
Operator Overloading in C++

Questions:

1

1. With regard to the meaning of the assignment

operator ’=’ in Java, what can you say about the

objects for which the variables u1 and u2 are

holding references?

User u1 = new User(....);

User u2 = u1;

2

2. How do we create a duplicate of an object in

Java?

3

3. Is there anything wrong with this code?

class X implements Cloneable {

// some data members are class types

public X(...) { }

public X clone() {

// call super.clone()

// do something with the exception

// thrown by super.clone()

// clone class type data members individually

}

}

4

4. Is there anything wrong with this code?

We have fixed the return type, but changed the

access specifier. Note that the access specifier

of Object.clone() is protected?

class X implements Cloneable {

// some data members are class type

public X(...) { }

private Object clone() {

// call super.clone()

// do something with the exception thrown

// by super.clone()

// clone class type data members individually

}

}

5

5. Is there anything wrong with this code?

Note that Object.clone() throws

CloneNotSupportedException

The clone of X throws Exception.

class X implements Cloneable {

// has class type data members

public X(...) { }

public Object clone() throws Exception {

// call super.clone()

// clone class type data members individually

}

}

6

6. Is there anything wrong with this code?

class X {

// has class type data members

public X(...) { }

public Object clone()

throws CloneNotSupportedException {

// call super.clone()

// clone class type data members individually

}

}

7

7. Is there anything wrong with this code?

class X implements Cloneable {

// has class type data members

public X(...) { }

public Object clone() {

try {

super.clone();

} catch(CloneNotSupportedException e) {

e.printStackTrace();

}

// clone class type data members individually

}

}

8

Operator Overloading in C++

You have already seen numerous examples of overloaded operators in C++

and Java. For example, when you say in Java

String str = "hello" + "there";

or in C++

string str = "hello" + "there";

you are using the overloaded definition of the ’+’ operator.

9

While you will find overloaded operators in both C++ and Java, you are

not allowed to create your own operator overloadings in Java.

10

When an operator is overloaded in C++, at least one of its operands must

be of class type or enumeration type.

Additionally, at least one of the operands must not be a built-in type. This

keeps a programmer from, say, redefining the meaning of, for example, the

’+’ operator for the int type.

It is also useful to remember that the predefined precedence of an operator

cannot be altered by an overload definition.

An overload definition also cannot alter the predefined arity of an operator,

meaning that an operator that is designated to be only unary (for example,

the logical NOT operator ’ !’) cannot be turned into a binary operator by

overloading.

For operators that can be used for both unary and binary operations (these

being the four operators + - * and &), both arities can be overloaded.

11

Arguments can be passed to the parameters in the overload definitions

either by value or by reference, but not by pointer.

Default arguments for overloaded operators are illegal, except for the op-

erator operator().

12

Operator Tokens and Operator Functions

+ - * / = -> && new new[] delete delete[]

When the arguments supplied to any of these and other operators are of

class type, what the compiler actually invokes is an operator function

that is associated with the operator token.

For example, for the case of class type arguments, associated with the

operator token + is the function with the following operator function

operator+

13

Similarly, associated with the operator token, or operator for short, = is

the operator function

operator=

and with the operator << the operator function

operator<<

14

Overload definitions for operator functions come in two forms:

Definitions that are global and definitions that are member functions for

a class.

An overloaded operator works the same way regardless of which way its

overload definition is implemented.

15

Global Overload Definitions for Operators

class MyComplex {

double re, im;

public:

MyComplex(double r, double i) : re(r), im(i) {}

double getReal() { return re; }

double getImag() { return im; }

};

MyComplex c1(3, 5);

MyComplex c2(1, 4);

MyComplex sum = c1 + c2;

MyComplex diff = c1 - c2;

...

...

16

MyComplex operator+(MyComplex arg1, MyComplex arg2) {

double d1 = arg1.getReal() + arg2.getReal();

double d2 = arg1.getImag() + arg2.getImag();

return MyComplex(d1, d2);

}

MyComplex operator-(MyComplex arg1, MyComplex arg2) {

double d1 = arg1.getReal() - arg2.getReal();

double d2 = arg1.getImag() - arg2.getImag();

return MyComplex(d1, d2);

}

17

ostream& operator<< (ostream& os, const MyComplex& arg) {

double d1 = arg.getReal();

double d2 = arg.getImag();

os << "(" << d1 << ", " << d2 << ")" << endl;

return os;

}

cout << expr1 << exp2 << exp3 ..

18

//MyComplex.cc

#include <iostream.h>

using namespace std;

class MyComplex {

double re, im;

public:

MyComplex(double r, double i) : re(r), im(i) {}

double getReal() const { return re; }

double getImag() const { return im; }

};

MyComplex operator+(const MyComplex arg1, const MyComplex arg2) {

double d1 = arg1.getReal() + arg2.getReal();

double d2 = arg1.getImag() + arg2.getImag();

return MyComplex(d1, d2);

}

MyComplex operator-(MyComplex arg1, MyComplex arg2) {

double d1 = arg1.getReal() - arg2.getReal();

double d2 = arg1.getImag() - arg2.getImag();

return MyComplex(d1, d2);

}

ostream& operator<< (ostream& os, const MyComplex& arg) {

double d1 = arg.getReal();

double d2 = arg.getImag();

os << "(" << d1 << ", " << d2 << ")" << endl;

return os;

}

19

int main()

{

MyComplex first(3, 4);

MyComplex second(2, 9);

cout << first; // (3, 4)

cout << second; // (2, 9)

cout << first + second; // (5, 13)

cout << first - second; // (1, -5)

}

20

Member-Function Overload Definitions for Operators

21

//MyComplexMem.cc

#include <iostream>

using namespace std;

class MyComplex {

double re, im;

public:

MyComplex(double r, double i) : re(r), im(i) {}

MyComplex operator+(MyComplex) const;

MyComplex operator-(MyComplex) const;

// ostream& operator<< (ostream& os); WRONG

// ostream& operator<<(ostream&, MyComplex&); WRONG

friend ostream& operator<< (ostream&, const MyComplex&);

};

MyComplex MyComplex::operator+(const MyComplex arg) const {

double d1 = re + arg.re;

double d2 = im + arg.im;

return MyComplex(d1, d2);

}

MyComplex MyComplex::operator-(const MyComplex arg) const {

double d1 = re - arg.re;

double d2 = im - arg.im;

return MyComplex(d1, d2);

}

/*

ostream& MyComplex::operator<< (ostream& os) { // WRONG

os << "Real part: " << re << " Imag part: " << im << endl;

return os;

}

22

ostream& MyComplex::operator<< (ostream& os, MyComplex c) { // WRONG

os << "Real part: " << c.re << " Imag part: " << c.im << endl;

return os;

}

*/

ostream& operator<< (ostream& os, const MyComplex& c) {

os << "(" << c.re << ", " << c.im << ")" << endl;

return os;

}

int main()

{

MyComplex first(3, 4);

MyComplex second(2, 9);

cout << first; // (3, 4)

cout << second; // (2, 9)

cout << first + second; // (5, 13)

cout << first - second; // (1, -5)

}

23

Complex MyComplex::operator+(const MyComplex arg) const {

double d1 = re + arg.re;

double d2 = im + arg.im;

return MyComplex(d1, d2);

}

Given

MyComplex c1(3, 5);

MyComplex c2(2, 4);

The call

MyComplex result = c1 + c2;

gets translated by the compiler into

MyComplex result = c1.operator+(c2);

Therefore, we can think of c1 as the invoking object and c2 as the argu-

ment object.

24

So the important thing to bear in mind is that for overloaded member-

function operators, one of the arguments is supplied implicitly by the

object that invokes the operator and that in a call such as

25

In general, a construct such as

object1 χ object2

in which χ is a member-function overloaded operator,

is interpreted by the compiler as

object1.operator χ (object2)

implying that object1 is the invoking object for the operator χ.

26

On the other hand, if the operator χ was overloaded with a global defini-

tion, the construct

object1 χ object2

would be interpreted by the compiler as

operatorχ (object1, object2)

27

This implies that the global overloaded operator

ostream& operator<< (ostream& os, const Complex& arg)

{

double d1 = arg.getReal();

double d2 = arg.getImag();

os << "Real part: " << d1 << " Imag part: " << d2 << endl;

return os;

}

cannot be replaced by something like

ostream& Complex::operator<< (ostream& os) { //

os << "Real part: " << re << " Imag part: " << im << endl;

return os;

}

or by something like this

ostream& Complex::operator<< (ostream& os, Complex c) { //

os << "Real part: " << c.re << " Imag part: " << c.im <<

return os;

}

28

Since the output stream operator << is used in the manner

cout << expression;

which means that the left object will be the invoking object for this oper-

ator if it were defined for member-function overloading.

29

friend ostream& operator<< (ostream&, Complex&);

This declaration, which can be either in the private section or in the public

section, allows us to define the overloading by

ostream& operator<< (ostream& os, Complex& c) {

os << "Real part: " << c.re << " Imag part: " << c.im <<

return os;

}

It is important to note that if we had not declared operator<< to be a

friend of Complex, the body of this function would have had no access to

the re and im members of the parameter c, being private as they are.

30

Global Overload Definitions for Unary Operators

Just as is the case with binary operators, if the arity of an operator is unary

with respect to built-in types, then such an operator can be overloaded

for the user-defined types.

As before, this overloading may be accomplished either by supplying a

global overload definition or a member-function overload definition.

31

Consider again the case of the MyComplex class, with just the unary oper-

ator ’-’ defined this time, and the previously presented overloaded binary

operator << so that we can see the results of applying the unary operator

to a MyComplex type.

32

#include <iostream.h>

using namespace std;

class MyComplex {

double re, im;

public:

MyComplex(double r, double i) : re(r), im(i) {}

double getReal() const { return re; }

double getImag() const { return im; }

};

// global overload definition for "-" as a unary operator

MyComplex operator-(const MyComplex arg) {

return MyComplex(-arg.getReal(), -arg.getImag());

}

// global overload definition for "<<" as a binary operator

ostream& operator<< (ostream& os, const MyComplex& arg) {

double d1 = arg.getReal();

double d2 = arg.getImag();

os << "(" << arg.getReal() << ", " << arg.getImag() << ")" << endl;

return os;

}

int main()

{

MyComplex c(3, 4);

cout << c; // (3, 4)

cout << -c; // (-3, -4)

}

33

Member-Function Overload Definitions for Unary Operators

34

#include <iostream.h>

using namespace std;

class MyComplex {

double re, im;

public:

MyComplex(double r, double i) : re(r), im(i) {}

MyComplex operator-() const;

friend ostream& operator<< (ostream&, MyComplex&);

};

//Member-function overload definition for "-"

MyComplex MyComplex::operator-() const {

return MyComplex(-re, -im);

}

//This overload definition has to stay global

ostream& operator<< (ostream& os, MyComplex& c) {

os << "(" << c.re << ", " << c.im << ")" << endl;

return os;

}

int main()

{

MyComplex c(3, 4);

MyComplex z = -c;

cout << z << endl; // (-3, -4)

}

35

The statement

Complex z = -c;

is translated by the compiler into

Complex z = c.operator-();

which makes c the invoking object. Thus the values of re and im available

inside the definition of the operator- function would then correspond to

the Complex number c.

36

