
OO for GUI Design

1

Graphical user interface (GUI) programming is probably the most fertile

application of object-oriented ideas.

The requirements of GUI programming are complex, to say the least.

First of all, there is the issue of layout. How to write a program so that the

layout displayed on a computer terminal maintains its visual aesthetic and

functionality as the user resizes a GUI to suit his/her particular needs?

Then there is the issue of rendering graphics, displaying images, playing

video clips and sounds files — all compute-intensive operations.

Additionally, a GUI must be programmed in such a way that it remains

responsive to user interaction even as it is engaged in compute-intensive

operations.

Over the years, OO has emerged as the best way to meet these diverse

requirements of GUI programming.

2

With regard to what the various OO toolkits can do for GUI design, it

is instructive to ponder the similarities between programming up a func-

tional and aesthetically pleasing GUI, on the one hand, and designing and

constructing a beautiful building, on the other.

There is no science of GUI design, just as there is no science of architecture.

Yet, over the years we have learned that humans have distinct preferences

with regard to how a GUI is laid out and how its functionality is en-

gineered, just as we know about our distinct preferences concerning the

various dimensions of living spaces and how the spaces are put to use.

We could refer to these human preferences as invariances.

3

This analogy with architecture is important to us for two reasons:

First, the programming tools for GUI must not allow easy violation of the

universal human preferences I referred to as invariances, in the same sense

that the written and the unwritten rules of architecture do not allow for

living spaces that are aesthetically and functionally offensive to humans.

4

The second reason for the importance of the architecture analogy is that

just as a study of the history of building construction and design is im-

portant to inculcate in a student a sense of what has worked in the past

and what serves as a foundation for the future, a study of the history of

the GUI toolkits is likely to serve the same purpose.

5

History of Programming for GUI

It all started with X. (arguably true)

The X window system gave us a network-transparent method of working

on remote computers through virtual terminals on workstations.

Although X was developed originally for Unix environments, it’s now avail-

able for practically all other operating systems.

6

Although X was without doubt an enormous development in its own right,

the support it contains for GUI programming consists essentially of

• low-level function calls for drawing lines and rectangles,

• for setting foreground and background colors, and

• for having events, such as those produced by a mouse, reported back

to you.

7

X does not provide facilities for direct creation of what we now take for

granted in modern GUI design – buttons, scrollbars, dialog boxes, popups,

toolbars, tabbed pages, etc.

8

Motif:

The first X based GUI toolkit that facilitated higher-level programming

required for graphical components was Motif, which is a combination of

both a toolkit and a GUI design specification.

Motif makes calls to a lower-level toolkit called Xt (for X toolkit) that sits

on top of Xlib, the X library. Xlib is the lowest-level programming API

for working with X.

Xt, which was one of the first large software systems to simulate object-

orientation directly in C, allows one to directly create a graphical object,

such as a window object, but does not require that the window object

come with a title bar and have a certain “look-and-feel” to it.

The “look-and-feel” specification was supplied by Motif and is now known

as the Motif “look-and-feel.” The modern Common Desktop Environment

(CDE) that ships with most Unix workstations is based on Motif.

9

While Motif was gaining steam within Unix circles, Win32 API was intro-

duced by Microsoft for PC’s.

The main goal of WIN32 API differed from Motif’s goal of performing

network-transparent computing through virtual terminals on graphics en-

abled machines.

But, like Motif, WIN32 provided the basic programming tools for creating

graphical interfaces that users could interact with either by mouse clicking

or through keystrokes.

10

... and then came complaints from applications developers

As demands arose for creating more and more sophisticated user interfaces,

programmers found it cumbersome to work with Motif or Win32.

Programs written using these API’s were often error-prone and difficult to

debug.

With both Motif and Win32, a programmer had to spend far too much

time on getting the syntax and the program flow to work right in rela-

tion to the time for programming in the core functionality needed for an

application.

11

Thus there arose a need for even higher-level toolkits that could hide

bothersome details regarding how to make sure that the events generated

by human interaction actually reached their intended recipients.

Another factor behind the development of the higher-level toolkits was the

issue of portability across diverse platforms.

12

The higher level API’s that have come into existence during the last few

years include

• AWT and SWING in Java,

• Qt in C++,

• wxWindows for both Windows and Unix platforms,

• GNOME/GTK+ in C,

• Microsoft Foundation Classes (MFC),

• and many others.

13

The various GUI design toolkits we will consider all sit on top of a more

native GUI toolkit API (and sometimes on top of a “tower” of API’s).

How far down a high-level API reaches into the underlying lower-level

API’s has a bearing on what visual and design effects can be achieved

with the high-level API.

For example, if a high-level API has to call on Motif to process its GUI

widget construction code, the final “look-and-feel” is likely to correspond

to Motif.

On the other hand, if a high-level API reached all the way into Xlib or

directly into the operating system, it could generate its own look-and-feel.

14

Java Swing Java AWT Gnome Qt

---------- -------- ----- -----

| | | | | |

| | | | | |

| | | GTK+ | |

| | | | | |

| | | | | |

| | | | | |

| | Motif GDK | |

| | | | | |

| | | | | |

| Win32 | | | Win32

| | | | | |

| | | | | |

| | Xt | | |

| | | | | |

| | | | | |

| | ------------------------------- |

| | | Xlib | |

| | ------------------------------- |

| | | |

| | | |

| | | |

--

| OS |

--

15

Overview of Java AWT/Swing Components

In Java, the graphical components one places on a screen come from either

the java.awt package or the various packages that begin with the prefix

javax.swing.

The components are designed so as to generate events when subject to

human interaction.

These events can be captured and processed by objects that implement cer-

tain interfaces defined in the java.awt.event and the javax.swing.event

packages.

16

Top-Level Containers:

AWT/Swing components that are top-level containers are meant for hold-

ing other graphical objects, which can be intermediate-level containers or

atomic components.

Graphical components including other graphical components give rise to

containment hierarchies.

Every Swing program must have at least one top-level container and every

containment hierarchy in a Swing program must have a top-level container

at its root.

Moreover, a GUI component cannot be made visible on a screen unless it

is in some containment hierarchy.

17

Examples of the commonly used Swing top-level containers are

• JFrame

• JDialog

• JApplet

All of these are heavyweight containers.

The heavyweight Swing containers are extensions of their AWT counter-

parts, which are all heavyweight.

18

Intermediate Containers:

Intermediate containers are often not directly visible but are nonetheless

useful for organizing the visual layout of the graphical objects they hold.

Examples: JPanel, JScrollPane, JTabbedPane, etc.

19

Atomic Components:

The self-contained graphical components – referred to as the atomic com-

ponents – are held by the containers.

Examples of these are JButton, JTextField, JScrollBar, etc. All of

the atomic components from the Swing packages are lightweight.

20

Miscellaneous Classes:

These include classes for managing the layout of the components, for con-

trolling the look and feel, for fetching information from the underlying

operating system, etc.

Examples of these are GridLayout, FlowLayout, Toolkit, Graphics,

etc.

21

Object

|

|

|

|

| | | | | | | | | | | | | | |

| | | | | | | | | | | | | | |

| | | | | | | | | | | | | | awt.Graphics

| | | | | | | | | | | | | |

awt.Component | | | | | | | | | | | | |

| | | | swing.BorderFactory| | | | | | | | | awt.Color

| | | | | | | | | | | | |

| swing.Box.Filler | | | | | | | | | | awt.BorderLayout

| | swing.BoxLayout | | | | | | | |

| | | | | | | | | awt.GridLayout

awt.Container | | | | | | | |

| | | | swing.ButtonGroup | | | | | | awt.CardLayout

| | | | | | | | | |

| | | swing.Box | | | | | awt.FlowLayout

| | | | | | | |

| | swing. | | | | awt.Toolkit

| | CellRendererPane | | | |

| | | | | swing.LookAndFeel

| swing.JComponent | | |

| | | | | swing.UIManager

| | | | |

| | | | swing.UIManager.LookAndFeel

| | swing.AbstractButton |

| | | | | swing.FocusManager

| | | | |

| | | | swing.JMenuItem

| | | | | | |

| | | | | | |

| | | swing.JButton | | |

| | | | | swing.JCheckBoxMenuItem

| | | | |

| | | | |

| | swing.JToggleButton | swing.JMenu

| | | | |

| | | | |

| | | | swing.JRadioButtonMenuItem

| | | |

| | | swing.JCheckBox

| | |

| | swing.JRadioButton

| |

| |

| ---

| |

| |

| swing.JList

| |

| swing.JLabel

| |

| swing.JMenuBar

| |

| swing.JPanel

22

| |

| swing.JColorChooser

| |

| swing.JLayeredPane

| |

| |

| swing.JDesktopPane

| |

| swing.JFileChooser

| |

| |

| swing.JPopupMenu

| |

| swing.JProgressBar

| |

| swing.JOptionPane

| |

| swing.JLabel

| |

| |

| swing.DefaultListRenderer

| |

| |

| swing.DefaultListCellRenderer

| | | | | | | | | | | | | | | | | | | |

| | | | | | | | | | | | | | | | | | | |

| | | | | | | | | | | | | | | | | | | swing.JInternalFrame

| | | | | | | | | | | | | | | | | | |

| | | | | | | | | | | | | | | | | | |

| | | | | | | | | | | | | | | | | | swing.JInternalFrame.JDesktopIcon

| | | | | | | | | | | | | | | | | |

| | | | | | | | | | | | | | | | | swing.JComboBox

| | | | | | | | | | | | | | | | |

| | | | | | | | | | | | | | | | swing.JRootPane

| | | | | | | | | | | | | | | |

| | | | | | | | | | | | | | | swing.JScrollBar

| | | | | | | | | | | | | | | |

| | | | | | | | | | | | | | swing.JTable |

| | | | | | | | | | | | | | JScrollPane.ScrollBar

| | | | | | | | | | | | | |

| | | | | | | | | | | | | swing.JScrollPane

| | | | | | | | | | | | |

| | | | | | | | | | | | swing.JSeparator

| | | | | | | | | | | |

| | | | | | | | | | | swing.JSlider

| | | | | | | | | | |

| | | | | | | | | | swing.JSplitPane

| | | | | | | | | |

| | | | | | | | | swing.JTabbedPane

| | | | | | | | |

| | | | | | | | swing.JTextComponent

| | | | | | | | | | |

| | | | | | | | | | swing.JEditorPane

| | | | | | | | | | |

| | | | | | | | | | swing.JTextPane

| | | | | | | | | |

| | | | | | | | | swing.JTextArea

| | | | | | | | |

| | | | | | | | swing.JTextField

23

| | | | | | | | |

| | | | | | | | |

| | | | | | | swing.JToolBar swing.JPasswordField

| | | | | | |

| | | | | | swing.JSeparator

| | | | | | | |

| | | | | | | swing.PopupMenu.Separator

| | | | | | |

| | | | | | swing.JToolBar.Separator

| | | | | |

| | | | | swing.JToolBar

| | | | |

| | | | swing.JToolTip

| | | |

| | | swing.JTree

| | |

| | swing.JViewport

|

|

| |

| |

awt.Window awt.Panel

| | | |

| | | |

| | awt.Dialog awt.Applet

| | | |

| | | |

| | | swing.JApplet

| | |

| | swing.JDialog

| |

| |

| awt.Frame

| |

| |

| swing.JFrame

|

|

swing.JWindow

24

First came AWT with Java in 1995.

From the standpoint of designing sophisticated GUI and applets, AWT

was fairly rudimentary.

Under AWT, each Java component created a corresponding component

using the native GUI API.

This implied that Java could only support those components that existed

in all the important platforms of the day.

This fact – referred to as the “least common denominator” approach –

caused a Java button on a Unix platform to look like a Motif button, and

on a Windows platform to look like a Windows button.

25

While early on, the least common denominator approach of Java to create

the native look-and-feel in GUI was considered to be a positive point, as

time went on the thinking in the community changed as people began to

realize that some components, such as scrollbars, exhibited inconsistent

behaviors across platforms.

26

As a result (or perhaps because of changing tastes), the developers of

applications wanted a programmable look-and-feel that would give the

developers the option of having their GUI’s have the same look-and-feel

across platforms.

Enter Swing at this juncture.

27

The Swing packages (which form a large constituent of the Java Foun-

dation Classes (JFC)), besides giving the application developers a pro-

grammable look-and-feel, has many other innovations:

• Compared to pure AWT, computationally less-demanding lightweight

components,

• better debugging support,

• more efficient event handling,

• decorative borders,

• ability to place icons on components,

• double buffering, etc.

28

Overview of C++ Qt Widgets

Qt widgets are objects of type QObject, as is made clear by the class

hierarchy shown in the tree diagram below:

29

QObject

|

|

| ||||||||| |||||||| | ||||||||

| ||||||||| |||||||| | ||||||||

QWidget ||||||||QClipboard |||||||| QCanvas |||||||QApplication

| |||||||| |||||||| |||||||

| |||||||QAccel |||||||QSignalMapper ||||||QNPInstance

| ||||||| ||||||| ||||||

| ||||||| ||||||QFileIconProvider|||||QToolTipGroup

| ||||||| |||||| |||||

| ||||||QServerSocket |||||QSessionManager ||||QSignal

| |||||| ||||| ||||

| |||||QSocketNofifier||||| |||QSound

| ||||| ||||QSocket |||

| ||||| |||| |||

| ||||| |||| ||QNetworkProtocol

| ||||QTranslator |||QUrlOperator || |

| |||| ||| || |

| |||| ||QValidator |QAction |

| |||QStyleSheet || || | |

| ||| || || | |

| ||| || |QDoubleValidator | |

| ||| || | | |

||| || QIntValidator | |

| ||| || | |

| ||| |QNetworkOperation QDragObject|

| ||| | | |

| ||QTimer QStyle | |

| || | | --

| |QTimer | | ||

| | QCommonStyle | ||

| | || | QFtp|

| QLayout || | |

| || |QWindowsStyle | QLocalFs

| || | | |

| |QGridLayout | | |

| | | QPlatinumStyle |

| | QMotifStyle |

| QBoxLayout ||| ----

| || ||| ||||

| || ||| ||||

| || ||| |||QIconDrag

| || ||| |||

| || ||QCDEStyle ||QImageDrag

| |QHBoxLayout || ||

| | |QMotifPlusStyle||

| QVBoxLayout | |QTextDrag

| QSGIStyle |

| QStoredDrag

| ||

| ||

| |QColorDrag

| |

| QUrlDrag

|

--

30

| ||||| |||| ||||| |||||

| ||||| |||| ||||| |||||

| ||||| |||| ||||| |||||

QDialog |||| QDial |||QCombobox ||||| ||||QScrollBar

| |||| ||| ||||| ||||

| |||| ||| ||||| ||||

| |||QHeader ||QSizeGrip ||||QWorkspace |||QTabBar

| ||| || |||| |||

| ||| || |||| |||

| ||QLineEdit |QTabWidget |||QToolBar ||QSemiModal

| || | ||| || |

| || | ||| || |

| |QMainWindow QSlider ||QStatusBar |QGLWidget |

| | || | |

| | || | QProgressDialog

| | || |

| QNPWidget |QXtWidget QButton

| | |

| | |

| | |

| QFrame ----

| | ||||

| | ||||

| | |||QCheckBox

| | |||

| | ||QPushButton

| | ||

| | |QRadioButton

| | |

| | QToolButton

| |

| |

| --------------------------

----- ||||||| ||||||

||||||| ||||||| ||||||

||||||| ||||||QLabel |||||QMenuBar

||||||QColorDialog |||||| |||||

|||||| |||||QPopupMenu ||||QLabel

|||||QFontDialog ||||| ||||

||||| ||||QProgressBar |||QLCDNumber

||||| |||| |||

||||QFileDialog |||QSpinBox ||QSplitter

|||| ||| ||

|||| ||QWidgetStack |QTableView

|||| || | |

|||| || | QMultiLineEdit

|||QInputDialog || |

||| |QHBox QScrollView

||| | | |

||| | QVBox |

||| | |

||QMessageDialog QGroupBox |

|| ||| |

|| ||| |

|QTabDialog ||QHGroupBox |

| || |

| |QVGroupBox |

QWizard | |

| ------

31

QButtonGroup ||||||

|| ||||||

|| |||||QCanvasView

|QHButtonGroup |||||

| ||||QIconView

QVButtonGroup ||||

|||QListView

|||

||QListView

||

|QTable

|

|

QTextView

|

|

QTextBrowser

32

Examples of top-level widgets would be QFrame, QDialog, QFileDialog,

etc..

Intermediate containers, intended mostly for organizing the more atomic

widgets, include QGroupBox, QHBox, QVBox, etc.

There are very many atomic widgets; for example, QButton, QStatusBar,

QLabel etc.

Example of the utility classes include QApplication, QSocket, QLayout,

etc.

33

Overview of GNOME/GTK+ Widgets

GtkObject

^

|

|

|

--

| | | | | | | | | |

| | | | | | | | | |

| | | | | | | | | |

| GnomeClient | | GnomeCanvasItem | | GnomeEntryEdit | |

| . | | |. | | | |

| GnomeMDI | | GnomeMDIChild | GnomeDockLayout |

| | | | |

GtkWidget GtkData | GtkItemFactory GtkXmHTMLParser

| |

| |

| |

| --

| | | | | | | | |

| | | | | | | | |

| GnomeCanvasLine | | | GnomeCanvasGroup | | GnomeCanvasPolygon

| | | | | |

| GnomeCanvasRE | | GnomeCanvasImage |

| | | | |

| |GnomeCanvasRect| |

| | | |

| | GnomeCanvasText GnomeCanvasWidget

| |

| GnomeCanvasEllipse

|

--

| | | | | | | | | | | |

| | | | | | | | | | | |

| | | | | | | | | | | |

GtkContainer | | GtkMisc | | GtkCalendar | | | GtkRuler |

| | | | | | | | | |

| GnomeAnimator | | GnomePixmap| GtkDial | GtkEditable |

| | | | | |

| GtkRange | GtkSeparator GtkProgress GtkDrawingArea

| |

| |

| ---------------------------------

| | | | |

| GtkLabel GtkArrow GtkImage GtkPixmap

| |

| |

| |

| ----------------------------

| | | |

34

| GtkAccelLabel GtkClock GtkTipsQuery

|

|

| | | | | | | | | | | | | | | | |

| | | | | | | | | | | | | | | | |

| | | | | | | | | | | | | | | | |

GtkBin | | GtkList | | GtkCList | | GtkFixed | | GtkNotebook | | | GtkXmHTML

| | | | | | | | | | | |

| GtkTRee | GtkPacker | GtkSocket | GtkTable | GtkPaned | |

| | | | | | |

| GtkToolbar GtkMenuShell GnomeDock GnomeDockBand GtkBox GtkLayout

| | |

| | |

| | |

-- |GnomeCanvas

| | | | | | | | | | |

| | | | | | | | | | |

| | | | | | | | | | |

GtkWindow | | GtkFrame | GtkItem | GtkInvisible | GtkViewPort |

| | | | | | | | |

| | | | | | | | |

| GtkDockItem | | GtkEventBox | GtkHandleBox GtkButton |

| | | | | |

| | | | | |

| | GtkAspectFrame | | |

| | | | |

| GtkScrolledWindow | | |

| | | |

| ------------------------------- | |

| | | | | |

| GtkMenuItem GtkListItem GtkTreeItem | |

| | | |

| | | |

| | | |

| ---------------------------------- | |

| | | | | |

| GtkCheckMenuItem | GtkTearofMenuItem | |

| | | |

| GtkPixmapMenuItem | |

| | |

| --------------------------------- |

| | | | | |

| GnomeColorPicker GnomeHRef GtkToggleButton GtkOptionMenu |

| |

| |

| --------------------------------

| | | |

| | | |

| GtkHBox GtkVBox GtkButtonbox

| | |

| | |

| | |

| -- |

| | | | | | | |

| | | | | | | |

| GnomeProcBar GnomeAppBar | GnomeFileEntry | GtkStatusbar |

| | | |

| GtkCombo GnomeNumberEntry |

35

| |

| |

-- |

| | | | | | |

| | | | | | -------------

| | | | | | | |

GnomeDialog | GnomeApp GtkPlug | | GtkHButtonBox GtkVButtonbox

| | | |

| GtkColorSlectionDialog GtkFileSlection GtkFontSelectionDialog

|

|

|

--

| | | |

| | | |

GnomeAbout GnomeMessageBox GnomePropertyBox GnomeScores

Many of the non-widget classes that hang from the root class GtkObject are meant for displaying graphics that can

consist of shapes, images, text, etc.

36

