the original rows, replacement rows, rows mutated for one column

(Mutant1), rows mutated for two columns (Mutant2), and rows mutated for three columns

(Mutant3). The row Orderid = 6 is absent (Ra) since it does not satisfy the predicate in

the incorrect query. The row-based slicing step identifies that the clauses (Y ear > 2010),

(Zipcode = 10008), and (Discount > 10) are suspicious, since they evaluate to false for the

Orderid = 6 row. To exonerate innocent clauses with the basic approach, I create mutant

rows (rows 3–5 in Table 4.6) by replacing column values with those from the replacement

row (row 2 in Table 4.6). However, none of the mutated rows are excluded rows (Re).

The reason is that the Orderid = 6 row is associated with two fault-inducing columns

(Y ear and Zipcode), thus, mutating a single column in the basic approach cannot identify

fault-inducing columns. Therefore, I must mutate multiple columns at the same time. In

Table 4.6, rows 6–8 show the rows created by mutating two columns of the three columns,

Year, Discount, and Zipcode. Row 9 shows the mutant row when mutating all the three
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SELECT Orderid

FROM Order

WHERE Year > 2010

#should be Year > 2009

OR Zipcode = 10008

#should be Zipcode = 10007

OR Discount > 10

Figure 4.1: Faulty Query 2

Table 4.6: Absent Rows Mutation with Multiple Fault-inducing Columns

Row# Type Orderid Year Discount Zipcode Group

1 Original 6 2010 0 10007 4
2 Replacement 4 2006 5 20017 Re

3 Mutant1 6 2006 0 10007 Ra

4 Mutant1 6 2010 5 10007 Ra

5 Mutant1 6 2010 0 20017 Ra

6 Mutant2 6 2006 0 20017 Re

7 Mutant2 6 2006 5 10007 Ra

8 Mutant2 6 2010 5 20017 Ra

9 Mutant3 6 2006 5 20017 Re

columns. Row 6 is in Re but Row 7 and 8 are not, therefore, Year and Zipcode are fault-

inducing columns. Row 9 is also in Re because the three mutated columns include the two

fault-inducing columns. Thus, I do not exhaust all combinations. Instead, I stop when

the minimum set of fault-inducing columns is found. To find k fault-inducing columns

associated with a failed row, I need to check a total of
∑k

m=1(
(
n
1

)
+
(
n
2

)
... +

(
n
m

)
) mutated

rows.
(
n
m

)
represents all combinations that contain m columns from n columns.

Another limitation of the basic approach is that it cannot detect fault-inducing columns

when they are not included in the predicate. For example, a faulty clause Modified date >

2014 mistakenly used column Modified date instead of column Created date. The basic

approach cannot detect that Created date should have been used since it is not included in

the predicate and will never be used to create mutants. Therefore, I have to traverse the

combinations of all columns in the table regardless of whether they are used in the predicate
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to find fault-inducing columns.

To solve the two issues in the basic approach above, I extend the basic approach to

an advanced approach. The advanced approach iterates the combinations of all columns to

address two issues: (1) a row associated with multiple fault-inducing columns, and (2) fault-

inducing columns that do not exist in the predicate. Because the combination of all columns

include any one combination of columns, the advanced approach covers the basic approach.

Next, I present the advanced approach for exonerating suspect clauses in Algorithms 1 and

2, for both superfluous and absent rows.

Exonerating suspects implicated by superfluous rows. Algorithm 1 is used to

analyze superfluous rows. Algorithm 1 has four inputs: a superfluous row, s row, a replace-

ment row, r row, a set of suspicious conjunctive predicates, CPS, and the tables used in

the query, T . For a superfluous row, suspicious CPs evaluate to true and all the clauses in

each suspicious CP evaluate to true. Thus, all clauses in each suspicious CP are initially

marked as suspicious. Each suspicious CP must contain faults, however, some suspicious

clauses may be innocent. The goal is to exonerate innocent clauses from each suspicious

CP. Thus, for each suspicious CP, I first mutate columns in the existing clauses. For one

CP, I create mutants, MUTk, by replacing values of k-combinations of n columns in the

suspicious row s row from the replacement row r row, where n is the number of columns

included in that CP, num c, and k varies from 1 to n. k-combination mutants have all

combinations that contain k columns from n columns. If a mutant is an included row (Ri),

then fault-inducing columns are found. I stop and exonerate suspicious clauses that do not

contain those fault-inducing columns by decreasing their suspiciousness counter by one. I

continue the same process for the next CP.

If none of the mutants is in Ri, then the predicate does not contain any fault-inducing

columns. To find them, I create mutants, MUT ALLk, from k-combinations of n columns,

where n is the number of all the columns included in table T , denoted as num all c, and k

varies from 1 to n. I go through all the remaining mutants after subtracting MUTk from

MUT ALLk, checking if any of them belong to Ri. If a mutant is in Ri, the mutated
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columns are fault-inducing in that CP. The suspicious clauses do not contain columns

that can be exonerated and their suspiciousness counters are decreased by one. The fault-

inducing columns identified should be included as missing clauses in that CP. Thus, the

suspiciousness counters for missing clauses that contain the fault-inducing columns are

increased by one.

Algorithm 1 Exoneration Algorithm for a Superfluous Row

Require: A superfluous row s row, a replacement row, r row, a set of suspicious conjunc-
tive predicates, CPS, and the tables, T .

1: for each cpi ∈ CPS do
2: COL = all columns included in cpi
3: for k = 1... size of COL do
4: Create mutants, MUTk, by replacing values of k-combinations of COL on s row

with r row
5: for each mutj ∈MUTk do
6: if mutj ∈ Ri then
7: mark the mutated columns in mutj as fault-inducing
8: jump to next cpi
9: COL T = all columns in T

10: for k = 1... size of COL T do
11: Create mutants, MUT ALLk, by replacing values of k-combinations of COL T

on s row with r row
12: for each mutj ∈MUT ALLk −MUTk do
13: if mutj ∈ Ri then
14: mark the mutated columns in mutj as fault-inducing
15: jump to next cpi

Exonerating suspects implicated by absent rows. Algorithm 2 is used to analyze

absent rows. Algorithm 2 has four inputs: an absent row, a row, a replacement row, r row,

a set of suspicious conjunctive predicates, CPS, and the tables used in the query, T . For

an absent row, every CP is suspicious because every CP evaluates to false. Clauses that

evaluate to false in a suspicious CP are suspicious. Unlike superfluous rows where all

suspicious CP must contain faults, some suspicious CPs in absent rows may be innocent.

Moreover, if a CP is found to contain faults, then all suspicious clauses in that CP must be

faulty. The goal is to exonerate innocent CPs as well as all suspicious clauses in the innocent

CPs. Therefore, Algorithm 2 iterates over CP combinations, instead of traversing column

combinations for each CP as in Algorithm 1. Algorithm 2 creates mutants, MUTk, from

k-combinations of n CPs, where n is the number of all suspicious CPs, denoted as num cp,
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Algorithm 2 Exoneration Algorithm for an Absent Row

Require: An absent row a row, a replacement row, r row, a set of suspicious conjunctive
predicates, CPS, and the tables, T .

1: for k = 1... size of CPS do
2: Create mutants, MUT , by replacing values of k-combination of CPS on a row with
r row

3: for each mutj ∈MUTk do
4: if mutj ∈ Re then
5: mark the mutated columns in mutj as fault-inducing
6: stop and exit
7: COL T = all columns in T
8: for k = 1... size of COL T do
9: Create mutants, MUT ALLk, by replacing values of k-combination of COL T on
s row with r row

10: for each mutj ∈MUT ALLk −MUTk do
11: if mutj ∈ Re then
12: mark the mutated columns in mutj as fault-inducing
13: stop and exit

and k varies from 1 to n. In each mutant, I replace the values of all columns included in

suspicious clauses at the same time. If a mutant is in Re, the CPs that have the mutated

columns are fault-inducing. Other CPs are innocent. I stop, exonerate innocent CPs and

clauses, and exit the program.

If none of the mutants are in Re, then the predicate does not contain any fault-inducing

columns. I create mutants, MUT ALLk, from k-combinations of n columns, where m varies

from 1 to the number of columns of T , denoted as num all c, and k varies from 1 to n. I

go through all the remaining mutants after subtracting MUTk from MUT ALLk, checking

if any of them belong to Re. If a mutant is in Re, the mutated columns are fault-inducing.

This step is very similar to the step in line 10 to 15 in Algorithm 1. The only difference

is that Algorithm 1 checks if the mutated row is in Ri, while Algorithm 2 checks if the

mutated row is in Re. The suspiciousness counters for the clauses that have fault-inducing

columns are increased by one. The fault-inducing columns should be included as missing

clauses in a missing CP. Thus, the suspiciousness counters for the missing clauses in the

missing CP are increased by one.
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4.4 ALTAR2 Algorithm

Section 4.4.1 describes the efficiency problem that ALTAR encountered and Section 4.4.2

presents a significantly more efficient algorithm.

4.4.1 Efficiency Problem

The existing SFL techniques described in Sections 4.2.1 and 4.2.2 rank all program entities

by suspiciousness score. ALTAR applies the exoneration algorithms to remove innocent

clauses and returns a result that is more precise than the results returned by other SFL

techniques. However, the ALTAR algorithm can be extremely inefficient. I found that in an

extreme case ALTAR took up to 25 minutes to localize faults with 234,244 failing tests [21].

In contrast, Tarantula used around 30 seconds, although it was much less effective.

I use five variables to study the complexity of ALTAR:

1. Number of columns in all the query tables (c)

2. Number of suspect CPs (b)

3. Number of suspect clauses in each suspect CP (ni, i = 1, . . . , b)

4. Number of superfluous rows (s)

5. Number of absent rows (a)

In addition, I categorize the faults into two types:

1. IN Faults: all fault-inducing columns are used in the predicate.

2. NIN Faults: some fault-inducing columns are NOT used in the predicate.

For superfluous rows exonerated by Algorithm 1, the IN faults are found in lines 2–8,

and the complexity is in the range (
∑b

i=1(s · ni),
∑b

i=1(s · 2ni)). The NIN faults are found

in lines 9–15, and the complexity is in the range (
∑b

i=1(s · 2ni), s ·
∑b

i=1(2
ni + 2xi)), where

xi is the number of fault-inducing columns associated with the superfluous row in a suspect
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CP bi. The worst case scenario is that each superfluous row is associated with all c columns

in each suspect CP. If that happens, the complexity is s · b · 2c.

For absent rows exoneration in Algorithm 2, the IN faults are found in lines 1–6, where

the complexity is in the range (a · b, a · 2b). The NIN faults are found in lines 7–13, and

the complexity is in the range (a · 2b, a · (2b + 2x)), where x is the number of fault-inducing

columns associated with the absent row. The worst case scenario is that each absent row is

associated with c fault-inducing columns. If that happens, the complexity is a · 2c.

Although the worst cases are likely to be rare, the potential for exponential running

time in the number of columns clearly makes ALTAR impractical.

4.4.2 Redundant Test Case Elimination

From the above analysis I learned that the complexity of Algorithms 1 and 2 are impacted

by three factors: First, the NIN faults are more expensive than IN faults. Second, the

complexity increases with the number of fault-inducing columns x. Third, the complexity

increases with the number of failing rows s and a.

The first two factors are associated with the nature of the fault, while the third is

related to the size of the test database. It is difficult to control the fault since the fault

is unknown during fault localization. On the other hand, large databases can have a very

large number of failing rows, possibly millions. Thus reducing the number of failing rows

has the potential to greatly improve the efficiency. By examining Algorithms 1 and 2, I

found a way to optimize them by identifying and eliminating redundant failing rows.

Two failing tests are considered equivalent if they are caused by the same faulty clauses.

Therefore, eliminating one of the two rows does not affect the exoneration result. I identify

equivalent rows with three conditions:

• S1: They belong to the same group: either superfluous Rs or absent Ra

• S2: The slices created by the two test rows have the same suspicious clauses

• S3: The fault-inducing columns identified by the two test rows are the same
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I developed Algorithm 3 on top of ALTAR, and call it ALTAR2. Unlike ALTAR,

ALTAR2 eliminates redundant failing tests from being processed during exoneration. Al-

gorithm 3 has two general steps. First, it clusters the failing tests based on conditions S1

and S2 (lines 2 through 8). Second, it eliminates redundant tests by evaluating condition

S3 (lines 9 through 16). For each cluster c, ALTAR2 arbitrarily selects a test t. Then Algo-

rithm 1 or Algorithm 2 is applied to exonerate the corresponding suspect clauses, SCt, and

find its fault-inducing columns, ft (line 12). The algorithm next takes each other test i in

the same cluster, c, and mutates it with ft. If a mutated test i passes, the test satisfies the

condition S3 and can be eliminated from the cluster. The algorithm continues the process

until c is empty.

I illustrate the algorithm with the faulty SQL in Figure 1.1. Assume a new Order table

with four rows, as shown in Table 4.7. The last two columns in Table 4.7 show the row’s

Group and Suspicious Clauses, as identified by slicing. The first two failing rows, with

Orderid 1 and 5, are the same as from Table 1.1. The other two failing rows have Orderids

6 and 7.

First, I group the rows into clusters based on conditions S1 and S2. The rows with the

same Group and Suspicious Clauses belong to the same cluster. Orderid 1 and 6 should

be grouped into one cluster, and Orderid 5 and 7 should be grouped into another. Next,

I pick Orderid 1 from the first cluster and execute the exoneration process to identify its

fault-inducing column. The exoneration process described in Table 4.4 shows that I mutated

the row with Orderid 1 twice and found the fault-inducing column, Y ear. I then use the

fault-inducing column to mutate the other rows in the same cluster (Orderid 6). Table 4.8

shows the mutated rows. Since the mutated rows for Orderid 6 is in group Ri (passing),

S3 is satisfied. Therefore, I can conclude that row Orderid 6 is equivalent to row Orderid 1

and should be eliminated. Similarly, I apply the same process to the second cluster, which

contains Orderid 5 and Orderid 7. The exoneration process identifies the fault-inducing

column for the Orderid 5 row to be Zipcode, as shown in Table 4.5. Then, I mutate the

Zipcode column in row Orderid 7. The mutated row is in group Re (passing), thus S3 is
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Table 4.7: New Order Table

Orderid Year Price Discount ZipCode Group Suspicious Clauses

1 2008 110 0 22102 Rs C1, C2
5 2014 90 0 10007 Ra C2, C3
6 2008 120 0 22105 Rs C1, C2
7 2006 135 0 10008 Ra C2, C3

Table 4.8: Mutated Rows

Orderid Year Price Discount ZipCode Group

1 2014 110 0 22102 Ri

5 2014 90 0 20017 Re

6 2014 120 0 22105 Ri

7 2006 135 0 20017 Re

also satisfied. Row Orderid 7 is equivalent to row Orderid 5 and should be eliminated.

The original ALTAR algorithm needed to exonerate each of the four failing rows, and

each exoneration created two mutants because there are two suspicious clauses. Thus, it

generated eight mutants in total. The new ALTAR2 algorithm creates clusters for the

failing rows, then only needs to exonerate one failing row from each cluster to find fault-

inducing columns. Only two mutants are generated in each exoneration. In the example,

rows Orderid 1 and Orderid 5 are exonerated, and each is mutated twice. After finding the

fault-inducing column in each cluster, ALTAR2 uses it to mutate the remaining rows in the

same cluster to determine if they are equivalent to the exonerated row. Since only the fault-

inducing column needs to be mutated, rather than all columns involved in the suspicious

clause, ALTAR2 only needs to generate one mutant for each remaining row. In the example,

rows Orderid 6 and Orderid 7 are mutated only once. This means ALTAR2 only generates

six mutants, 25% fewer than the original ALTAR. When a database has thousands or tens

of thousands of test rows, the total execution time can be reduced significantly. For some

tests in the experimental study (Section 9.6), ALTAR took 30 minutes, while ALTAR2

completed in less than 10 seconds.
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Algorithm 3 The ALTAR2 Algorithm

Require: Failing tests T
1: Initialize an empty set C for clusters
2: for each t ∈ T do
3: Slice t to get suspect clauses, SCt

4: for each c ∈ C do
5: if ((c.group == t.group ) && (c.SC == SCt) ) then
6: Add t to c
7: else
8: Create a new cluster c and add c to C
9: for each c ∈ C do

10: while c is not empty do
11: Select an arbitrary test t from c
12: Exonerate suspect clauses of t and find its fault-inducing columns ft
13: for each other test i ∈ C do
14: Create a mutant, MUTi, by mutating ft in i
15: if MUTi passes then
16: Delete i from c
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Chapter 5: Repairing WHERE Predicates

The fault localization technique introduced in Chapter 4 identifies the fault inducing col-

umn by mutating the value of fault inducing column in failing rows. When the value of

the fault inducing column is mutated, the failing row becomes a passing row. It indicates

the column must be used in the clause. Otherwise mutating the value of the column would

not have changed the row from failing to passing. The repair approach leverages the fault

localization results to generate patches. So the ideas is to create a new clause with the

fault inducing column to replace the faulty clause. Assume the format of a faulty clause is

Column Operator Constant, where Column is the identified fault inducing column. The

interpretation is Operator and Constant could be faulty, whereas Column, the fault induc-

ing column, should be used in the correct clause. Thus, it focuses on replacing Operator

and Constant.

The algorithm replaces the old clause with a new clause in two steps. First, it finds data

sets (INC and EXC) that are relevant to the faulty clause (i.e., influenced by the clause)

and computes statistics (e.g., min and max) on those data sets. Second, the algorithm

evaluates the relevant data sets and their statistics against a list of clause replacement rules

(Table 5.1). Each replacement rule takes the two sets of data (INC and EXC), and defines

a function that can correctly separate them. The function is used to create a clause that

replaces the existing clause with a potential repair. The repair algorithm constructs a new

clause from the right side of the rule when the rule on the left side is satisfied. When more

than one rule can be satisfied, the evaluation stops when the first satisfying rule is found.

This process is repeated for every fault.

I illustrate the relevant data sets and explain the rules in Table 5.1 with a detailed

example. Assume a clause cls that contains a fault inducing column col is faulty. The data

relevant to cls are the values of the column col that are influenced by cls. The relevant data
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Table 5.1: Clause Repair Replacement Rules

1 min(INC) > max(EXC) =⇒ col ≥ min(INC)

2 max(INC) < min(EXC) =⇒ col ≤ max(INC)

3 max(INC) < max(EXC) =⇒ col BETWEEN min(INC)
∧ min(INC) > min(EXC) AND max(INC)

4 max(EXC) < max(INC) =⇒ IF distinct-num(INC) ≤ 10
∧ min(INC) > min(EXC) THEN col IN (INC)

IF distinct-num(EXC) ≤ 10
THEN col NOT IN (EXC)

ELSE remove cls

5 distinct-num(INC) = 1 =⇒ col = max(INC)

6 distinct-num(EXC) = 1 =⇒ col 6= max(EXC)

7 ∀r(r ∈ INC ∧ r = null) =⇒ col IS null

8 ∀r(r ∈ EXC ∧ r = null) =⇒ col IS NOT null

9 for a string type, =⇒ col LIKE ‘%s%’
find the largest common substring among
all values in the INC, s

10 for a string type, =⇒ col NOT LIKE ‘%s%’
find the largest common substring among
all values in the EXC, s

contains two subsets, an included data set INC (from Ri and Ra) and an excluded data set

EXC (from Rs and Re). Assume the CP that contains cls is cp. I use cp(r) and cls(r) to

denote the boolean evaluation of row r on the CP cp and the clause cls. In Ri, the data that

are relevant to cls are rows that are included because of cls and cp, that is, cls(r) == True

and cp(r) == True. Since cp contains cls, cp(r) == True implies cls(r) == True. In Ra,

I need to find rows that are excluded because of cls, that is, cls(r) == False. Likewise, in

Rs, the relevant data are rows that evaluate to true on cp, that is, cp(r) == True. In Re, I

need to find rows that are excluded because of cls, that is, cls(r) == False. Then I project

the rows identified above to the fault inducing column, col, resulting in the relevant data

set INC and EXC, as shown below. The πcol{s} denotes the values of col in a row set s.

INC = πcol{r|(r ∈ Ri ∧ cp(r) == True)

∨(r ∈ Ra ∧ cls(r) == False)}
(5.1)
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EXC = πcol{r|(r ∈ Rs ∧ cp(r) == True)

∨(r ∈ Re ∧ cls(r) == False)}
(5.2)

I compute statistics from INC and EXC and evaluate them against the clause repair

replacement rules in Table 5.1. The rules in Table 5.1 are based on the most commonly used

data types (string, numeric, datetime, unique identifier or uuid, and boolean) and the 11

SQL comparison operators (=, 6=, ≥, ≤, IN , NOT IN , BETWEEN , IS NULL, IS NOT

NULL, LIKE, NOT LIKE)1. Although these rules cover the majority of possibilities,

they do omit a few rarely used SQL operators and data types. A commercial tool, of course,

would need to be comprehensive.

For example, assume a clause Y ear > 2007 was mistakenly written as Y ear > 2008. The

fault localization algorithm identifies that Y ear is the fault inducing column and Y ear >

2008 is faulty. Applying Equations 5.1 and 5.2 to the rows in Table 1.1 results in INC =

{2008, 2014, 2013} and EXC = {2006}. Rule 1, min(INC) > max(EXC), is satisfied, thus

col ≥ min(INC) is used to replace the clause. A new clause Y ear >= 2008 is generated,

which is correct on this data set.

This approach is similar to the DT approach in that it also separates the test data into

included and excluded groups and derives the classification rule based on the grouped data.

However, while the DT approach iterates over all possible columns and then splits values

to derive the classification rule, this approach is based on the fault localization result, and

only needs to examine the clause containing the fault inducing column and relevant data

sets of the fault inducing column. It not only greatly reduces the complexity but also limits

the repair attempt to faulty clauses.

1< is included in ≤ and > is included in ≥, so I don’t have separate rules for < and >.
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Chapter 6: Localizing JOIN Clause Faults

6.1 JOIN Fault Types

As described in Section 2.2.1, there are tow components in JOIN clauses: JOIN type and

JOIN condition. I category JOIN faults into five groups as below. The first three are JOIN

condition faults, the fourth is a JOIN type fault, and the last is composite faults.

J1: Incorrect JOIN condition (e.g., the clause O.OrderId = C.CustId was used, when

O.CustId = C.CustId should have been used)

J2: Missing JOIN condition

J3: Unwanted JOIN condition

J4: Incorrect JOIN type (e.g., LEFT JOIN was used when a RIGHT JOIN should

have been)

J5: Composite faults with more than one fault

Note that CROSS JOIN is a special JOIN type. I consider INNER JOIN as a CROSS

JOIN with an additional JOIN condition. Consequently, when a CROSS JOIN is used

instead of an INNER JOIN, it is a J2 fault (not J4), and when an INNER JOIN is used

instead of a CROSS JOIN, it is a J3 fault (not J4). Similarly, when a CROSS JOIN is

incorrectly used instead of LEFT JOIN or RIGHT JOIN, it is considered as a composite

fault that includes a J2 fault, which should convert the CROSS JOIN to INNER JOIN, and

a J4 fault, which then converts the INNER JOIN to LEFT JOIN or RIGHT JOIN. Thus,

the J4 faults actually are used to refer to incorrect use among the four join types: INNER

JOIN, LEFT JOIN, RIGHT JOIN, and FULL JOIN.
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Also, I do not specify unwanted or missing JOIN type faults. This is because the

unwanted and missing JOIN types are always followed by unwanted JOIN conditions and

missing JOIN conditions. Thus, missing JOIN type and unwanted JOIN type faults are

considered to be in group J2 or J3.

All JOIN clauses can be transformed to CROSS JOIN with a WHERE clauses. For

example, the query in Figure 2.1 is equivalent to the query shown in Figure 6.1. Theoreti-

cally, the exoneration-based technique introduced in Chapter 4 can be applied to localizing

faults in the WHERE clause of the transformed CROSS JOIN query. I did not apply

exoneration-based technique on JOIN clauses for one major reason: Computing CROSS

JOIN is extremely expensive. The result of CROSS JOIN on two tables with 1000 rows is

a table with 1,000,000 (1000 ∗ 1000 = 1, 000, 000) rows. In industry databases, tables often

contain tens of thousands rows, so such transformation is essentially impractical. Instead,

I developed an analysis-based fault localization technique. It analyzes the failing rows and

compares the result with expected result to reveal the faulty components. I will introduce

this technique Section 6.2 and Section 6.3.

SELECT ∗
FROM Order O

CROSS JOIN Customer C

WHERE O. CustId IS NOT NULL AND

C. CustId IS NOT NULL AND

O. CustId = C. CustId

Figure 6.1: Transformed CROSS JOIN Query

6.2 Join Condition Fault Localization

A faulty JOIN condition can be determined when this scenario occurs: an absent row does

not satisfy the JOIN condition.

Assume Figure 2.1 showed a correct query. This query yields the result in Table 2.2.

Now assume a faulty query in which the JOIN condition C.CustId = O.CustId at line 4
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Table 6.1: Result of a Faulty JOIN Condition

CustId OrderId Year Price Discount ZipCode CustId Name

1 1 2008 110 0 22102 1 Linda
1 2 2014 120 10 22102 2 David
2 3 2013 110 5 20017 3 Andrew

was mistakenly written as C.CustId = O.OrderId. The result of this incorrect query is

shown in Table 6.1. Comparing Table 6.1 with the correct result Table 2.2 shows that the

second and third rows in Table 6.1 are superfluous, and the second through fourth rows in

Table 2.2 are absent. The two absent rows do not satisfy the erroneous JOIN condition.

For this reason, I can determine the JOIN condition is incorrect.

6.3 Join Type Fault Localization

To distinguish among INNER JOIN, FULL JOIN, LEFT JOIN, and RIGHT JOIN, I look

for failing rows that do not have a match in the other table (unmatched rows). A correct

FULL JOIN should not result in any superfluous unmatched rows from either LT or RT.

A correct INNER JOIN should not result in any absent unmatched rows from either LT

or RT. A correct LEFT JOIN should not result in any superfluous unmatched rows from

LT or absent unmatched rows from RT. A correct RIGHT JOIN should not result in any

absent unmatched rows from LT or superfluous unmatched rows from RT. Therefore, for a

JOIN clause, when I find that the query result does not conform to the analysis above, I

can conclude that the JOIN type is wrong.

For example, assume an INNER JOIN was mistakenly used instead of a FULL JOIN,

resulting in Table 2.2 instead of Table 2.3. The third row in Table 2.3 is an unmatched row

from LT and the last row in Table 2.3 is an unmatched row from RT. Both rows are absent.

I can conclude that the use of INNER JOIN is incorrect. If the query includes multiple

JOIN operators, I examine each JOIN individually. Thus my technique can detect multiple

faults in multiple JOIN clauses.
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Chapter 7: Repairing JOIN Clause

Based on the fault localization result of the technique introduced in Chapter 6, I developed

a repair technique to fix the JOIN clause faults. I describe repairing JOIN conditions and

repairing JOIN types separately in this chapter.

7.1 JOIN Condition Repair

A JOIN condition describes matching relationships between two tables. Thus, to repair a

faulty JOIN condition, I must identify matching column pairs from tables as the candidate

JOIN keys. To avoid evaluating each possible column pair against the entire test data set,

I first filter out infeasible column pairs by examining their statistical similarities, then the

remaining column pairs are evaluated against the entire data set. The repair process has

five steps.

1. Create clusters of columns, where columns of the same data type are grouped into

the same cluster.

2. For each column in the same cluster, analyze the statistics of the included test data,

including the minimum, maximum, average, and number of distinct values.

3. Group columns in a cluster into sub-clusters where all statistics of the columns are

equal. The columns in such sub-clusters are candidate JOIN keys.

4. Test each pair of columns from all candidate JOIN keys against the included data set.

If the values of these two columns in the test data match, they are the desired JOIN

keys. Then I create JOIN conditions with the desired JOIN keys.

5. If no JOIN key can be found, then JOIN conditions are not expected. I conclude that

the JOIN type should be CROSS JOIN.

56



When using this algorithm to generate a patch for a faulty JOIN condition, redundant

JOIN conditions may appear when joining more than two tables. Assume the JOIN con-

ditions for TableA a, TableB b, and TableC c are faulty, and the expected correct JOIN

condition is a.id = b.id AND b.id = c.id. Since we have a.id = b.id = c.id, the final

patch generated by the above algorithm could include three JOIN conditions, a.id = b.id,

b.id = c.id, and a.id = c.id. The last condition is redundant, since the first two JOIN con-

ditions are enough to join the three tables. I build an acyclic undirected graph to avoid this

problem. Each column is a node, and a JOIN condition between two columns is an edge.

To avoid joining columns in the same table, columns in the same table containing identical

values are merged into a single node. After obtaining the initial JOIN condition set by the

five-step process, I apply a pruning process to eliminate redundant JOIN conditions. For

each JOIN condition, I add an edge if it will not create a cycle. The JOIN conditions in

the resulting acyclic graph are returned as the repair for the JOIN condition fault.

7.2 JOIN Type Repair

As described in Section 6.3, if a failing row is an unmatched row from LT or RT, I can

determine that the JOIN type is incorrect. I derive repair solutions by examining combina-

tions of the JOIN type and the failing row types, as shown in Table 7.1. The header row

lists four types of JOIN types. The first column lists five failing row types: a superfluous

row rs that is an unmatched row from RT, a superfluous row rs that is an unmatched row

from LT, an absent row ra that is an unmatched row from RT, an absent row ra that is an

unmatched row from LT, and any two of the four types above. Given a faulty JOIN type

and the failing row type, the corresponding cell shows the correct JOIN type.

Consider the second column in Table 7.1, in which the faulty JOIN type is INNER

JOIN. In this case, all rows in the incorrect result are matched, so it is infeasible to have

any superfluous unmatched rows rs from LT or RT. I use 7 to denote infeasible failing row

types. A failing unmatched row must be an absent unmatched row from LT or RT. If all

failing rows are unmatched rows from RT and are absent, then the correct type should be
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Table 7.1: JOIN Type Repair

Row Type
Faulty JOIN Type

INNER LEFT RIGHT FULL

unmatched rs from RT 7 7 INNER LEFT
unmatched rs from LT 7 INNER 7 RIGHT
unmatched ra from RT RIGHT FULL 7 7

unmatched ra from LT LEFT 7 FULL 7

Two failing row types FULL RIGHT LEFT INNER

RIGHT JOIN. Likewise, if all of the failing rows are unmatched rows from LT and are

absent rows, then the correct type should be LEFT JOIN. When both failing row types

exist, the faulty INNER JOIN should be changed to FULL JOIN. I explain this situation

using Table 2.2 and Table 2.3. Assume the INNER JOIN was mistakenly used instead of

a FULL JOIN, resulting in Table 2.2 instead of Table 2.3. Comparing the faulty result in

Table 2.2 with the expected result in Table 2.3, I observe two types of failing rows. The

fourth row of Table 2.3 is an absent unmatched row from LT, and the last row of Table 2.3

is an absent unmatched row from RT. Having unmatched rows from both LT and RT

matches the characteristic of FULL JOIN as shown in the fifth row of the first column in

Table 7.1, thus, FULL JOIN should replace INNER JOIN. Similar to INNER JOIN, the

last three columns in Table 7.1 show how I fix the faulty LEFT JOIN, RIGHT JOIN, and

FULL JOIN.
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Chapter 8: Implementation

8.1 Tool Architecture

I used Ruby to implement the fault localization and repairing techniques in an automated

system, ALARM1. ALARM contains 52 class files and total 27,846 lines of code. Figure 8.1

shows ALARM’s architecture. ALARM requires three inputs: a faulty SQL query, test

rows, and a test oracle.

ALARM first localizes and repairs JOIN clause faults. Next, ALARM localizes and

repairs WHERE clause faults. Finally, ALARM generates a detailed report containing four

attributes: the number of failing rows, the location of the fault and the fault inducing

columns for WHERE faults, the patch, and whether the patch passed all the test rows.

Figure 8.1: The Architecture of ALARM

1source code available at github repository github.com/carolfly86/altar
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8.2 Implementation Enhancement

To assure good performance I took two measures. First, when exonerating suspect clauses,

I need to check k-combinations of mutated rows. Instead of checking one mutated row at

a time in Ruby arrays, I process all the mutated rows in a database table at once. With

appropriate indexes used to accelerate the search process, the execution was 600 times faster

than using Ruby arrays, for a set having 10,000 mutated rows.

Second, I encode the list of mutated columns of each mutated row as a binary number,

instead of character strings. Every bit of the binary number is mapped to a column,

indicating whether the column is mutated. Since I could have a total of 2c mutated rows (c

is the number of all columns), this binary encoding optimization can be efficient for both

storage and searching.
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Chapter 9: Fault Localization Experiments

This chapter presents the fault localization experiments. The comparison techniques, re-

search questions, subjects, procedure, results, and analysis are discussed.

9.1 Comparison Techniques

I introduced the fault localization techniques in previous chapters. Chapter 4 discussed the

WHERE fault localization techniques: the ALTAR algorithm and the improved ALTAR2

algorithm, Chapter 6 presented the JOIN fault localization technique which is referred to

as JFL.

To evaluate these fault localization techniques, I compared them with the nine spectrum-

based fault localization (SFL) techniques described in Section 4.2. I implemented these nine

techniques by collecting the number of failing and passing test row, and then using them

to calculate the suspicious formulas as described in previous papers. The twelve techniques

I compared fall into four general categories:

1. Similarity-based: Naish2, Wong1, Kulczynski2, Ochiai, Tarantula

2. Statistics-based: Crosstab, Mann-Whitney, SOBER, Liblit

3. Exoneration-based: ALTAR and ALTAR2

4. Analysis-based: JFL

9.2 Objectives

ALTAR, ALTAR2, and JFL target specific fault classes, either WHERE or JOIN faults.

The similarity and statistics-based techniques are generic enough to be applied to both
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JOIN and WHERE fault classes. The experiments compare the techniques in WHERE and

JOIN clauses separately. The exoneration-based techniques (ALTAR and ALTAR2) are

compared with the nine SFL techniques from similarity-based and statistics-based categories

for WHERE fault localization. The analysis-based technique JFL is compared with the nine

techniques for JOIN fault localization. I evaluated the experimental results by examining

below four research questions:

• RQ1: Which is the most effective technique in WHERE clause fault localization?

• RQ2: Which is the most efficient technique in WHERE clause fault localization?

• RQ3: Which is the most effective technique in JOIN clause fault localization?

• RQ4: Which is the most efficient technique in JOIN clause fault localization?

The effectiveness is defined in terms of accuracy of finding faulty faults. The efficiency

is defined in terms of execution time. The detailed metrics are described in Section 9.4.

Other researchers have studied the effectiveness of the SFL techniques as applied to gen-

eral programs. In the category of similarity-based techniques, Xie et al. [17] theoretically

proved that five techniques are the most effective under the assumption of 100% statement

coverage. However, this assumption is often not true in practice. Le et al. [18] studied

seven similarity-based techniques with test suites that were less than 100% adequate, and

found that Ochiai was the most effective, and more effective than the theoretically best

formulas. My study is different; I am studying predicates and clauses in SQL queries, so

statement coverage does not apply. In the category of statistics-based techniques, Zhang et

al. [38] compared Liblit, SOBER, and Mann-Whitney and found Mann-Whiteney was the

most effective. Wong et al. [35] compared Crosstab with Liblit and SOBER, and found that

Crosstab was more effective. This research is the first experiment to compare exoneration-

based and analysis-based techniques with both similarity-based and statistics-based tech-

niques.

The efficiency related research questions (RQ2 and RQ4) are not extensively studied in
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Table 9.1: Test Subject Databases

Databases Tables Columns Rows
(Average) (Total)

AdventureWorks 68 14 759,241
DBinventory 19 14 3,039,869
Employees 6 5 3,919,015
Mdbal 127 18 749,743
Polling etl 9 10 211,681

previous papers. This is because the efficiency of most similarity-based and statistics-based

techniques are very close. The techniques differ in coefficient formulas or statistical models

used, so the time complexities are very similar For example, when Wong et al. compared

Crosstab with Tarantula [35], the time difference on the most complex program in their

study was less than 0.15 seconds. I was able to explore efficiency more accurately because I

used a much larger set of tests than previous studies. The databases I used have millions of

rows. Each database row is a test, so I have millions of tests, compared with only hundreds

of tests in previous studies. RQ2 also compares the performance of ALTAR2 with ALTAR

to show that ALTAR2 is more efficient.

9.3 Experimental Subjects

I selected five subject databases. Adventureworks1 (AW) and Employees2 (EMP) are open

source databases. Polling etl (PLE), Dbinventory (DB), and Mdbal databases are pro-

prietary databases owned by industry companies. Part of the agreement to use them in

an experimental setting is that I am prohibited from disclosing certain details about the

databases, especially their contents. The structures and sizes of the subject databases are

shown in Table 9.1. Columns is averaged over all the tables in the relevant database.

I created three sets of queries to examine the scalability of the techniques on queries with

different complexities. Simple queries join 2–3 tables and have 3–5 clauses in the WHERE

condition, moderate queries join 4–5 tables and have 6–8 clauses in the WHERE condition,

1github.com/lorint/AdventureWorks-for-Postgres
2github.com/datacharmer/test db
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and complex queries join 6–8 tables and have 9–12 clauses in the WHERE condition. I

constructed five correct queries of each size for each database. I then created eleven faulty

versions of each correct query, one for each fault type (E1–E6 and J1–J5). To sum up, I

had:

• 5 (databases) * 3 (query complexities) * 5 (correct queries) * 6 (faulty queries) = 450

faulty queries in WHERE conditions and

• 5 (databases) * 3 (query complexities) * 5 (correct queries) * 5 (faulty queries) = 375

faulty queries in JOIN clauses.

• Total 450 + 375 = 825 faulty queries.

To the best of my knowledge, this is the largest study of localizing faulty clauses in terms

of the size of databases, the number of queries, and the complexity of the queries.

For AW and EMP, I obtained correct queries from their tutorial examples and manually

constructed faulty variations by modifying the correct versions. For PLE, DB, and Mdbal,

I extracted 116 naturally occurring faulty queries from industry applications and manually

created the rest. Table 9.2 shows the number of real faults by fault classes in the three

industry databases: PLE, DB, and Mdbal.

In the three subject databases, the overall number of JOIN faults are less than WHERE

faults. Among the JOIN faults, J4 and J5 type faults are the least and J1 faults are the

most common. Among the WHERE faults, PLE and Mdbal had more E1 type faults, while

DB had more E4 type faults. I cannot conclude which fault class is the most common in

general, since it varies with application. However, I observe that there are relatively few

composite faults (E6) in all three applications.

9.4 Procedure and Metrics

I ran the experiments on a MacBook Pro with two Intel i7 cores and 16 GB RAM. For each

faulty query, I ran the twelve techniques, recording the execution time and faults found.
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Table 9.2: Real Faults

Database E1 E2 E3 E4 E5 E6 Total E J1 J2 J3 J4 J5 Total J Total

PLE 12 8 5 4 2 3 34 1 1 2 1 0 4 38
DB 6 7 5 9 6 2 35 4 1 2 1 1 9 44

Mdbal 8 4 5 3 3 2 25 2 3 2 0 1 7 32

Sum 26 19 15 16 11 7 94 7 5 6 2 2 22 116

Similarity-based and statistic-based techniques return a ranking of all program entities

as the fault localization result. Thus, most prior research measured the effectiveness by

the percentage of lines of code examined before reaching the faulty program entity over

the total lines of code. I could not adopt this metric because the exoneration-based and

analysis-based techniques precisely returns faulty components without a ranking.

Instead, I calculated the harmonic mean from information retrieval [50] to measure

the effectiveness. Two variables are used to calculate the harmonic mean: Expected and

Actual. Expected is the set of expected faulty clauses and Actual is the set of actual

clauses identified by the fault localization technique. Precision (P ) and recall (R) are

calculated based on Expected and Actual, and P is the proportion of reported clauses that

are actually faulty (Equation 9.1). R is the proportion of faulty clauses that are actually

reported (Equation 9.2). I combined the precision and recall with their harmonic mean H

(Equation 9.3). The higher the harmonic mean, the more effective an SFL technique is at

localizing faults.

P =
| Actual ∩ Expected |

| Actual |
(9.1)

R =
| Actual ∩ Expected |

| Expected |
(9.2)

H =
2 · P ·R
P +R

(9.3)
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The harmonic mean calculation can also be used to evaluate the effectiveness of rankings

computed by similarity-based and statistics-based techniques. The only difference is that

the Actual set is computed as clauses that have no lower ranking than the faulty clause.

For example, for a predicate with a faulty clause C3, where the ranking is C2, C4, C3, C1,

Actual is C2, C4, C3, because C1 is ranked lower than C3. For this case, P = 1
3 , R = 1, and

H = 1
2 . However, if a technique assigns the same suspiciousness score to all clauses, then

H = 0. This would mean the technique was completely ineffective because the ranking is

not able to identify which clause is more likely to be faulty.

The exoneration-based techniques can localize multiple faults in one execution. How-

ever, similarity-based and statistics-based techniques are designed to identify one fault at

one time. When using similarity or statistics-based techniques to find multiple faults, I

computed a suspiciousness ranking for all the clauses under test. I first fixed a faulty clause

with the highest rank. I then executed the technique again to fix the next faulty clause

with the highest rank in this run. I repeated the process until all the faults were fixed.

Assume N faulty clauses. For a similarity or statistics-based technique, effectiveness is

the averaged harmonic mean
∑N

i=1 a
i

N , where ai is the harmonic mean of the ith execution.

The efficiency is the total time for N iterations
∑N

i=1 t
i (excluding the time spent on fixing

the faults manually), where ti is the execution time of the ith iteration.

9.5 Effectiveness

This section presents the results on effectiveness for each SFL technique and the statistical

comparison results. I then analyze the issues that impacted effectiveness for each technique

in Sections 9.5.3 through 9.5.7.
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Table 9.3: Effectiveness Comparison between SQLFL(including ALTAR2 and JFL) and
Similarity-based SFLs

Database Fault Class SQLFL Naish2 Wong1 Kulczynski2 Ochiai Tarantula
Avg Sdv Avg Sdv Avg Sdv Avg Sdv Avg Sdv Avg Sdv

AW
WHERE 0.97 0.12 0 0 0 0 0.51 0.33 0.47 0.32 0.52 0.35

JOIN 0.81 0.13 0 0 0 0 0.37 0.36 0.37 0.36 0.37 0.36

DB
WHERE 0.99 0.05 0 0 0 0 0.38 0.30 0.36 0.24 0.37 0.26

JOIN 0.80 0.09 0 0 0 0 0.34 0.35 0.34 0.35 0.34 0.35

Emp
WHERE 0.98 0.13 0 0 0 0 0.49 0.31 0.49 0.32 0.50 0.32

JOIN 0.82 0.10 0 0 0 0 0.22 0.34 0.22 0.34 0.20 0.29

Mdbal
WHERE 0.95 0.15 0 0 0 0 0.45 0.34 0.45 0.33 0.48 0.37

JOIN 0.81 0.12 0 0 0 0 0.45 0.41 0.45 0.41 0.45 0.41

PLE
WHERE 0.97 0.12 0 0 0 0 0.53 0.37 0.53 0.36 0.49 0.33

JOIN 0.81 0.10 0 0 0 0 0.17 0.29 0.17 0.29 0.17 0.29

Overall
WHERE 0.97 0.12 0 0 0 0 0.45 0.33 0.46 0.32 0.47 0.33

JOIN 0.80 0.11 0 0 0 0 0.30 0.36 0.29 0.36 0.29 0.35

Table 9.4: Effectiveness Comparison between SQLFL(including ALTAR2 and JFL) and
Statistics-based SFLs

Database Fault Class SQLFL SOBER Liblit Mann-Whitney Crosstab
Avg Sdv Avg Sdv Avg Sdv Avg Sdv Avg Sdv

AW
WHERE 0.97 0.12 0.51 0.34 0.48 0.34 0.25 0.30 0.46 0.34

JOIN 0.81 0.13 0.19 0.32 0.32 0.32 0.07 0.20 0.27 0.31

DB
WHERE 0.99 0.05 0.49 0.33 0.43 0.32 0.14 0.23 0.49 0.33

JOIN 0.80 0.09 0.15 0.31 0.32 0.33 0.04 0.17 0.26 0.30

Emp
WHERE 0.98 0.13 0.57 0.36 0.47 0.31 0.23 0.30 0.41 0.29

JOIN 0.82 0.10 0.09 0.20 0.20 0.28 0.11 0.30 0.18 0.29

Mdbal
WHERE 0.95 0.15 0.53 0.36 0.43 0.33 0.18 0.30 0.36 0.30

JOIN 0.81 0.12 0.28 0.40 0.27 0.26 0.01 0.06 0.27 0.28

PLE
WHERE 0.97 0.12 0.54 0.36 0.39 0.29 0.23 0.29 0.56 0.37

JOIN 0.81 0.10 0.08 0.16 0.12 0.24 0.07 0.18 0.14 0.22

Overall
WHERE 0.97 0.12 0.53 0.35 0.44 0.32 0.21 0.29 0.45 0.33

JOIN 0.80 0.11 0.16 0.30 0.25 0.29 0.09 0.23 0.23 0.29
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9.5.1 Results

Tables 9.3 and 9.4 show the effectiveness of the techniques. SQLFL (SQL Fault Localization)

denotes my fault localization technique. It locates WHERE clause faults using exoneration-

based techniques (ALTAR or ALTAR2) and identifies JOIN clause faults using JFL. Note

that the exoneration-based techniques ALTAR and ALTAR2 have identical effectiveness,

so I omit ALTAR data in both tables and use ALTAR2 to represent both exoneration-

based techniques. The first column shows the five databases. The second column indicates

the fault class is either WHERE or JOIN clause. Table 9.3 compares SQLFL with the

five similarity based techniques, and Table 9.4 compares SQLFL with the four statistics-

based techniques. For each subject, Tables 9.3 and 9.4 show the mean (Avg) and standard

deviation (Sdv) of the effectiveness on the queries for each technique. Overall Avg shows

the mean of the effectiveness on all the queries in the five databases.

Tables 9.3 and 9.4 show that SQLFL was the most effective technique . Although

the similarity and statistic based techniques can be applied to both JOIN and WHERE

faults, the effectiveness in both fault classes are very low. Table 9.3 shows that Naish2 and

Wong1 were the least effective among the five similarity-based techniques, although they

were shown to be theoretically the most effective [17]. These two techniques gave the same

suspiciousness score to all clauses, which means they were unable to rank the clauses by

suspiciousness. So the resulting effectiveness was 0. I will explain this issue in Section 9.5.6.

Kulczynski2, Ochiai, and Tarantula had similar effectiveness. Table 9.4 shows that SOBER

was the most effective statistics-based technique and Mann-Whitney was the least effective.

The effectiveness of SOBER, Liblit, and Crosstab are relatively close. I will examine the

statistical significance of the differences in Section 9.5.2.

Tables 9.3 and 9.4 show that SQLFL was the most effective technique overall. None of

the similarity and statistical-based techniques had effectiveness greater than 0.55, whereas

the lowest effectiveness score for SQLFL was 0.77. The standard deviation of SQLFL was

also much lower than the other techniques, indicating that they performed consistently over

all queries. The answers to RQ1 and RQ3 are clear: SQLFL was the most effective
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technique. Specifically, ALTAR2 was the most effective technique at localizing

WHERE faults and JFL is the most effective at localizing JOIN faults.

9.5.2 Statistical Comparison

I use statistical analysis to compare techniques with similar effectiveness. The paired two-

tailed t-test is used because I had enough queries (825) to assume normal distributions. I

did not need to statistically compare SQLFL because it was so much more effective than

the others. Mann-Whitney, Naish2, and Wong1 were excluded because they were much less

effective. I studied the remaining six techniques: Kulczynski2, Ochiai, Tarantula, Crosstab,

SOBER, and Liblit. The hypotheses are shown below. X and Y can be any of the six

techniques, giving a total of 15 pairs.

Null hypothesis (H0):

There is no significant difference between technique X and technique Y in terms of

effectiveness

Alternative hypothesis (H1):

There is significant difference between technique X and technique Y in terms of effec-

tiveness

Table 9.5 shows the p-score for each pair of techniques at the significant level of α = 0.05.

If p-score is less than α (0.05), then the hypotheses H0 is rejected. The H0 Rejected? column

uses “N ” to indicate H0 is not rejected (technique X is not significantly different from Y),

and “Y ” to indicate H0 is rejected (technique X is significantly different from Y). When

H0 is rejected, the µd column shows the average of differences between technique X and Y

(µd = avg(xi− yi)). A positive µd value indicates that technique X was more effective, and

a negative value means that technique X was less effective. When H0 is not rejected, µd

shows “-,” meaning “not applicable.”

In summary, among the similarity-based SFLs, Kulczynski2 was slightly more effective

than Ochiai but there were no difference in the other pairs. Thus, these three techniques had
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Table 9.5: Hypothesis Testing Results

Pairs (X-Y) p-score H0 Rejected? µd
Tarantula-Ochiai 0.076 N -
Tarantula-Kulczynski2 0.39 N -
Tarantula-SOBER 0.0003 Y -0.053
Tarantula-Liblit 0.025 Y 0.033
Tarantula-Crosstab 0.0897 N -
Ochiai-Kulczynski2 0.001 Y -0.020
Ochiai-SOBER 0.0001 Y -0.066
Ochiai-Liblit 0.18 N -
Ochiai-Crosstab 0.7927 N -
Kulczynski2-SOBER 0.0002 Y -0.046
Kulczynski2-Liblit 0.0043 Y 0.039
Kulczynski-Crosstab 0.2493 N -
SOBER-Liblit 0.0001 Y 0.086
SOBER-Crosstab 0.0017 Y 0.072
Liblit-Crosstab 0.524 N -

similar effectiveness. Therefore, I can conclude that Kulczynski2, Tarantula, Ochiai were

the most effective, whereas the theoretically best techniques were the least effective. Among

the statistics-based SFLs, SOBER was the most effective and Liblit and Crosstab were not

significantly different. Thus, I can conclude that SOBER was the most effective technique

among the four statistic-based techniques, although it was less effective than SQLFL. The

effectiveness of Liblit and Crosstab were close to that of Kulczynski2, Tarantula, and Ochiai.

Thus, they are considered to be equivalent in effectiveness. Mann-Whitney was less effective

than Liblit, Crosstab, Kulczynski2, Tarantula, and Ochiai; but it was more effective than

Naish2 and Wong1. The final order of effectiveness for the ten techniques is shown in

Figure 9.1.

The following subsections describe types of issues that affected the effectiveness of all

the techniques: (1) an issue that is specific to the exoneration-based technique, (2) an issue

that is specific to the analysis-based technique, (3) issues that are common to all similarity-

based and statistics-based techniques, (4) issues that are specific to the similarity-based

techniques, and (5) issues that are specific to the statistics-based techniques.
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Figure 9.1: Effectiveness Ranking of The Ten Techniques

9.5.3 An Issue Specific to Exoneration-based Technique

The exoneration-based techniques (ALTAR and ALTAR2) might not localize faults accu-

rately when multiple faulty clauses have the same columns. During the exoneration process,

they identify a fault-inducing column and associate it with the clauses that contain that

column. If multiple clauses have the same fault-inducing columns, they cannot determine

which clause is innocent and may report that all such clauses are faulty. This situation is

very rare, thus, the overall effectiveness is still very high.

9.5.4 An Issue Specific to Analysis-based Technique

The analysis-based technique (JFL) checks existing clauses in join conditions against failing

rows to determine suspicious join conditions. However, it can determine the join conditions

contains faults It can not determine if a clause is missing (fault type J2 in Section 6.1).

9.5.5 Issues Common to all Similarity-Based and Statistics-Based Tech-

niques

Similarity-based and statistics-based techniques are coverage based fault localization tech-

nique. They are generic enough to be applied to both WHERE and JOIN faults. However,
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the effectiveness of these techniques is low due to following reasons.

Similarity-based and statistics-based techniques can only rank clauses that are included

in the predicate under test. Thus, they cannot find missing clauses (fault type E4 in Section

4.1 or fault type J2 in Section 6.1). In contrast, ALTAR2 can accurately report not only

the missing clauses but also associated fault-inducing columns. The average effectiveness

of similarity and statistics-based techniques (except Naish2, Wong1, and Mann-Whitney)

increased by about 10% when excluding SQLs with E4 faults from the experiment subjects.

In addition, they cannot identify JOIN type faults (fault type J4 in Section 6.1). Similarity-

based and statistics-based techniques can not interpret the semantic meanings of JOIN type

keywords, thus they cannot distinguish the different JOIN types.

Another important point that reduces the effectiveness of previous SFL techniques is

that they were designed for general programming languages. These SFL techniques work

because they identify differences between which program locations were reached by failing

and passing tests. However, for SQL fault localization, all rows are executed by all clauses

in the predicate equally. Thus, the previous SFL techniques do not accurately localize faulty

clauses in SQL predicates.

9.5.6 Issues Specific to Similarity-based Techniques

In this section, I derive the suspiciousness formulas for each similarity-based technique to

analyze their effectiveness.

Recall that I defined four variables for the similarity-based formulas in Section 4.2.1,

cef , cep, Tf , and Tp. In addition, for the true evaluation of a clause c, ctef is the number of

times c evaluates to true in a failing test and ctep is the number of times c evaluates to true

in a passing test. Likewise, for the false evaluation of a clause c, cfef is the number of times

c evaluates to false in a failing test and cfep is the number of times c evaluates to false in a

passing test. Tf is the total number of failing tests and Tp is the total number of passing

tests. Tf and Tp are constants for all clauses, while ctef , ctep, c
f
ef , and cfep are variables. The
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sum of the total number of times when c evaluates to true and false in failing tests is equal

to the total number of failing tests. That is, ctef + cfef = Tf . Similarly, the sum of the total

number of times c evaluates to true and false in passing tests is equal to the total number

of passing tests. That is, ctep + cfep = Tp.

With the above Tf and Tp equations, I derive the formulas for the five similarity-based

techniques as follows:

• Naish2:

S(c) = S(c)t + S(c)f = ctef + cfef −
ctep

Tp + 1
− cfep
Tp + 1

= Tf − Tp/(Tp + 1)

(9.4)

• Wong1:

S(c) = S(c)t + S(c)f = ctef + cfef = Tf (9.5)

• Kulczynski2 :

S(c) =
1

2
∗ (
ctef
Tf

+
ctef

ctef + ctep
+
cfef
Tf

+
cfef

cfef + cfep
)

=
1

2
∗ (
ctef + cfef

Tf
+

ctef
ctef + ctep

+
cfef

cfef + cfep
)

(9.6)

• Ochiai :
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S(c) =
ctef√

(Tf ) ∗ (ctef + ctep)
+

cfef√
(Tf ) ∗ (cfef + cfep)

(9.7)

• Tarantula :

S(c) =
ctef/Tf

ctef/Tf + ctep/Tt
+

cfef/Tf

cfef/Tf + cfep/Tt
(9.8)

Equations 9.4 and 9.5 show that the derivation results for Naish2 and Wong1 are con-

stants, since Tf and Tp are constants. Thus, Naish2 and Wong1 gave identical ranks to

all clauses. Therefore, their effectiveness was 0 for all the queries. Tarantula, Kulczynski2,

and Ochiai were able to rank the clauses because they contain variables ctef , cfef , ctep, and

cfep. However, it is not obvious which formula is more effective. The experiment results

also show the effectiveness of these three techniques were not significantly different. In

previous studies, Xie et al. [17] proved that Nashi2 and Wong1 are the theoretically best

on statements, with the assumption that the tests covered all statements. But Le et al. [18]

showed that inadequate tests can affect their effectiveness. Nashi2 and Wong1 were very

ineffective on clauses in our study, suggesting that program entities affect the effectiveness

as well. The SFL techniques designed for statements may not be effective when applying

to clauses.

9.5.7 Issues Specific to Statistics-based Techniques

Now I analyze the four statistics-based techniques.

Crosstab: Section 4.2.2 explained that Crosstab is similar to the similarity-based tech-

niques, with the only difference being the statistical model used. The final suspiciousness
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was calculated for each clause by adding two suspiciousness scores for true and false evalu-

ations. The statistical comparison in Section 9.5.2 shows that the effectiveness of Crosstab

was not significantly different from that of Tarantula, Ochiai, and Kulczynski2.

Liblit: The assumption of the Liblit model is that program entities that evaluate to

true in failing tests are likely to be faulty. I derive the Liblit formulas for a clause c in

Equations 9.9, 9.10, and 9.11.

Context(c) =Pr(Crash| c observed)

=Tf/(Tf + Tp)

(9.9)

Failure(c) =Pr(Crash| c observed true)

=ctef/(c
t
ef + ctep)

(9.10)

Increase(c) =Failure(c)− Context(c)

=ctef/(c
t
ef + ctep)− Tf/(Tf + Tp)

(9.11)

If Increase(c) is large, c is likely to have faults. Since Tf and Tp are constant, Increase(c)

relies on ctef and ctep. That means the suspiciousness of c correlates to the number of failing

tests and passing tests when c evaluates to true. However, this model does not consider

what happens when c evaluates to false. Thus, Liblit was not able to identify faulty clauses

that evaluate to false.

SOBER and Mann-Whitney: Both SOBER and Mann-Whitney compare the dis-

tribution of evaluation bias in failing and passing tests. But they calculate the similarity of

the distributions differently. Zhang et al. [38] found that Mann-Whitney was found to be

more effective than SOBER. However, my experiments found the opposite.
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As explained in Section 4.2.2, the evaluation bias π(c) for a given test row is either 1 or

0. So Vf and Vp consist of all 1s, all 0s, or a mix of 1s and 0s. In Mann-Whitney, if Vp is

all 1s or Vf is all 0s, then Kh is 0 because there are no sets with a higher sum of rankings

than Vp. Similarly, if Vp is all 0s or Vf is all 1s, then Kl is 0 because there are no sets

with a lower sum of rankings than Vp. In the above four situations, the calculated R(p)

must be 0 according to Equation 4.10. Such situations are in fact quite common. Among

the four clauses in Table 4.2, three clauses have R(p) = 0. If all clauses in a predicate

satisfy this condition, then they all get 0 as R(p), which is essentially an ineffective ranking

result. I also observed this in the experiment, for WHERE faults, Mann-Whitney gave the

same ranks to all the clauses in 58% of the subject queries, thus resulting in 58% with 0

effectiveness; and for JOIN faults, it gave the same ranks to all the JOIN conditions in 84%

of the subject queries, thus resulting in 84% of 0 effectiveness. In contrast, SOBER was

able to rank the clauses. Therefore, Mann-Whitney was less effective than SOBER.

9.6 Efficiency

I now turn to the efficiency of the techniques, first presenting the raw results, then comparing

with manual debugging, followed by a discussion.

9.6.1 Results

I found that the five similarity-based techniques had almost the same execution time as three

of the statistic-based techniques: Liblit, SOBER, and Crosstab. For these eight techniques,

over 99% of the time was spent on executing tests and collecting runtime information, and

the computation of suspiciousness rankings took less 1% of the time. Because they are

executed on the same test data sets, the execution time for those techniques are the same.

This is consistent with Wong et al.’s results [35]. These eight SFL techniques are referred

to as Others. Mann-Whitney took more time than the other eight similarity- and statistics-

based techniques due to the non-parametric statistical model. Therefore, Table 9.6 and
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Table 9.6: WHERE Faults Localization Efficiency Results (in Seconds)

Query Types Time (avg.) # of Rows (avg.)
ALTAR2 ALTAR MW Others Failing All

Simple 2.77 84.72 24.34 9.29 2631 808,062
Moderate 2.22 102.78 27.74 10.83 799 790,389
Complex 3.41 117.40 34.38 14.37 955 455,254

Single Fault 2.24 56.37 23.73 9.08 1305 676,941
Multi Faults 5.88 336.53 84.48 24.67 2315 721,187

Overall 2.81 97.44 64.37 11.50 1462 683,825

Table 9.7: JOIN Faults Localization Efficiency Results (in Seconds)

Query Types Time (avg.) # of Rows (avg.)
JFL MW Others Failing All

Simple 19.71 29.45 29.44 1,112,005 1,138,432
Moderate 11.86 7.88 5.26 89,729 94,093
Complex 47.03 8.93 8.93 57,290 79,273

Single Fault 22.98 9.34 9.34 259,807 269,083
Multi Faults 32.73 16.14 15.61 454,731 473,849

Overall 26.49 15.47 14.58 422,785 440,290

Table 9.7 give time in seconds for all the techniques, combined into five groups, ALTAR2,

ALTAR, JFL, Mann-Whitney (MW), and the other SFL techniques (Others).

The Types column of Table 9.6 and Table 9.7 shows the queries in different groups:

simple queries, moderate queries, complex queries, queries with single faults, and queries

with multiple faults. The Time (avg.) column shows the time on average to localize faulty

clauses in a query in each group. The # of Rows (avg.) column shows the number of

failing rows and all rows executed for a query in each group on average. As shown in

Table 9.6, ALTAR2 took 2.8 seconds for all 450 queries on average, much faster than the

other techniques. Thus, the answer to RQ3 is that ALTAR2 was the most efficient technique.

ALTAR took 97.44 seconds on average, so it is the least efficient. In Table 9.7, Others are

the most efficient. The overall average execution time is only 14.58 seconds for all queries.

I will analyze the experimental results in detail in Section 9.6.3.
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9.6.2 Comparing SFL with Manual Debugging

I conducted a study to compare automatic fault localization techniques with manual de-

bugging to determine if manual debugging is comparable in terms of efficiency. I invited a

developer who has background knowledge and working experience with the MDbal database

schema to manually debug some queries. He was given the requirements and three faulty

queries arbitrarily selected from each of the simple, moderate, and complex query groups.

The manual debugging time on average to find the faulty clauses was 52 seconds for simple

queries, 9.4 minutes for moderate queries, and 5.56 minutes for complex queries, whereas

ALTAR2 took less than 5 seconds for all queries. Most of the manual effort was comparing

the requirements with the queries. This small study demonstrated that the manual debug-

ging was much slower than the automatic SFL techniques, thus I did not conduct further

experiments on manual debugging.

9.6.3 Analysis and Discussion

WHERE Faults

Suppose a predicate has k clauses, n test rows, p passing test rows, and f failing rows. For

the similarity-based and statistics-based techniques, k clauses are executed against n rows,

with the time complexity of O(n ∗ k). For k clauses, suspiciousness scores are calculated

with a similarity coefficient formula or a statistical model in O(k). Then the scores are

sorted in O(k ∗ log(k)). The total time complexity is O(n ∗ k + k + k ∗ log(k)). When n is

much larger than k, the complexity is dominated by n ∗ k. Mann-Whitney is more complex

because it computes suspiciousness scores for the combinations of p out of n, instead of k.

The total time complexity for Mann-Whitney is O(n∗k+
(
n
p

)
+k∗log(k)). The computation

can be substantial when n is large. Thus, the complexity of Mann-Whitney is dominated

by
(
n
p

)
when n is large.

ALTAR consists of two steps: slicing and exoneration. ALTAR2 has an additional

redundant row elimination step. Comparing to the other nine SFL techniques, ALTAR2
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and ALTAR only processes failing rows f . Thus, the time complexity of the slicing step

is O(f ∗ k) for ALTAR and ALTAR2. Regarding the time complexity of the exoneration

step, the best case and the worst case can be very different. The best case happens when a

faulty clause is associated with a single fault-inducing column. In this case, the exoneration

process only checks the s columns used in the suspect clauses. In the worst case, multiple

faults are associated with multiple fault-inducing columns, where all columns c in the tables

in the predicate are fault-inducing. In this scenario, the exoneration process must check all∑c
k=1

(
c
k

)
= 2c − 1 combinations. The worst case can only happen when (1) the predicates

contain all columns in the tables, and (2) all columns are fault-inducing. It seems likely

that this situation would be extremely rare, and even rarer as databases get large. ALTAR

processes each failing row for exoneration, thus the time complexity for exoneration step

is in the range (O(f ∗ s), O(f ∗ 2c)). The total complexity of ALTAR is in the range

(O(f ∗ k + f ∗ s), O(f ∗ k + f ∗ 2c)).

ALTAR2 applies a redundant row elimination step after the exoneration step. I use

e to denote the number of the actual rows processed in the exoneration and redundant

row elimination. Then the complexity of elimination is in the range of (f,
∑f

i=1 i). In

the best case, it eliminates all remaining failing rows after exonerating the first row. In

the worse case, each elimination only removes one failing row. The time complexity of

the exoneration process is similar to ALTAR except only e rows are exonerated, and it

is in the range (O(e ∗ s), O(e ∗ 2c)). The total complexity of ALTAR2 is in the range

(O(f ∗ k + f + e ∗ s), O(f ∗ k + e ∗ f + e ∗ 2c)). The number of actual rows e is only

a fraction of the number of failing rows f . In my study, the average of e was four and

average of f was 1462. Consequently, the complexity of ALTAR2 is much smaller than

ALTAR. In the experiments, both ALTAR and ALTAR2 found 91% of the faults in the

best-case exoneration scenarios. In the other cases, the impact of O(e ∗ 2c) on ALTAR2 is

not significant, while the impact of O(f ∗2c) on ALTAR is dramatic. Although O(e∗2c) for

ALTAR2 can be neglected and conclude the complexity is dominated by O(f ∗k), O(f ∗ 2c)

for ALTAR cannot be neglected.
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In summary, the time complexities of ALTAR2, ALTAR, Mann-Whitney, and the others

are dominated by O(f ∗k), O(f ∗k+f ∗2c), O(n∗k), and O(
(
n
p

)
). Since O(f ∗k) < O(n∗k) <

O(
(
n
p

)
) < O(f ∗ k + f ∗ 2c), my analysis is consistent with the observed efficiency results.

JOIN faults

Table 9.7 shows that JFL is the slowest among all techniques. However, the reason is

that MW and Others are not able to detect JOIN type faults, so they are only executed

for JOIN condition faults. JFL checks for both JOIN type faults and JOIN condition

faults, thus the execution time is more than the other techniques. In additions, JOIN type

faults often produces large number of rows with null values. Querying tables with null-

valued rows are often slow because those rows can not be indexed. Both factors contribute

to the JFL technique being slow. And the impact of null values rows is significant. I

observed that querying a table with total 264,345 rows and 153,853 null values rows took

285 seconds. The same query completed in less than 1 seconds when all the null values

are updated to empty strings. Note that the average execution time of JOIN faults for

MW technique is much smaller comparing that of WHERE faults. When MW computes

R(p) = 0 for all components it essentially fails to rank the components and the fault

localization process will terminate prematurely. In this situation, the execution time is

short because the complicated computation is not yet executed. MW failed to rank 84%

of the subject queries in JOIN faults comparing to 58% subject queries in WHERE faults.

As shown in Table 9.4, the overall average effectiveness is only 9% for JOIN faults and 21%

for WHERE faults. So the average execution time of MW in JOIN faults is smaller.

9.7 Threats to Validity

An external threat is that the subjects may not be representative. I ameliorated the threat

by selecting five databases from different sources, two from open source repositories and

three from industry. To increase diversity, I selected some queries from the original database
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domains and manually constructed additional queries with different complexities.

Another external threat is that the implementation of the ten techniques could have

affected the results. I was careful to implement them exactly as described in these papers,

and designed tests to ensure they worked as expected.

One construct validity threat is how I created faults. I used a combination of natural

faults and manually constructed faulty SQL queries. Using a different source of faults could

have led to different results. The faulty queries used in the experiment include five different

individual faults as well as composite faults. Compared to other fault localization empirical

studies, I considered more types of faults.

Another internal threat is the measurement of execution time for similarity-based and

statistics-based techniques to localize multiple faults. Similarity-based and statistics-based

techniques cannot identify multiple faults with one run, and thus need to be repeated

several times. I used the “perfect bug detection” assumption [51] to calculate the number

of repeats needed to fix all the faults. That is, I assume the faulty clause with the highest

ranking can always be identified and fixed in each run, and the fault localization process

will then be restarted with one less fault. So the number of times I need to restart the fault

localization process is equivalent to the number of faulty clauses. However, this assumption

may not hold in reality. Given an inaccurate ranking where the faulty clause is not ranked

as the most suspicious, programmers need to spend more time examining and modifying the

clauses from the top of the ranking until they arrive at the faulty clause. In other cases, the

programmers may not be able to correctly fix the fault. As a result, the fault localization

may be restarted more times than the actual number of faulty clauses. The efficiency of

similarity-based and statistics-based techniques would be even worse than observed in the

experiment. Nevertheless, this would not have affected the core result that ALTAR2 was

the most efficient technique.
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Chapter 10: Fault Repair Experiments

I evaluated my automatic faulty query fix technique (ALARM) by conducting a set of

comprehensive experiments. I used Gopinath et al.’s DT approach [10] introduced in Sec-

tion 1.2.4 as the experimental baseline. The experiment result is analyzed from exploring

two research questions. I illustrate the experimental procedure and measurements, followed

by an analysis of the results and discussion of the threats to validity.

10.1 Experimental Design

I evaluated two aspects of effectiveness, correctness and acceptability, as well as the effi-

ciency.

• RQ1 (Effectiveness): Is ALARM more effective than the baseline for every fault class?

– RQ1a (Correctness): Can ALARM generate patches that pass all test rows for

more queries than the baseline?

– RQ1b (Acceptability): Are the ALARM patches more acceptable to users than

the baseline?

• RQ2 (Efficiency): Is ALARM more efficient than the baseline in terms of execution

time?

In the experiments, a patch is always evaluated against all rows to ensure that the patch

does not introduce new fault. The effectiveness is evaluated from two aspects: correctness

measures the percentage of faulty queries fixed over total number of faulty queries. and

acceptability measures the similarity of the patch to a correct query. Similarity is defined in

Section 10.3. The efficiency is measured in terms of time to generate a patch, as measured

on a MacBook Pro with 2 Intel i7 cores and 16 GB RAM.
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10.2 Experimental Subjects

In this experiment, I used the same experiment subjects introduced in Section 9.3. In total,

there are 825 faulty queries (450 faulty queries in WHERE conditions + 375 faulty queries in

JOIN clauses) from five subject databases. The details of the subject queries and database

schema are presented in Section 9.3.

My subjects, both the databases and the queries, are larger than Gopinath et al.’s [10],

which only used seven subject code segments and about 170,000 test rows in total.

10.3 Experimental Procedure

For each faulty query, I generated one patch with the DT approach and one patch with

ALARM, then compared and analyzed the results.

I consider a patch to be correct if all test rows pass. Note that this is not the same as

fully satisfying the specification, that is, correctness is defined relative to the tests.

Previous studies have found that this relative correctness means repair techniques some-

times generate nonsensical patches [9]. To accommodate this, patches are also evaluated for

acceptability. Kim et al. [9] attempted to evaluate acceptability by interviewing developers.

However, Monperrus [24] criticized this evaluation method due to the participants’ bias and

lack of domain knowledge. To avoid this problem in the experiment, I obtained the correct

queries from source code history when available, and generated them by hand when not.

I then measured structural differences between each patched query and the correct query.

Patches that are more similar to the correct query are considered to be more acceptable.

As introduced Section 2.2.2, each predicate can be reduced to disjunctive normal form

(DNF). Because the IDNF is unique for monotone boolean functions [27], there is only one

IDNF for a given query. If the IDNF of a patch is identical to that of the correct query,

then the similarity is perfect. Predicates in IDNF are treated as unordered trees, where

each CP is a subtree and each clause is a node. Figure 10.1 shows the INDF of the WHERE

condition in Figure 1.1. The root node is a place holder for joining two branches (CPs).
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Figure 10.1: Correct Query
IDNF Tree Structure

Figure 10.2: Incorrect Query
IDNF Tree Structure

X-Diff algorithm [52] was originally used to compare XML structures. I adopted X-Diff

to compare the IDNF conditions. X-Diff converts XML files into unordered tree structures,

then computes the edit distance from one tree to another tree. The edit distance between

two trees is the minimum number of node edit operations required to transform one tree

to another. The three possible edit operations are inserting a node, editing a node, and

deleting a node. In my application, the edit operation is only allowed when the source and

target nodes contain the same column. I demonstrate the edit distance calculation using

the following example. Assume Figure 10.2 is the IDNF for an incorrect query. Three edit

operations are required to transform the incorrect query IDNF in Figure 10.2 to the correct

query IDNF in Figure 10.1: (1) remove the clause name = David; (2) insert the clause

price > 100; (3) edit clause discount = 1 to discount = 0. Thus, the edit distance between

the two IDNF tree structures is 3. The maximum edit distance between a condition with m

clauses and a condition with n clauses is when I must remove all clauses in one query, then

insert them into the other query, or m+ n. I use Equation 10.1 to calculate the similarity.

If a patch can be transformed into the correct condition with fewer operations than another

patch, it is more similar and is deemed to be more acceptable to the developer.

similarity = 1− edit distance

max edit distance
(10.1)

I consider the JOIN conditions and JOIN types as single branch trees since they are

connected with AND operators. Equation 10.1 is also used to measure similarity of JOIN

fault patches.
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10.4 Experimental Results and Analysis

10.4.1 Effectiveness

This section presents the effectiveness data on the subjects and analyzes correctness and

acceptability.

Correctness

If a patch can pass all tests, it is considered a correct patch. Table 10.1 shows averaged

percentages of correct patches generated by ALARM and DT. Faulty queries are grouped

by complexity; simple (S ), moderate (M ), and complex (C ), and then by JOIN faults and

WHERE faults. The ALARM and DT columns show the average correct query percentages

for queries with the same complexity and fault class for each database.

The DT approach does not distinguish JOIN types, LEFT JOIN, RIGHT JOIN, or

FULL JOIN. Thus, it cannot localize or repair J4 faults. For JOIN condition faults, the

DT approach can’t generate a patch before exhausting 100GB of disk space (efficiency is

discussed in Section 10.4.2). These are marked as “N/A” in Table 10.1. ALARM is able to

precisely find the JOIN fault location and determine the fault type, thus, the correctness is

very high. For the WHERE faults, both ALARM and the DT approach were effective. I

compared the correctness of ALARM and DT with two-tailed t-test at 0.05 significance level.

The t-value is 0.817, the effect size is 0.446 and the p-value is 0.414. It indicates there is no

significant difference between the two methods at 0.05 significance level. The effectiveness

of both approaches was consistent across the different query groups. The answer to RQ1a

is that ALARM is capable of fixing JOIN fault classes when the DT approach is infeasible

and the correctness for WHERE faults is comparable to DT approach.

ALARM fails to generate correct patches for WHERE faults when it cannot identify

the correct fault inducing column in the fault localization step. Assume there is a W3

faulty clause that uses C.OrderId instead of C.CustId. At the fault localization phase,

ALARM may incorrectly determine that C.OrderId is the fault inducing column. Because
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Table 10.1: Correctness Comparison

Database Complexity Fault Classes ALARM DT

EMP

S
JOIN 1.00 N/A

WHERE 0.83 0.91

M
JOIN 1.00 N/A

WHERE 0.80 0.86

C
JOIN 0.89 N/A

WHERE 0.93 0.87

AW

S
JOIN 0.96 N/A

WHERE 0.90 0.86

M
JOIN 1.00 N/A

WHERE 0.79 0.84

C
JOIN 0.81 N/A

WHERE 1.00 0.83

PLE

S
JOIN 1.00 N/A

WHERE 0.90 0.85

M
JOIN 0.97 N/A

WHERE 0.80 0.87

C
JOIN 0.98 N/A

WHERE 1.00 0.81

DB

S
JOIN 1.00 N/A

WHERE 0.97 0.81

M
JOIN 1.00 N/A

WHERE 0.93 0.82

C
JOIN 1.00 N/A

WHERE 0.93 0.81

Mdbal

S
JOIN 1.00 N/A

WHERE 0.97 0.83

M
JOIN 1.00 N/A

WHERE 0.86 0.82

C
JOIN 1.00 N/A

WHERE 0.62 0.86

Overall
JOIN 0.97 N/A

WHERE 0.88 0.86
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Table 10.2: Acceptability Comparison

Database Query Type Fault Class ALARM DT

EMP

S
JOIN 1.00 N/A

WHERE 0.77 0.12

M
JOIN 1.00 N/A

WHERE 0.87 0.08

C
JOIN 1.00 N/A

WHERE 0.90 0.05

AW

S
JOIN 0.87 N/A

WHERE 0.75 0

M
JOIN 0.97 N/A

WHERE 0.86 0

C
JOIN 0.93 N/A

WHERE 0.90 0.07

PLE

S
JOIN 0.98 N/A

WHERE 0.81 0.09

M
JOIN 0.96 N/A

WHERE 0.85 0.02

C
JOIN 0.91 N/A

WHERE 0.92 0.04

DB

S
JOIN 0.93 N/A

WHERE 0.80 0.05

M
JOIN 0.85 N/A

WHERE 0.87 0.07

C
JOIN 0.89 N/A

WHERE 0.92 0.04

Mdbal

S
JOIN 0.85 N/A

WHERE 0.83 0.06

M
JOIN 0.80 N/A

WHERE 0.89 0.07

C
JOIN 0.79 N/A

WHERE 0.89 0.18

Overall
JOIN 0.92 N/A

WHERE 0.85 0.06

the repair algorithm depends on the identified fault-inducing column to generate a new

clause and replace the existing faulty clause, choosing C.OrderId as the fault-inducing

column in the repair phase would not fix the faulty clause.

Acceptability

I measure patches’ acceptability with similarity (Equation 10.1). Table 10.2 shows the

averaged similarities of the patches generated by ALARM and the DT approach in all the

queries grouped by database, query complexity, and fault type.
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Because ALARM can precisely locate the fault location and type, it can usually fix only

the faulty clause without impacting other correct clauses. Thus, the similarity of ALARM

is very high, with a perfect 1.0 in several cases..

On the other hand, the DT approach is impacted by the “overfitting” problem. It

often selects columns that have more distinct values so that it can construct classification

functions that correctly predict every test row. When databases have many columns with

many distinct values, such as name, id, and date of birth, the DT patches often contain such

columns even when not relevant. This problem is more significant with complicated queries

that reference many columns. The complex queries have the lower similarities across the

five databases in Table 10.2. In particular, the AW database tables have more columns than

the other two, so the patches generated by the DT approach have the lowest similarities.

Below is an example with the correct predicate, the faulty predicate, the patch predicate

generated by ALARM, and the patch predicate generated by the DT approach. It shows

that the ALARM-generated patch only changes the faulty clause, while the DT-generated

patch uses irrelevant columns. Thus, the answer to RQ1b is that ALARM-generated patches

are more acceptable than the DT approach.

• Correct predicate:

(required = t AND questioncode > 7) OR

questionposition = 1 OR

externalsystemid < 70

• Faulty predicate:

(required = t AND questioncode > 8) OR

questionposition = 1 OR

externalsystemid < 70

• Patch generated by ALARM:

(required = t AND questioncode ≥ 8) OR

questionposition = 1 OR
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externalsystemid < 70

• Patch generated by the DT approach:

(questions label = ‘AccessTokens’) OR

(questions surveyid > 9.50 AND questions label = ‘Lead Score’) OR

(questions label = ‘Notes’) OR

(questions status = ‘DELETED’ AND questions label = ‘Quick Notes’)

10.4.2 Efficiency

Table 10.3 shows the average execution times of ALARM and the DT approach in seconds.

Since ALARM and the DT approach are based on test suites, the execution time is relative

to the test suite size, which was the same for both techniques. As shown in Table 10.3,

fixing queries in the largest database EMP and DB took the longest time, and fixing queries

in the smallest database PLE took the least time.

Query complexity also affects the execution time. The execution time of ALARM is

proportional to number of failing rows ∗ number of clauses. For the DT approach, the

execution time is proportional to total number of rows ∗ number of columns, where the

number of columns is proportional to the query complexity. Table 10.3 shows the execu-

tion time increases as the query complexity increases in the smaller databases, PLE and

AW . However, in the large database, EMP, the number of rows was nearly four million, so

the execution time is dominated by the number of rows instead of the query complexity.

For the WHERE faults, the overfitting problem discussed in Section 10.4.1 also impacted

the efficiency of the DT approach. The DT approach generates decision trees whose sizes are

relative to the size of the database and the complexity of the queries. For the JOIN faults,

the DT approach constructs a cross product, which is infeasible for large test databases. For

example, a simple query in the smallest database (Polling Etl) has three tables. The cross

product of three tables with 10,000 rows each could result in a table with 1,000,000,000,000

(one trillion!) rows.
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Table 10.3: Execution Time Comparison (Seconds)

Database Query Type Fault Class ALARM DT

EMP

S
JOIN 278.46 N/A

WHERE 29.86 6927.8

M
JOIN 35.65 N/A

WHERE 141.23 18,384.0

C
JOIN 11.94 N/A

WHERE 46.80 3044.4

AW

S
JOIN 8.35 N/A

WHERE 1.93 63.0

M
JOIN 11.4 N/A

WHERE 1.27 75.2

C
JOIN 41.43 N/A

WHERE 12.03 149.2

PLE

S
JOIN 0.43 N/A

WHERE 5.33 5.6

M
JOIN 0.58 N/A

WHERE 0.90 10.6

C
JOIN 1.04 N/A

WHERE 0.80 102.4

DB

S
JOIN 2.76 N/A

WHERE 40.83 7352.3

M
JOIN 89.80 N/A

WHERE 66.17 14,589.2

C
JOIN 472.52 N/A

WHERE 138.03 24,374.1

Mdbal

S
JOIN 0.43 N/A

WHERE 17.30 963.0

M
JOIN 0.58 N/A

WHERE 10.14 514.0

C
JOIN 1.04 N/A

WHERE 19.71 105.8

Overall
JOIN 63.76 N/A

WHERE 35.49 5100.7

Table 10.4: Execution Time Percentage in Each Step

Step Name ALARM DT
data pre-processing 27% 1%
fault localization 62% N/A
fault repairing 11% 99%
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Overall, the execution time of ALARM is only a fraction of the DT approach. I can

conclude that the answer to RQ2 is that ALARM is much more efficient than the DT

approach.

To further investigate how the two techniques allocate the time, I break down the

execution time for each approach by step and show the result in Table 10.4. In the data

preprocessing step, both approaches label the test data and split them into the different

groups. In addition, ALARM calculates statistical data from database tables. The most

expensive step for ALARM is the fault localization, which involves checking all failing rows,

mutating them to locate the faulty clause, and finding fault inducing columns. Since the

DT approach does not localize faults, this step is marked as “N/A.” In fault repairing step,

ALARM leverages the fault localization information, the fault repair step is much faster.

Note that the statistical computations are done in the pre-processing step, thus saving

time in the repair step. However, DT approach spend almost all of the time in the fault

repairing step. It iterates all columns and check each possible splitting value to derive the

classification rule.

10.5 Threats to Validity

An external threat common to all software engineering studies, is that the subjects may not

be representative. I ameliorated the threat by selecting databases from open source projects

and commercial software, and constructing queries with different complexities using various

fault classes. I used 116 real faulty queries. Moreover, the number of columns and rows in my

subject databases are much larger than in previous studies. The two largest databases use

a lot of numeric and date data types, and relatively few string data types, which influences

which rules come into play the most. I see no reason this would affect the conclusions,

however.

Another external threat is that the implementation of the DT approach may affect the

results. I was careful to implement the DT approach exactly as described in their papers,

and tested the software to ensure it worked as expected.
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An internal threat is that we used a Python library1 to implement the DT approach. The

Python library is the most well-maintained and widely used in the data science community.

In contrast, I tested another Ruby decision tree library2, and found the it to be much slower.

1https://svaante.github.io/decision-tree-id3/
2https://github.com/igrigorik/decisiontree
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Chapter 11: Conclusion and Future Work

This dissertation presents a novel SQL fault localization and repairing technique that targets

two major classes of SQL faults: faults in JOIN clauses and faults in WHERE predicates.

It accurately identifies the fault location and then uses statistical information about test

suites to efficiently repair faults with minimal changes. I implemented this technique into a

tool, ALARM , and compared it with nine state-of-the-art fault localization techniques and

the only existing SQL repair technique DT . I did experiments on 825 faulty queries to eval-

uate my fault localization and fault repair techniques. The fault localization experimental

results show that ALARM is more effective and efficient than all nine of the state-of-the-art

fault localization techniques. The fault repair experimental results show that ALARM is

capable of fixing JOIN fault classes when the DT approach is infeasible. And for WHERE

predicate faults, although the number of passing patches generated by ALARM and DT

are comparable, ALARM ’s patches are more acceptable. In addition, ALARM is highly

efficient and scales well with the number of test rows.

Future work will be in two additional directions. First, I will improve the fault local-

ization and repairing effectiveness. I observed that some faults are not correctly repaired

by ALARM because the queries contained multiple faults, and others because the fault

localization was incorrect. I plan to improve the fault localization and repairing algorithm

to correctly fix such faults. Second, I will study fault localization and repair for more classes

of SQL faults. JOIN and WHERE clauses are the common components in SQL query, and I

will adapt my techniques to faults in other SQL elements, such as GROUP BY aggregation

operations and SELECT target lists. I am also exploring repairs to additional data types,

such as XML and hash sets.
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