
The Journal of Systems and Software 81 (2008) 2413–2416
Contents lists available at ScienceDirect

The Journal of Systems and Software

journal homepage: www.elsevier .com/ locate/ jss
Controversy Corner

What do software architects really do?

Philippe Kruchten *

Electrical and Computer Engineering, University of British Columbia, 2332 Main Mall, Vancouver, BC, Canada V6T 1Z4

a r t i c l e i n f o a b s t r a c t
Article history:
Received 24 June 2008
Received in revised form 19 August 2008
Accepted 19 August 2008
Available online 28 August 2008

Keywords:
Software architecture
Software architect
Antipattern
Time-management
0164-1212/$ - see front matter � 2008 Elsevier Inc. A
doi:10.1016/j.jss.2008.08.025

* Tel.: +1 604 8275654; fax: +1 604 822 5949.
E-mail address: pbk@ece.ubc.ca
To be successful, a software architect—or a software architecture team, collectively—must strike a deli-
cate balance between an external focus—both outwards: Listening to customers, users, watching technol-
ogy, developing a long-term vision, and inwards: driving the development teams—and an internal,
reflective focus: spending time to make the right design choices, validating them, and documenting them.
Teams that stray too far away from this metastable equilibrium fall into some traps that we describe as
antipatterns of software architecture teams.

� 2008 Elsevier Inc. All rights reserved.
1. Introduction

‘‘—Mr. Beck, what is software architecture?” asked a participant
at an OOPSLA workshop in Vancouver in the fall of 1992. ‘‘—Soft-
ware architecture?” replied Kent, now famous for being the father
of XP (eXtreme Programming, not the O.S.), ‘‘well, it is what soft-
ware architects do.” (Chuckles in the audience.) ‘‘—So then, what
is an architect?” ‘‘—Hmm, ‘software architect’ it’s a new pompous
title that programmers demand to have on their business cards
to justify their sumptuous emoluments.”

In the following four years I was going to lead a rather large
team of software architects and I often ask myself that very ques-
tion: ‘‘what do architects really do?” and was also asked this by my
management and my customers. Since then I have seen many
architecture teams in many countries, in companies of all sizes
and various domains, and I have witnessed a wide range of good,
not-so-good, and really bad answers to this question.

2. Architects design the architecture, no?

The first obvious answer that comes to mind is:

Software architects should design, develop, nurture, and maintain
the architecture of the software-intensive systems they are
involved with.

It is not a simple, satisfactory answer, since there is no univer-
sally accepted definition of what software architecture is. And this
would bring us back to the original question.
ll rights reserved.
So a software development organization, based on its context—
domain, culture, assets, staff expertise, etc.—must come up with
some delimitation of what constitutes software architecture, and
what is beyond software architecture. And this definition, this ‘‘thin
line in the sand” that separates architectural decisions from all other
design decisions, including the detailed ones captured in the code,
must be made visible to all parties involved. And it may have to be
revisited, redefined, and adjusted as an architecture emerges, and
as the team expands and the organizational expertise grows.

Let us assume for now that the architects’ responsibilities are
the part of both the design and the design decisions that have
long-lasting impact on some of the major quality attributes of a
software-intensive system: cost, evolution, performance, decom-
posability, safety, security, etc, and still able to support the func-
tionality expected by its end user.

Then this is what software architects should be focused on, this is
what software architects should do: make design choices, validate
them, and capture them in various architecture related artifacts.

3. Architectural antipatterns

But things are not so simple. There are several ‘‘antipatterns”
that will make a software architect or software architecture team
fail miserably if they were only to design the architecture. An anti-
pattern—a concept introduced by Koenig (1995)—documents a
common mistake made during software development. While sev-
eral authors have looked into architecture antipatterns (Brown
et al., 1998; Mowbray, 2001), they mostly focus on antipatterns
in the architectural design, and not so much in the organization
and the process, unlike for example Coplien and Harrison (2005)
or Ambler et al. (2005).

mailto:pbk@ece.ubc.ca
http://www.sciencedirect.com/science/journal/01641212
http://www.elsevier.com/locate/jss


2414 P. Kruchten / The Journal of Systems and Software 81 (2008) 2413–2416
Here are a few common antipatterns:

3.1. Antipattern: creating a perfect architecture, for the wrong system

A software architect who is not communicating regularly with
the customer, the end users, or their representatives (e.g., the prod-
uct manager) is likely to miss the target, particularly as the target is
moving, or rather, as the target is only gradually understood. Am-
bler and his colleagues call it ‘‘Goldplating.”
3.2. Antipattern: creating a perfect architecture, but too hard to
implement

A software architect who does not understand the (maybe lim-
ited) skills, capability and experience of the implementation
team(s) that will continue and finish the work will create enor-
mous levels of stress and frustration, and likely not deliver a qual-
ity product in time. The architectural effort has turned into a
computer science research project. In Ambler et al. it is called
‘‘Strive for Perfection”; related is Coplien’s pattern ‘‘Architect’s
Implement”: Involving the architects in implementing the archi-
tecture would mitigate this antipattern.
3.3. Antipattern: architects in their ivory tower

Worse is the architecture team that lives isolated in some other
part of the organization—another floor, another building, another
country—and who comes up after some months with a complete
architecture, out of the blue. To their complete surprise, they will
experience rejection: an apparent misfit on both fronts—functional
and implementation. This is especially the case if the developers
(the nonarchitects) had a few months to make some progress
and they have in some ways made some architectural decisions,
under some other name. See Ambler’s ‘‘Ivory Tower” pattern. A
special case of this antipattern is the ‘‘Architecture watch”, an
architecture group that only scouts technologies and provides rec-
ommendations to other groups, but is not making design decisions
and is not accountable for anything, as I have witnessed in two
large telecommunication companies. Ambler has two antipatterns
that are similar: ‘‘30,000 ft. and Climbing”, and ‘‘Real-world
Disconnect”.

Finally, there is another issue that cannot be completely ig-
nored; it has to do with who has been chosen to be the architects.
It is very likely that you have appointed this role some of your
most talented staff—good at manipulating abstractions, wide expe-
rience of a range of systems and technologies, good communica-
tion skills, good domain knowledge, etc.—and you may want to
use some of these skills for other tasks than just building architec-
tural views. You want them to speak to the new prospective cus-
tomers, to show off the organization’s technical expertise, to
help this or that team that experiences a difficult technical issue.
You want them to review the architecture of another project, to
take part of a due diligence process to acquire a company, to pres-
ent papers a conference to strut your stuff, or to merely extinguish
some nasty fire. But if you are not careful, this leads to another
antipattern:
3.4. Antipattern: the absent architects

No or little architecture design progress is made: the architects
are always away doing fascinating things or fighting fires. It is very
easy to slip in this mode, especially after some initial good pro-
gress and early successes, which brought some fame on the
architects.
4. Roles and responsibilities of an architect (or an architecture
team)
The roles and responsibilities of an architect can be usefully be
captured in some kind of a team ‘‘charter” or ‘‘mission”, that must
be adjusted to each organization or project. The list below is de-
rived from the charter of a large team that I led in the mid-
1990’s (Kruchten, 1999).

1. Defining the architecture of the system. All the usual technical
activities associated with design. Understanding requirements,
qualities, extracting architecturally-significant requirements,
making choices, synthesizing a solution, exploring alternatives,
validating them, etc. For certain challenging prototyping activ-
ities, the architects may have to use the services of software
developers and testers.

2. Maintaining the architectural integrity of the system. Through
regular reviews, writing guidelines, etc. and presenting the
architecture to various parties, at different levels of abstraction
and technical depth.

3. Assessing technical risks.
4. Working out risk mitigation strategies/approaches.
5. Participating in project planning.
6. Proposing order and content of development iterations. For

many effort estimation aspects, or for the partition of work
across multiples team, managers need the assistance of
architects.

7. Consulting with design, implementation, and integration teams.
Because of their technical expertise, architects are drawn into
problem-solving and fire-fighting activities that are beyond
solving strictly architectural issues.

8. Assisting product marketing and future product definitions. The
architects have insights into what is feasible, doable, or science
fiction and their presence in a product definition or marketing
team may be very effective.

As you see, beyond item #1, many activities involve some other
party: project management for example, and are not merely fo-
cused around the architecture, the design, the architectural proto-
type. These activities map well onto Bredemeyer’s Architect
Competency Framework (2002) and its five main categories: tech-
nology, consulting, strategy, organizational politics and leadership.

We need also to keep in mind that the good architects should
bring a good mix between domain knowledge, software develop-
ment expertise, and communication skills.

Once we identify (and possibly refine) the long list of what we
expect the architects to be doing, the next question is: how do we
keep a good balance between all these activities”? How do we
avoid the temptation to always, day after day, week after week,
solve the most urgent problem, or the most interesting problem,
or extinguish the latest fire? (The squeaky wheel syndrome.) Or,
conversely, it may bring forward the question: do we have the
right people with the right expertise in our current software archi-
tecture team?
5. Allocating time

To avoid falling in any of the traps or antipatterns mentioned
above, and to help maintain a delicate balance between all the
forces that an architect is submitted to, I came up in the mid-
1990s with a simple time-management practice, summarized in
the figure below, extracted from (Kruchten, 2004) (see Fig. 1).

It assumes that you are collecting timesheets, to account of
where the architects spend their productive time. This is some-
thing done by many organization, though often with task



Getting input:
-user, requirement
-other architecture
-technology

Providing Information
-communicating architecture
-assisting other stakeholders

Architecting:
-design
-validation
-prototyping
-documenting
-etc….

50%

25%

25%

Fig. 1. What do architect really do?
Fig. 2. The [60:30:10] antipattern – goldplating.

Fig. 3. The [70:15:15] antipattern – ivory tower.

P. Kruchten / The Journal of Systems and Software 81 (2008) 2413–2416 2415
categories not quite adapted to what architects really do. In gen-
eral, both globally across the whole architecture team (if you have
more than one architect) and on average over the lifecycle, my rec-
ommendation is that the architects should allocate their time in a
50:25:25 (internal:inwards:outwards) ratio as follows:

� Internal focus: 50%About 50% of their time focused on architect-
ing per se: architectural design, prototyping, evaluating, docu-
menting, etc.

� External focus:About 50% of their time interacting with other
stakeholders. This in turn has two facets:
� Inwards: 25%25% getting input from the outside world: listen-

ing to customers, users, product manager, and other stake-
holders (developers, distributors, customer support, etc.).
Learning about technologies, other systems’ architecture,
and architectural practices.

� Outwards: 25%25% providing information or help to other
stakeholders or organizations: communicating the architec-
ture: project management, product definition.

This corresponds roughly to the architectus reloadus and archi-
tectus aryzus roles described by Martin Fowler (2003).

The numbers come from my experience in managing a l0-per-
son architecture team in 1992–1995. This apparently crude, off
the cuff, partitioning of time has drawn lots of comments, feed-
back, and push-backs from my colleagues and customers since
then, but in the end, unless your situation is really very special, I
have not been convinced by any substantive evidence to change
the numbers [50, 25, 25] over the last 10 years. (But as is often
the case in software engineering, I do not have a scientific proof
of my little theory, just anecdotal evidence.).
6. Antipatterns revisited

Let us revisit some of our antipatterns, by simply contrasting
the three ratios [internal:inwards:outwards].

6.1. [60:30:10] Goldplating (see Fig. 2)

This software architecture team is not engaged enough with its
users, particularly the developers. They are probably doing a good
technical job, as they are getting plenty of input, but if they do not
regularly provide value to their immediate environment, their in-
put will be too late and be ignored. They have to consistently pro-
vide value to the team.
6.2. [70:15:15] Ivory tower (see Fig. 3)

This is a software architecture team that has isolated itself; it is
doing far too much navel gazing. They may enjoy themselves, but
they are simply not engaged enough with external stakeholders;
they are not getting enough input from the users and developers,
and they are not providing enough value to their software develop-
ment organization: such as advocating the architecture, providing
assistance to other teams. Even if they do a good job technically,
they will rapidly fall off the radar screen, and will be seen as not
bringing value.

6.3. [30:40:30] Absent architect (see Fig. 4)

This is a software architecture team that is spending far too much
time traveling the world. Unless this is a very mature system that re-
quires very little architectural work (in which case, maybe the team
is overstaffed?), they will run into architectural difficulties.

6.4. [25:25:50] Just consultants (see Fig. 5)

This is a software architecture team that is acting more as an
internal consulting shop; or their travel and conference budget is
simply too large. If their focus is helping internally, maybe this
should be made explicit; if their focus is helping externally, maybe
they should review their cost-effectiveness?

This is certainly a case where you may start questioning the
architecture team’s composition and also some of its activities.



Fig. 4. The [30:40:30] antipattern – absent architect.

Fig. 5. The [25:25:50] antipattern – just consultants.

2416 P. Kruchten / The Journal of Systems and Software 81 (2008) 2413–2416
Are they doing the job of the product definition team, or should
they be simply integrated in one of the development team?

7. Variations

Over time the ratios will fluctuate, but not dramatically. Anything
approaching one the antipatterns above starts to be suspicious and
indicative of some underlying pending issue, organization imbal-
ance, or misplaced focus. Yes, the ratio will fluctuate over time,
and from individual to individual. There will be more internal focus
in the elaboration phase of the first development cycle of a rather no-
vel system. There will be more outward focus during construction
and transition phases, to assist the development teams. While the
important point is the overall ratio for a whole team, and various
individual will have different time usage patterns, I would also wor-
ry if an individual architect would never go outside his office, never
see a user, or on the opposite spend all of his time outside.

8. Pragmatics

This is not rocket science to implement. If you are in a large
company that has a time reporting system, then have ‘them’ create
the 3 categories above, or map existing ones into these three buck-
et (if meaningful). Except for absences (e.g., holidays, etc.), have all
architect activities without exception fall in one of the three buck-
ets: internal, inwards, and outwards? Reporting accuracy down to
the minute is useless—the day or the half-day is often enough.

At first, architects will be somewhat puzzled as to which bucket
something goes, so define simple guidelines:

� Who were you working with? Other architects, customers,
analysts?

� Who benefited the most? Us, the architects? Or another party?
Were you primarily listening and learning, or were you inform-
ing, presenting, preaching, convincing? Were you acting as a
consultant to another organization?

� Express ‘‘blends” in triplets. Blends are activities that are com-
prised of a combination of internal, inwards and outwards tasks.

For example:

– Defined API for authentication services: [100, 0, 0] � 2 days.
– Explained the architecture to a potential vendor: [0, 10,

90] � 4 h.
– Had a workshop with the database team: [10, 50, 40] � 8 h.
– Attended a software engineering conference: [0, 100,

0] � three days.
– Planned iteration 4 with PMO: [0, 0, 100] � 2 h.

9. Conclusion

To keep an architecture team well-focused and balanced in all
its expectations, I have suggested tracking the productive time
spent by architects by sorting it in three categories: internal (archi-
tecture design), external (both inwards and outwards communica-
tion) and keeping them over time roughly in the ratio [50:25:25].
Major deviations should attract the attention of the architect or
project managers and possibly some examination of the current fo-
cus. I will be happy to hear from the readers their own experience,
and any evidence that either refutes of corroborates these results.

Many thanks to the editors and reviewers of JSS for their
encouragement and pointy criticisms, as well to readers of previ-
ous version, notably the SEI crew.

References

Ambler, S.W., Nalbone, J., Vizdos, M.J., 2005. The Enterprise Unified Process –
Extending the Rational Unified Process. Prentice Hall, Upper Saddle River, NJ.

Bredemeyer, D., 2002. Architecture Competency Framework. <http://
www.bredemeyer.com/pdf_files/ArchitectCompetencyFramework.PDF>.

Brown, W.J., Malveau, R.C., McCormick III, H.W.S., Mowbray, T.J., 1998. AntiPatterns:
Refactoring Software Architectures, and Projects in Crisis. John Wiley & Sons.

Coplien, J.O., Harrison, N.B., 2005. Organizational Patterns of Agile Software
Development. Prentice-Hall, Upper Saddle River, NJ.

Fowler, M., 2003. Who needs an architect? IEEE Software 20 (4), 2–4.
Koenig, A., 1995. Patterns and Antipatterns. Journal of Object-Oriented

Programming 8 (1), 46–48.
Kruchten, P., 1999. The software architect, and the software architecture team. In:

Donohue, P. (Ed.), Software Architecture. Kluwer Academic Publishers, Boston,
pp. 565–583.

Kruchten, P., 2004. Training Material for the Course ‘Software Architecture and
Iterative Development – Principles and Practice. Kruchten Engineering Services
Ltd. (<http://www.kruchten.com/site/courses.html>).

Mowbray, T.J., 2001. AntiPatterns in software architecture. In: 23rd International
Conference on Software Engineering (ICSE’01), ACM, Toronto, p. 998c.

Philippe Kruchten is professor of software engineering in the department of
Electrical and Computer Engineering of the University of British Columbia which he
joined in 2004. He has been a software architect most of his career first at Alcatel
and then at Rational Software, where he also led the development of the Rational
Unified Process� (RUP)�. He has a mechanical engineering diploma and a doctorate
degree in information systems from French institutions.

http://www.bredemeyer.com/pdf_files/ArchitectCompetencyFramework.PDF
http://www.bredemeyer.com/pdf_files/ArchitectCompetencyFramework.PDF
http://www.kruchten.com/site/courses.html

	What do software architects really do?
	Introduction
	Architects design the architecture, no?
	Architectural antipatterns
	Antipattern: Creating creating a perfect architecture, for the wrong system
	Antipattern: Creating creating a perfect architecture, but too hard to implement
	Antipattern: Architects architects in their ivory tower
	Antipattern: The the absent architects

	Roles and responsibilities of an architect (or an architecture team)
	Allocating time
	Antipatterns revisited
	[60:30:10] Goldplating (see Fig. blank 2)
	[70:15:15] Ivory tower (see Fig. blank 3)
	[30:40:30] Absent architect (see Fig. blank 4)
	[25:25:50] Just consultants (see Fig. blank 5)

	Variations
	Pragmatics
	Conclusion
	References


