
 

2. The Critical Section Problem 

 

A code segment that accesses shared variables (or other shared resources) and that has to 

be executed as an atomic action is referred to as a critical section. 

 

 while (true) { 

 entry-section 

 critical section // contains accesses to shared variables or other resources.  

 exit-section 

 non-critical section // a thread may terminate its execution in this section.  

 } 

 

The entry- and exit-sections that surround a critical section must satisfy the following 

correctness requirements: 

 

� mutual exclusion: When a thread is executing in its critical section, no other threads 

can be executing in their critical sections.  

 

� progress: If no thread is executing in its critical section and there are threads that wish 

to enter their critical sections, then only the threads that are executing in their entry- or 

exit-sections can participate in the decision about which thread will enter its critical 

section next, and this decision cannot be postponed indefinitely. 

 

� bounded waiting: After a thread makes a request to enter its critical section, there is a 

bound on the number of times that other threads are allowed to enter their critical 

sections before this thread’s request is granted.  

 

 

 



 

One solution: 

 disableInterrupts(); // disable all interrupts 
 critical section 
 enableInterrupts(); // enable all interrupts 
 

This disables interrupts from the interval timer that is used for time-slicing, and prevents 

any other thread from running until interrupts are enabled again.  

 

However: 

� commands for disabling and enabling interrupts are not always available to user code.  

� a thread on one processor may not be able to disable interrupts on another processor. 
 

2.1 Software Solutions to the Two-Thread Critical Section Problem 

 

Threads T0 and T1 are attempting to enter their critical sections.  

 

All assignment statements and expressions involving shared variables in the entry and 

exit sections are atomic operations. 

 

There are no groups of statements that must be executed atomically.  

 

Thus, the entry- and exit-sections themselves need not be critical sections.  

 

The solutions below assume that the hardware provides mutual exclusion for individual 

read and write operations on shared variables.  

 

 

 

 

 



 

2.1.1 Incorrect Solution 1 

 

Threads T0 and T1 use variables intendToEnter0 and intendToEnter1 to indicate their 

intention to enter their critical section. A thread will not enter its critical section if the 

other thread has already signaled its intention to enter. 

 

 boolean intendToEnter0=false, intendToEnter1=false;  
 T0               T1 
 while (true) {     while (true) { 
 while (intendToEnter1) { ; } (1)    while (intendToEnter0) { ; } (1) 
 intendToEnter0 = true;    (2)    intendToEnter1 = true;    (2) 
 critical section    (3)    critical section       (3) 
 intendToEnter0 = false;  (4)    intendToEnter1 = false;    (4) 
 non-critical section    (5)    non-critical section     (5) 
 }     } 
 

This solution does not guarantee mutual exclusion.  

 

The following execution sequence shows a possible interleaving of the statements in T0 

and T1 that ends with both T0 and T1 in their critical sections. 
 

 T0 T1  Comments 
 (1) T0 exits its while-loop  
 context switch → 
 (1) T1 exits its while-loop 
 (2) intendToEnter1 is set to true 
 (3) T1 enters its critical section 
 ← context switch 
 (2) intendToEnter0 is set to true 
 (3) T0 enters its critical section 
 

 

 

 

 



 

2.1.2 Incorrect Solution 2 

 

Global variable turn is used to indicate which thread is allowed to enter its critical 

section, i.e., the threads take turns entering their critical sections. The initial value of turn 

can be 0 or 1. 

 

 int turn = 1; 
 
 T0 T1 
 while (true) {  while (true) { 
 while (turn != 0) { ; } (1) while (turn != 1) { ; } (1) 
 critical section  (2) critical section (2) 
 turn = 1;  (3) turn = 0; (3) 
 non-critical section (4) non-critical section (4) 
 }             } 
 

T0 and T1 are forced to alternate their entries into the critical section, ensuroing mutual 

exclusion and bounded waiting. However, the progress requirement is violated. 

 

Assume that the initial value of turn is 1: 

 T0 T1 Comments 
 (1) T1 exits its while-loop 
 (2) T1 enters and exits its critical section 
 (3) turn is set to 0  
 (4) T1 terminates in its non-critical section 
 ← context switch 
 (1) T0 exits its while-loop \ 
 (2) T0 enters and exits its critical section  
 (3) turn is set to 1  
 (4) T0 executes its non-critical section  
 (1) T0 repeats (1) forever 
 

Thread T0 cannot exit the loop in (1) since the value of turn is 1 and turn will never be 

changed by T1.  



 

2.1.3 Incorrect Solution 3 

 

This solution is a more “polite” version of Solution 1.  

 

When one thread finds that the other thread also intends to enter its critical section, it sets 

its own intendToEnter flag to false and waits for the other thread to exit its critical 

section. 

 

 T0 T1 
 while (true) {    while (true) { 
 intendToEnter0 = true; (1)  intendToEnter1 = true; (1) 
 while (intendToEnter1) { (2)  while (intendToEnter0) { (2) 
 intendToEnter0 = false; (3)   intendToEnter1 = false; (3) 
 while(intendToEnter1) {;} (4)   while(intendToEnter0) {;} (4) 
 intendToEnter0 = true; (5)   intendToEnter1 = true; (5) 
 }   }    
 critical section  (6)  critical section (6) 
 intendToEnter0 = false; (7)  intendToEnter1 = false; (7) 
 non-critical section  (8)  non-critical section (8) 
 }    } 
 

This solution ensures that when both intendToEnter0 and intendToEnter1 are true, only 

one of T0 and T1 is allowed to enter its critical section.  

 

Thus, the mutual exclusion requirement is satisfied.  



 

There is a problem with this solution, as illustrated by the following execution sequence: 

 

 T0 T1    Comments 
 (1) intendToEnter0 is set to true   
 (2) T0 exits the first while-loop in the entry section 
 (6) T0 enters its critical section; intendToEnter0 is true 
 context switch → 
 (1)   intendToEnter1 is set to true 
 (2)-(3)  intendToEnter1 is set to false 
 (4)   T1 enters the second while-loop in the entry section  
  ← context switch 
 (7) intendToEnter0 is set to false 
 (8) T0 executes its non-critical section 
 (1) intendToEnter0 is set to true 
 (2) T0 exits the first while-loop in the entry section  
 (6) T0 enters its critical section; intendToEnter0 is true 
  context switch → 
 (4) T1 is still waiting for intendToEnter0 to be false 
  ← context switch 
 (7) 
 … repeat infinitely 
 

In this execution sequence, T0 enters its critical section infinitely often and T1 waits 

forever to enter its critical section. 

 

Thus, this solution does not guarantee bounded waiting. 



 

2.1.4 Peterson's Algorithm 

 

Peterson’s algorithm is a combination of solutions (2) and (3). If both threads intend to 

enter their critical sections, then turn is used to break the tie. 

 

 boolean intendToEnter0 = false, intendToEnter1 = false; 
 int turn; // no initial value for turn is needed. 
 
 T0 T1 
 while (true) {  while (true) { 
 intendToEnter0 = true;  (1) intendToEnter1 = true; (1) 
 turn = 1;  (2) turn = 0; (2) 
 while (intendToEnter1 && (3) while (intendToEnter0 && (3) 
 turn == 1) { ; }     turn == 0) { ; }  
 critical section  (4) critical section (4) 
 intendToEnter0 = false; (5) intendToEnter1 = false; (5) 
 non-critical section  (6) non-critical section (6) 
 } } 
 

Peterson’s algorithm is short but tricky: 

� If threads T0 and T1 both try to enter their critical sections, which thread wins the 

race, i.e., gets to enter? (Hint: Suppose T0 executes (2) before T1 executes (2).) 

 

� Suppose the winning thread exits its critical section and immediately tries to reenter; 

will this thread succeed in entering again or will the other thread enter? (Hint: Whose 

turn will it be?) 

 

� If only one of T0 or T1 wants to enter their critical section, does it matter whose turn it 

is? (Hint: Operator && is a short-circuit operator.)



 

2.1.5 Using the volatile modifier 

 

To optimize speed, the compiler may allow each thread in Peterson’s algorithm to keep 

private copies of shared variables intendToEnter0, intendToEnter1, and turn. If this 

optimization is performed, updates made to these variables by one thread will be made to 

that thread’s private copies and thus will not be visible to the other thread.  

 

This potential inconsistency causes an obvious problem in Peterson’s algorithm. 

 

In Java, the solution to this problem is to declare shared variables (that are not also 

declared as double or long) as volatile: 

  

 volatile boolean intendToEnter0 = false; volatile boolean intendToEnter1 = false;  

 volatile int turn; 

 

Declaring the variables as volatile ensures that consistent memory values will be read by 

the threads.  

 

C++ also allows variables to be declared as volatile. However, C++ and Java have 

different memory models, so even if C++ variables are volatile, some hardware 

optimizations may cause Peterson’s algorithm to fail in C++ (see Section 2.6). 

 

Shared variables do not always have to be volatile variables. We will see that the 

programming language or thread library may handle compiler and hardware optimization 

issues for us. 



 

2.2 Ticket-Based Solutions to the n-Thread Critical Section Problem 

 

In the n-thread critical section problem, there are n threads instead of just two. When a 

thread wishes to enter a critical section, it requests a ticket. Threads enter their critical 

sections in ascending order of their ticket numbers.  

 

2.2.1 Ticket Algorithm 

volatile int number[n];   // number[i], initially 0, is the ticket number for thread Ti 

Each thread Ti, 0 ≤ i ≤ n-1 executes the following code: 

 volatile long next = 1;  // next ticket number to be issued to a thread 
 volatile long permit =1; // ticket number permitted to enter critical section 
 while (true) { 
 number[i] = InterlockedExchangeAdd(&next,1); (1)  
 while (number[i] != permit) { ; } (2) 
 critical section (3) 
 ++permit;  (4) 
 non-critical section  (5) 
 } 
 

InterlockedExchangeAdd() is part of the Win32 API. A call such as the following: 

 oldValueOfX = InterlockedExchangeAdd(&x, increment); 

atomically adds the value of increment to x and returns the old value of x (i.e., before 

adding increment to x).  

 

 number[i] = InterlockedExchangeAdd(&next, 1) 

is equivalent to the following critical section: 

 number[i] = next;  // these statements are executed  
next = next + 1;  //     as a critical section 

 

Function InterlockedExchangeAdd() can be implemented with special hardware 

instructions. Note that the values of permit and next grow without bounds. 
 

 



 

2.2.2 Bakery Algorithm 

The Bakery algorithm does not require any special hardware instructions.  

 

Each thread Ti, 0 ≤ i ≤ n-1, gets a ticket with a pair of values (number[i], i) on it. The 

value number[i] is the ticket number, and i is the ID of the thread. For two tickets (a,b) 

and (c,d) define:  

  Ticket (a,b) < Ticket (c,d) if a < c or (a == c and b < d). 

An incorrect version: each thread Ti, 0 ≤ i ≤ n-1, executes: 

 while (true) {  
  number[i] = max(number) + 1; (1)  // non-atomic 
  for (int j=0; j<n; j++ ) (2) 
 while (j != i && number[j] != 0 && (3)  // array number[] is initially all zeros 
 (number[j],j) < (number[i],i) ) { ; } (4) 
  critical section (5) 
  number[i] = 0; (6) 
  non-critical section (7) 
 } 
The call to max(number) returns the maximum value in array number. Since different 

threads may execute (1) at the same time, thread Ti may obtain the same ticket number as 

another thread (in which case thread IDs are used to break ties).  

 

This algorithm does not satisfy the mutual exclusion requirement: 

 T0 T1 Comments 
 (1)  T0 evaluates max(number) + 1, which is 1, but 
   a context switch occurs before assigning 1 to number[0]  
  context switch → 
 (1)  T1 sets number[1] to max(number) + 1, which is 1 
 (2)  T1 starts its for-loop 
 (3)  T1 exits its while and for-loops 
 (4)  T1 enters its critical section 
 ← context switch 
 (1)  T0 assigns 1 (not 2) to number[0]. 
 (2)  T0 starts its for-loop 
 (3)  T0 exits its while- and for-loops since  number[0] and  
                                               number[1] are 1,  and (number[0],1) < (number[1],2) 
 (4)  T0 enters its critical section while T1 is in its critical section 
 



 

Thus, once thread Ti, i>0, starts executing statement (1), number[i] should not be 

accessed by other threads during their execution of statement (3) until Ti finishes 

executing statement (1).  

 

The complete bakery algorithm is given below. It uses the following global array: 

 volatile bool choosing[n]; // initially all elements of choosing are false.  

If choosing[i] is true, then thread Ti is choosing its ticket number at statement (2). 

 

 while (true) { 
 choosing[i] = true;  (1) 
 number[i] = max(number)+1;  (2) 
 choosing[i] = false;  (3) 
 for (int j=0; j<n; j++) {  (4) 
 while (choosing[j]) { ; } (5) 
  while ( j != i && number[j] !=0 && (number[j],j) < (number[i],i) ) { ; } (6) 
 } 
 critical section  (7) 
 number[i] = 0;   (8) 
 non-critical section  (9)  
 } 
 

The Bakery algorithm satisfies the mutual exclusion, progress, and bounded waiting 

requirements. However, the values in number grow without bound. (How long will it take 

these numbers to overflow?) 

 

Lamport showed that the Bakery algorithm can be made to work even when read and 

write operations are not atomic, i.e., when the read and write operations on a variable 

may overlap. 
 

 

 

 

 



 

2.3 Hardware Solutions to the n-Thread Critical Section Problem 

 

The win32 InterlockedExchange function atomically exchanges a pair of 32-bit values 

and behaves like the following atomic function: 

 

 long InterLockedExchange(long* target, long newValue) { // executed atomically 

 long temp = *target; *target = newValue; return temp; 

 } 

 

2.3.1 A Partial Solution 

 

This solution uses InterlockedExchange to guarantee mutual exclusion and progress, but 

not bounded waiting.  

 volatile long lock = 0; 
 
 Each thread executes: 
   while (true) { 
 while (InterlockedExchange(const_cast<long*>(&lock), 1) == 1) { ; } (1) 
 critical section  (2) 
 lock = 0;  (3) 
 non-critical section  (4)  
 }  
 

� If the value of lock is 0 when InterlockedExchange is called, lock is set to 1 and 

InterlockedExchange returns 0 allowing the calling thread to enter its critical section. 

 

� While this thread is in its critical section, calls to InterlockedExchange will return the 

value 1, keeping the calling threads delayed in their while-loops.  

 

If critical sections are small and contention among threads for the critical sections is low, 

then unbounded waiting is not a big problem. 

 



 

2.3.2 A Complete Solution 

 

This solution to the n-process critical section satisfies all three correctness requirements.  

 

 volatile bool waiting[n];  // waiting[i] is true when Ti is waiting to enter  
 
 Each thread Ti executes the following code: 
 volatile bool waiting[n]; // initialized to false 
 volatile long lock, key; // initialized to 0 
 while (true) { 
 waiting[i] = true; (1) 
 key = 1; (2) 
 while (waiting[i] && key) {  (3) 
 key = InterlockedExchange(const_cast<long*>(&lock), 1); (4) 
 } (5) 
 waiting[i] = false; (6) 
 critical section (7) 
 j = (i+1) % n; (8) 
 while ((j != i) && !waiting[j]) { j = (j+1) % n; } (9) 
 if (j == i)  (10) 
 lock = 0; (11) 
 else (12) 
 waiting[j] = false; (13) 
 non-critical section (14)  
 } 
 

Thread Ti  stays in the while-loop in (3) until either InterlockedExchange returns 0 or 

waiting[i] is set to 0 by another thread when that thread exits its critical section. 

 

When thread Ti exits its critical section it uses the while-loop in statement (9) to search 

for a waiting thread.  

� If the while-loop terminates with j == i, then no waiting threads exist;  

� otherwise, thread Tj is a waiting thread and waiting[j] is set to 0 to let Tj exit the 

while-loop at statement (3) and enter its critical section. 
 

 



 

2.3.3 A Note on Busy-Waiting 
 

Busy-waiting: a waiting thread executes a loop that maintains its hold of the CPU.  

 

Busy-waiting wastes CPU cycles. To reduce the amount of busy-waiting, some type of 

sleep instruction can be used.  

 

 while (waiting[i] && key) {  
 Sleep(100); // release the CPU 
 key = InterlockedExchange(const_cast<long*>(&lock), 1); 
 } 
 

Win32:  Sleep(time); time in millisec. 

Java:   try {Thread.sleep(time);} catch(InterruptedException e) {}, time in millisec. 

Pthreads: sleep(time), time in seconds.  

 

Executing a sleep statement results in a context switch that allows another thread to 

execute.  

 

If contention among threads for the critical section is low and critical sections are small, 

then there may be little chance that a thread will execute the while-loop for more than a 

few iterations.  

 

In such cases, it may be more efficient to use busy-waiting and avoid the time-consuming 

context switch caused by executing a sleep statement. 



 

A potential performance problem exits on multiprocessor systems with private caches 

and cache-coherence protocols that allow shared, writeable data to exist in multiple 

caches.  

 

Suppose two processors are busy-waiting on the value of lock in the complete solution 

above.  

� When a waiting processor modifies lock in statement (4) it causes the modified lock to 

be invalidated in the other processor’s cache.  

� As a result, the value of lock can bounce repeatedly from one cache to the other  

 

The solution is to busy-wait on a read of lock: 

 while (waiting[i] && key) { (3) 
 while (lock) { ; } // wait for lock to be released  (4) 
 key = InterlockedExchange(const_cast<long*>(&lock), 1); // try to grab lock (5) 
 } 

 

When a processor wants to acquire the lock, it spins locally in its cache without 

modifying and invalidating the lock variable.  

 

When the lock is eventually released, function InterlockedExchange is used to attempt to 

change the value of lock from 0 to 1.  

 

If another thread “steals” the lock between statements (4) and (5), then looping will 

continue at statement (3).  

 

In general, the performance of busy-waiting algorithms depends on the number of 

processors, the size of the critical section, and the architecture of the system.  



 

2.4 Deadlock, Livelock and Starvation 

 

One general correctness requirement of concurrent programs is the absence of deadlock, 

livelock and starvation.  

 

2.4.1 Deadlock 

 

A deadlock requires one or more threads to be blocked forever.  

 

Sleep blocks a thread temporarily, but the thread is eventually allowed to run again.  

 

A thread that executes a receive statement to receive a message from another thread will 

block until the message arrives, but it is possible that a message will never arrive. 

 

Let CP be a concurrent program containing two or more threads. Assume there is an 

execution of CP that exercises an execution sequence S, and at the end of S, there exists a 

thread T that satisfies these conditions: 

� T is blocked due to the execution of a synchronization statement (e.g., waiting to 

receive a message) 

� T will remain blocked forever, regardless of what the other threads will do 

 

CP is said to have a deadlock. A global deadlock refers to a deadlock in which all non-

terminated threads are deadlocked. 

 
Example: 
 Port p,q; 
    T1        T2 
 msg = p.receive();   msg = q.receive(); // receive blocks until a message arrives 
 q.send(msg);     p.send(msg); 



 

2.4.2 Livelock 

 

We assume that some statements in CP are labeled as "progress statements”, indicating 

that threads are expected to eventually execute these statements (e.g., last statement of a 

thread, first statement of a critical section, a statement immediately following a loop.)  

 

Assume there is an execution of CP that exercises an execution sequence S, and at the 

end of S there exists a thread T that satisfies the following conditions, regardless of what 

the other threads will do: 

� T will not terminate or deadlock 

� T will never make progress 

 

CP is said to have a livelock. Livelock is the busy-waiting analog of deadlock. A 

livelocked thread is running, not blocked, but it will never make any progress. 

 

Incorrect solution 2 in Section 2.1.2 has a livelock:  

� T0 executes (1), (2), (3), and (4). Now turn is 1. 

� T1 executes (1), (2), and (3) and terminates in its non-critical section. Now turn is 0. 

� T0 executes (1), (2), (3), and (4), making turn 1, and executes its while-loop at (1) 

 

At the end this sequence, T0 is stuck in a busy-waiting loop at (1) waiting for turn to 

become 0. T0 will never enter its critical section, i.e., make any progress. Thus, T0 is 

livelocked. 



 

2.4.3 Starvation 

Assume that CP contains an infinite execution sequence S satisfying the following three 

properties: 

(a) S ends with an infinite repetition of a fair cycle of statements. (A cycle of statements 

in CP is said to be fair if each non-terminated thread in CP is either always blocked in 

the cycle or is executed at least once. Non-fair cycles are not considered here, since 

such cycles cannot repeat forever when fair scheduling is used.) 

(b) There exists a non-terminated thread T that does not make progress in the cycle. 

(c) Thread T is neither deadlocked nor livelocked in the cycle. In other words, when CP 

reaches the cycle of statements that ends S, CP may instead execute a different 

sequence S’ such that T makes progress or terminates in S’.  

CP is said to have a starvation.  

 

When CP reaches the cycle of statements at the end of S, whether thread T will starve 

depends on how the threads in CP are scheduled. Note that fair scheduling of the threads 

in CP does not guarantee a starvation-free execution of CP. 

 

Incorrect solution 3 in section 2.1.3 has a possible starvation. 

(a) T0 executes (1), (2), and (6). Now T0 is in its critical section, intendToEnter[0] is 

true. 

(b) T1 executes (1)-(4). Now intendToEnter [1] is false and T1 is waiting for 

intendToEnter [0] to be false. 

(c) T0 executes (7), (8), (1), (2) and (6). Now T0 is in its critical section and 

intendToEnter [0] is true. 

(d) T1 resumes execution at (4) and is still waiting for intendToEnter [0] to be false. 

(e) T0 executes (7), (8), (1), (2) and (6). 

(f) T1 resumes execution at (4). 

 …  Infinite repetition of steps (e) and (f) ... 

In this sequence, T1 never makes progress in the cycle of statements involving (e) and (f).  



 

 

However, when execution reaches step (e), the following sequence may be executed 

instead: 

(e) T0 executes (7).   

(f)  T1 resumes execution at (4) and executes (5), (2), (6), and (7). 

 

Thus, T1 is not deadlocked or livelocked, but it is starved in the cycle involving (e) and 

(f).  

 

If contention for a critical section is low, as it is in many cases, then starvation is 

unlikely, and solutions to the critical section problem that theoretically allow starvation 

may actually be acceptable.  

 

This is the case for the partial hardware solution in section 2.3.1. 
 



 

2.5 Tracing and Replay for Shared Variables  

 

Assume: 

� Read and write operations are atomic, i.e. each thread issues its read and write 

operations according to the order in its code and its operations are serviced by the 

memory system one-at-a-time.  

� The total order that results is consistent with the (partial) order specified by each 

thread’s code. (As we will see in Section 2.5.6, this assumption may not always hold.) 

� The interleaving of read and write operations is the only source of non-determinism. 

(e.g., no uninitialized variables or memory allocation problems.)  

 

An execution of a program with the same input and the same sequence of read and write 

operations will produce the same result.  

 

2.5.1 ReadWrite-sequences 

 

In general: 

� A thread executes synchronization events on synchronization objects.  

� Each shared object in a concurrent program is associated with a sequence of 

synchronization events, called a SYN-sequence, which consists of the synchronization 

events that are executed on that object.  

� A SYN-sequence of a concurrent program is a collection of the SYN-sequences for its 

synchronization objects 

 

For programs like Peterson’s algorithm, the synchronization objects are shared variables, 

and the synchronization events are read and write operations on the shared variables.  
 

.  



 

A SYN-sequence for a shared variable v is a sequence of read and write operations, called 

a ReadWrite-sequence.  

 

A version number is associated with each read and write operation performed by a thread. 

Each write operation on a shared variable creates a new version of the variable and thus 

increases the variable’s version number by 1. 

 

An execution can be replayed by ensuring each thread reads and writes the same versions 

of variables that were recorded in the execution trace. 

 

The format for a read event is:  Read(thread ID, current version number of variable). 

 

The format for a write event is:  Write(thread ID, old version number of variable,  

             total readers),  

where 

� old version number is the number before the increment by this write 

� total readers is the number of readers that read the old version of the variable. 

 

 int s = 0; // shared variable 
 Thread1 Thread2 Thread3 
 temp = s; temp = s;  s = s + 1; 
 
 A possible ReadWrite-sequence of s is 

 Read(3,0)   // Thread3 reads version 0 of s  
 Read(1,0)   // Thread1 reads version 0 of s  
 Write(3,0,2)  // 2 readers read version 0 of s 
 Read(2,1)   // Thread2 reads version 1 of s 
 

This ReadWrite-sequence specifies that during replay Thread3 should write s after 

Thread1 reads s but before Thread2 reads s.  

 

 



 

Note: 

� The value read or written by a memory operation is not recorded in a ReadWrite-

sequence. If the order of read and write operations is replayed as specified by a 

ReadWrite-sequence, then the values read and written will also be replayed.  

� We do not actually need to label the events in a ReadWrite-sequence as “Read” or 

“Write” events. The type (read or write) of the next operation to be performed by a 

thread is fixed by its source code, the program input, and the operations that precede 

it. We specify “Read” or “Write” to make the sequence more readable. 
 



 

2.5.2 An Alternative Definition of ReadWrite-sequences 

 

For each Read or Write operation, record the ID of the thread that executes the operation.  

 

 1, 1, 1, 1, 1, 2, 2, 2 // Thread1 executed 5 ops and then Thread2 executed 3 ops.  

 

Compress this sequence into 

 

 (1, 5), (2, 3) // format is (a, b): a is the thread ID and b is the number of operations 

 

This indicates that Thread1 executed the first five operations (1, 5) then Thread2 

executed the next three (2, 3).  

 

Compressing sequences may reduce the amount of space that is required for storing 

traces. 



 

2.5.3 Tracing and Replaying ReadWrite-sequences 

 

During program tracing, information is recorded about each read and write operation, and 

a ReadWrite-sequence is recorded for each shared variable.  

 

During program replay, the read and write operations on a shared variable are forced to 

occur in the order specified by the ReadWrite-sequence recorded during tracing.  

 

Read and write operations are instrumented by adding routines to control the start and 

end of the operations: 

 Read(x) {     Write(x) { 
 startRead(x); startWrite(x); 
 read value of x; write new value of x; 
 endRead(x); endWrite(x); 
 } } 

 

Functions startRead(), endRead(), startWrite(), and endWrite() contain the trace and 

replay code. Listing 2.1 shows a sketch of these functions.  

 

In trace mode, these functions record the thread IDs of the reading and writing threads 

and the version numbers of the variables . They also keep track of the total number of 

threads that read each version of a variable. 

 

In replay mode, startRead(x) delays a thread’s read operation until the version number of 

a variable matches the version number recorded during tracing. If two or more readers 

read a particular version during tracing, then they must read the same version during 

replay, but these reads can be in any order. Write operations are delayed in startWrite(x) 

until the version number of x matches the version number recorded during tracing, and 

until totalReaders reaches the same value that it reached during tracing.  



 

startRead(x) { 
 if (mode == trace) {  
 ++x.activeReaders; // one more reader is reading x 
 ReadWriteSequence.record(ID,x.version); // record read event for x  
 } 
 else { // replay mode 
 // get next event to be performed by thread ID 
  readEvent r = ReadWriteSequence.nextEvent(ID);  
 myVersion = r.getVersion(); // find version of x read during tracing 
 while (myVersion != x.version) delay; // wait for correct version of x to read 
 } 
} 
endRead(x) { 
 ++x.totalReaders; // one more reader has read this version of x 
 --x.activeReaders; // one less reader is reading x (ignored in replay mode) 
} 
startWrite(x) { 
 if (mode = trace) { 
 // wait for all active readers to finish reading x 
 while (x.activeReaders>0) delay; 
 // record write event for x 
 ReadWriteSequence.record(ID,x.version,x.totalReaders);  
 } 
 else { // replay mode 
  // find version modified during tracing 
  writeEvent w = ReadWriteSequence.nextEvent(ID); 
  myVersion = w.getVersion(); 
 // wait for correct version of x to write 
 while (myVersion != x.version) delay;  
  // find count of readers for previous version 
 myTotalReaders = w.getTotalReaders(); 
 // wait until all readers have read this version of x 
  while (x.totalReaders < myTotalReaders) delay; 
 } 
} 
endWrite(x) { 
 x.totalReaders = 0; 
 ++x.version; // increment version number for x 
} 
 
Listing 2.1 Tracing and Replaying a ReadWrite-sequence. 



 

2.5.4 Class Template sharedVariable<> 

 

Class template sharedVariable is used to create shared variables that are of primitive 

types such as int and double.  

 

Class sharedVariable provides operators for adding, subtracting, assigning, comparing, 

etc, and implements functions startRead, endRead, startWrite, and endWrite, for tracing 

and replaying the read and write operations in the implementations of these operators.  

 

Listing 2.3 shows the implementation of operator+=( ).  
 

template <class T> 
class sharedVariable { 
public: 
 const sharedVariable<T>& operator+=(const sharedVariable<T>& sv); 
 … 
private: 
 T value; // actual value of the shared variable 
 … 
}; 
 

template<class T> 
sharedVariable<T>::operator+=(const sharedVariable<T>& sv) const { 
// implementation of operation A += B, which is shorthand for A = A + B 
 T svTemp, thisTemp; 
    startRead(*this); 
    thisTemp = value;   // read A 
 endRead(*this); 
 startRead(sv); 
 svTemp = sv.value;   // read B 
 endRead(sv); 
 startWrite(*this); 
 value = thisTemp + svTemp; // write A 
 endWrite(*this); 
 return *this; 
} 
Listing 2.3 Implementation of sharedVariable<T>::operator+=( ). 
 

 



 

2.5.5 Putting it all Together 
 

Listing 2.4 shows a C++ implementation of Peterson’s algorithm using sharedVariables. 

Each thread enters its critical section twice. 

 

sharedVariable<int> intendToEnter1(0), intendToEnter2(0), turn(0); 
const int maxEntries = 2; 
class Thread1: public TDThread {  // TDThread generates thread IDs 
private: 
 virtual void* run() { 
 for (int i=0; i<maxEntries; i++) { 
 intendToEnter1 = 1; 
 turn = 2; 
 while (intendToEnter2 && (turn == 2))  ; 
 // critical section 
 intendToEnter1 = 0; 
 } 
 return 0; 
 } 
}; 
class Thread2 : public TDThread { 
private: 
 virtual void* run() { 
 for (int i=0; i<maxEntries; i++) { 
 intendToEnter2 = 1; 
 turn = 1; 
 while (intendToEnter1 && (turn == 1))  ; 
 // critical section 
 intendToEnter2 = 0; 
 } 
 return 0; 
 } 
}; 
int main() { 
 std::auto_ptr<Thread1> T1(new Thread1); std::auto_ptr<Thread2> T2(new Thread2); 
 T1->start(); T2->start(); T1->join(); T2->join(); 
 return 0; 
} 
Listing 2.4 Peterson’s algorithm using class template sharedVariable<>. 
 

 



 

Figure 2-5 shows ReadWrite-sequences produced for shared variables intendtoEnter1, 

intendToEnter2, and turn. A totally-ordered sequence is given in Fig. 2-5 in the text. 

 

ReadWrite-sequence for intendToEnter1: 
1 0 0 // T1: intendtoenter1 = 1 
2 1 // T2: while(intendtoenter1 ... ) –  T2 is busy-waiting 
1 1 1 // T1: intendtoenter1 = 0 
2 2 // T2: while(intendtoenter1 ... ) – T2 will enter its critical section 
1 2 1 // T1: intendtoenter1 = 1 
2 3 // T2: while(intendtoenter1 ... ) – T2 is busy-waiting 
1 3 1 // T1: intendtoenter1 = 0 
2 4 // T2: while(intendtoenter1 ... ) –  T2 will enter its critical section 
 
ReadWrite-sequence for intendToEnter2: 
2 0 0 // T2: intendtoenter2 = 1 
1 1 // T1: while(intendtoenter2 ... ) – T1 will enter its critical section 
2 1 1 // T2: intendtoenter2 = 0 
2 2 0 // T2: intendtoenter2 = 1 
1 3 // T1: while(intendtoenter2 ... ) – T1 is busy-waiting 
1 3 // T1: while(intendtoenter2 ... ) – T1 will enter its critical section 
2 3 2 // T2: intendtoenter2 = 0 
 
ReadWrite-sequence for turn: 
1 0 0 // T1: turn = 2 
2 1 0 // T2: turn = 1 
1 2 // T1: while(... && turn == 2) – T1 will enter its critical section 
2 2 // T2: while(... && turn == 1) – T2 is busy-waiting 
2 2 // T2: while(... && turn == 1) – T2 will enter its critical section 
1 2 3 // T1: turn = 2 
1 3 // T1: while(.. && turn == 2) – T1 is busy-waiting 
2 3 1 // T2: turn = 1 
1 4 // T1: while(... && turn == 2) – T1 will enter its critical section 
2 4 // T2: while(... && turn == 1) – T2 is busy-waiting 
2 4 // T2: while(... && turn == 1) – T2 will enter its critical section 
 

Figure 2.5 ReadWrite-sequences for sharedVariables intendtoEnter1, intendToEnter2, 
and turn. 
 
 

 

 



 

2.5.6 A Note on Shared Memory Consistency 

 

We have been assuming that read and write operations in different threads are 

interleaved, but operations in the same thread occur in the order specified by that thread’s 

code.  

 

 

Lamport: A multiprocessor system is sequentially consistent if the result of any execution 

is the same as if the operations of all the processors were executed in some sequential 

order, and the operations of each individual processor appear in this sequence in the order 

specified by its program.  

 

 

Sequential consistency does not require the actual execution order of operations to be 

consistent with any particular sequential order. Operations of the same processor may be 

performed in an order that differs from program order as long as both orders give the 

same result. 

 

 

Similarly, the events exercised during replay may be performed in an order that differs 

from the original execution as long as both executions give the same result (e.g., two 

concurrent write events on different shared variables can be performed in either order). 

 



 

Sequential consistency may not hold for several reasons: 

 

� Due to performance optimizations performed by the compiler or the memory 

hardware, the actual order of read and write operations by a thread may be different 

from the order specified in the program and the result of the execution may violate the 

semantics of sequential consistency. 

 

� If multiple copies of the same shared variable exist, as is the case with cache-based 

multiprocessor systems and certain compiler optimizations, and if all the copies are 

not updated at the same time, then different threads can individually observe different 

ReadWrite-sequences during the same execution. 
 

 

In such cases: 

 

� The effects of compiler and hardware optimizations create a larger number of possible 

interleavings than is implied by the program’s source code.  

 

� The actual order of read and write operations might not be known at the program 

level; rather, the order may be known only at the hardware level.  

 

� Verifying program correctness becomes a “monumental task” 

 



 

Example: 
 
 int x = 1;     // x and y are shared variables 
 boolean y = false; 
 Thread1 Thread2 
 x = 0; if (y) 
 y = true; /* what is the value of x? */ 
 

Thread2 might find that y is true, but x is not 0: 

 

Problem 1: If each thread is allowed to keep a private copy of shared variable y in a 

register in order to speed up access to y, then the update to y by Thread1 will not be 

visible to Thread2. Thus, Thread2 will always find that y is false. 

 

Problem 2: Hardware optimizations such as allowing write operations to overlap can 

result in reorderings of the write operations in Thread1. Thus, y may be assigned 

true before x is assigned 0. 

 

Problem 3: A compiler optimization may reorder the assignment statements in Thread1 

so that the assignment to y is performed before the assignment to x. 

 

Guaranteeing sequential consistency would rule out these and some other optimizations, 

which would also mean that these optimizations could not be used to speed up individual 

sequential processors.  

 

Instead of slowing down all the processors, programmers are asked to identify the places 

in the program at which the optimizations should be turned off, e.g., declaring a variable 

as volatile. 
 



 

Declaring a variable as volatile indicates that the value of the variable may be read or 

written from outside the thread or even outside the program in which the variable 

appears.  

 

In the example program above, the value of variable y in Thread2 can be changed by 

Thread1. If y is declared as volatile, the compiler will ensure that updates to y by Thread1 

are immediately visible to Thread2.  

 

A variable’s memory location may be mapped to a data port for an input device: 

� This allows the program to perform input simply by reading the value of the variable. 

� Since the variable is written by the input device, not by the program, the compiler may 

assume that the value of the variable never changes and then perform optimizations 

that are based on this incorrect assumption.  

� Declaring the variable as volatile turns these optimizations off for this variable. 
 

In our example program above, we can deal with problem (1) above by declaring y to be 

volatile: 

 volatile boolean y = false; 
 int x = 1;  
 

This prohibits the compiler from allocating y to a register.  
 

However, in versions of Java before J2SE 5.0, problems (2) and (3) remain. In these 

earlier versions, reads and writes of volatile variables cannot be reordered with reads and 

writes of other volatile variables, but they can be reordered with reads and writes of non-

volatile variables.  

 

This type of reordering is prohibited in J2SE 5.0.  
 



 

To address problems (2) and (3), and to ensure that the reordering rules for volatile 

variables are obeyed, the compiler emits special “memory barrier” instructions, which 

control the interactions among the caches, memory, and CPUs.  

 

 

For example, on a Pentium processor, the atomic XADD (Exchange and Add) instruction 

is a memory barrier.  

 

 

Prior to executing a memory barrier instruction, the processor ensures that all previous 

read and write operations have been completed. 

 

 

The semantics of volatile variables and other issues related to shared memory consistency 

in Java are spelled out in the Java Memory Model, which was updated in J2SE 5.0.  

 

 

Since C++ does not have threads built-in to the language, C++ does not have a memory 

model like Java’s. The reorderings that are permitted in a multithreaded C++ program 

depend on the compiler, the thread library being used, and the platform on which the 

program is run. 

 

 

God news: The high-level synchronization constructs that we will study in later chapters 

are implemented with memory barrier instructions that guarantee sequential consistency 

as a side effect of using the constructs to create critical sections. 


