A MinMax Example

	\mathbf{L}	\mathbf{C}	\mathbf{R}
\mathbf{U}	$3,-3$	$-2,2$	$2,-2$
\mathbf{M}	$-1,1$	0,0	$4,-4$
\mathbf{D}	$-4,4$	$-3,3$	$1,-1$

"Pure strategy minmax" for Row player? M means Column player can make at most 1
"Pure strategy minmax" for Column player?
C
(M, C) is not a Nash Equilibrium!

Mixed Strategy MinMax

	\mathbf{L}	\mathbf{C}	\mathbf{R}
\mathbf{U}	$3,-3$	$-2,2$	$2,-2$
\mathbf{M}	$-1,1$	0,0	$4,-4$
\mathbf{D}	$-4,4$	$-3,3$	$1,-1$

Consider Column player playing ($1 / 3,2 / 3,0$)
R plays U: gets $1-4 / 3=-1 / 3$
R plays M : gets $-1 / 3+0=-1 / 3$
R plays D: gets $-4 / 3-6 / 3=-10 / 3$
R is indifferent between U and M. Can guarantee herself a payoff of $(-1 / 3)$ by mixing them $(1 / 6,5 / 6)$

But how do we find this?

Compute Column player's minmax strategy

Minimize U_{1}^{*}
subject to $\sum_{k \in A_{2}} u_{1}\left(a_{1}^{j}, a_{2}^{k}\right) s_{2}^{k} \leq U_{1}^{*}$

$$
\sum_{k \in A_{2}} s_{2}^{k}=1
$$

Constrain Column player's strategy to be a probability distribution.

Row player's utility from
$\forall j \in A_{1} \Rightarrow$ any action must be either exactly the minmax value or less (in which case it will be played with 0 probability)

The Dual

Maximize U_{1}^{*}
subject to $\sum_{j \in A_{1}} u_{1}\left(a_{1}^{j}, a_{2}^{k}\right) s_{1}^{j} \geq U_{1}^{*} \quad \forall k \in A_{2} \square$
Row player's utility under any action selected by
Column player must be at least the maxmin value

Computing Row player's maxmin strategy!

Ben-Gurion's Tri-lemma

(Based on James Stodder, "Strategic Voting and Coalitions: Condorcet's Paradox and Ben-Gurion's Trilemma" Int. Rev. of Econ. Ed. (2005))

Introduction

Soviet era joke: God comes to the Soviet people and says: "I will give each of you a choice of three blessings in life, but you can only have two out of the three. You can be an honest person, you can be a smart person, or you can be a member of the Communist Party. If you are smart and honest, then you cannot be a communist. If you are a smart communist, then you cannot be honest. And if you are an honest communist, then obviously, you must not be very smart."

Ben-Gurion’s "tri-lemma"

In November 1947 ... David Ben-Gurion, then the leader of the Zionist movement in Palestine ... did not shrink from clearly laying out the choice before the Jewish people ... Who were they? A nation of Jews living in all the land of Israel, but not democratic? A democratic nation in all the land of Israel, but not Jewish? Or a Jewish and democratic nation, but not in all the land of Israel? Instead of definitively choosing among these three options, Israel's two major political parties - Labor and Likud - spent the years 1967 to 1987 avoiding a choice ... not on paper, but in day-to-day reality.
(Friedman, 1989, pp. 253-4)

Your setting: Starting a business

G: Good works, H: Honesty, P:Profitability

Left: G > H > P
Center: $\mathrm{P}>\mathrm{G}>\mathrm{H}$
Right: $\mathrm{H}>\mathrm{P}>\mathrm{G}$

Rules of the game

Options will be ranked.
Only two of three can be simultaneously picked
The first one will be the primary goal of the company
First: vote (and agree) on a finalist Second: choose between the other two Third: vote on top priority among the two finalists

Mechanics: Agenda Setting

- Each group will caucus together and pick a lead negotiator
- Lead negotiators will meet privately, in pairs, in sequence:

$$
L+C, C+R, R+L
$$

- Followed by another round of pairwise meetings (same sequence)
- Each group will submit a vote on one option (G, H, P) for finalist
- If no winner, repeat (with one round of pairwise meetings) until there is

Mechanics: Voting

Round 1: Each group caucuses and then picks one of the two remaining options to join the finalist

Round 2: Each group caucuses and then picks one of the two finalists as the priority

Outcome values

Left: $G>H>P$
Center: $\mathrm{P}>\mathrm{G}>\mathrm{H}$
Right: $\mathrm{H}>\mathrm{P}>\mathrm{G}$

	Left	Center	Right
G>H $>P$	$3 \times 3000+2 \times 2000=13000$	$3 \times 2000+2 \times 1000=8000$	$3 \times 1000+2 \times 3000=9000$
H $>G>P$	$3 \times 2000+2 \times 3000=12000$	$3 \times 1000+2 \times 2000=7000$	$3 \times 3000+2 \times 1000=11000$
G $>P>H$	$3 \times 3000+2 \times 1000=11000$	$3 \times 2000+2 \times 3000=12000$	$3 \times 1000+2 \times 2000=7000$
P>G>H	$3 \times 1000+2 \times 3000=9000$	$3 \times 3000+2 \times 2000=13000$	$3 \times 2000+2 \times 1000=8000$
H $>P>G$	$3 \times 2000+2 \times 1000=8000$	$3 \times 1000+2 \times 3000=9000$	$3 \times 3000+2 \times 2000=13000$
P>H $>G$	$3 \times 1000+2 \times 2000=7000$	$3 \times 3000+2 \times 1000=11000$	$3 \times 2000+2 \times 3000=12000$

