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1 Introduction 

The purpose of this research was to replicate the Sugarscape model 
(Eptstein and Axtell 1996) and simulation outcomes as described in Grow­
ing Artificial Societies (GAS). Sugarscape is a classic agent-based model 
and contemporary simulation toolkits usually only have a very simple rep­
lication of a few core rules. There is scant evidence of significant replica­
tion of the rules and simulation outcomes; code supplied with Repast, 
Swarm, and NetLogo implement a minority of the rules in Sugarscape. In 
particular, the standard Repast distribution only implements Growback, 
Movement, and Replacement. Sugarscape implementations in these 
toolkits are clearly provided only as basic demonstrations of how well-
known social models might be implemented, rather than complete 
achievements of scientific replication. 

A major goal included assessing the maturity of the new MASON 
toolkit to replicate Sugarscape. MASON (Multiagent Simulator of Neigh­
borhoods) "is a fast discrete-event multiagent simulation library core in 
Java, designed to be the foundation for large custom-purpose Java simula­
tions, and also to provide more than enough functionality for many light-
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weight simulation needs." (Luke et al. 2005). Since MASON was designed 
to be a tool for social science research, among other uses, replication of 
one of the most recognized agent-based social science models would dem­
onstrate its maturity and usability for its intended purpose. 

Replication of well-known models is also important given the relative 
novelty of agent-based modeling in social science. Better tools and tech­
nique for lowering barriers to entry by social scientists are desirable out­
comes. 

2 Approach 

Epstein and Axtell (1996) offer a framework - Sugarscape - for agent-
based modeling and simulation that revolves around the following ele­
ments: agents, environment, rules. Epstein and Axtell state that the defin­
ing feature of the Sugarscape/artificial society model is that "fundamental 
social structures and group behaviors emerge from the interaction of indi­
vidual agents operating on artificial environments under rules that place 
only bounded demands on each agent's information and computational ca­
pacity." Computationally, Sugarscape rests on an 'object-oriented' ap­
proach consisting of: 

Instance variables representing agents' internal states or attributes (such as sex, 
age, wealth); 

Methods for agents' rules of behavior (such as eating, trading, combat); 
Encapsulation of agents internal states and rules to facilitate agent-based model 

construction. 

Details regarding object-oriented (00) techniques in Sugarscape are 
generally omitted from GAS. Appendix A contains a short section on 0 0 
techniques used and considered. Polymorphism is not discussed and in­
heritance was considered but was not used due to "efficiency considera­
tions .... In total, each agent has over 100 methods." By comparison, the 
single agent class in MASON Sugarscape has approximately 32 methods, 
although only 75-80% of all Sugarscape rules were implemented. A proto­
type implementadon of Sugarscape using ASCAPE appears to employ 
polymorphism and inheritance. 
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2.1 MASON 

Although the MASON distribution includes a variety of graphics, utility, 
and other supporting infrastructure and examples, discussion of MASON 
in this paper focuses on timing and scheduling. Controlling and determin­
ing what behaviors are executed and when are critical aspects of simula­
tion. In addition to overt requirements - such as an agent having to scan 
its surroundings and move to a site before it can harvest resources - syn­
chronous and asynchronous interactions occur between entities. A neces­
sary, but not sufficient, requirement is that actions are executed in time ex­
actly as desired—this requires a precise scheduling mechanism. 

2.1.1 Scheduling and Time 

The MASON Version 10 Schedule class sequences and executes objects 
that implement the S t e p p a b l e interface. Classes implementing S t e p -
p a b l e have a S t e p method for the schedule to initiate behav­
ior/execution. A primary construct in S c h e d u l e is order, a collection of 
executable objects that enable a deterministic sequence of execution. For 
each time step, all order zero objects are executed first, followed by order 
one, and so forth. Implementation of rules in specific orders is a key as­
pect of this replication and orders for agent and environment rules are cur­
rently specified in the Sugarscape class as constants. These constants 
could easily be redesigned as parameters in the primary configuration file 
for more flexible experimentation. 

Seasons , in addition to statistics, charts and logging, uses another 
MASON class - M u l t i S t e p to enabling S t e p p a b l e s - to be executed 
less than once every time step but with a regular periodicity. Sched­
u l e . s e t R e p e a t i n g method that has an interval has better performance 
than M u l t i s t e p when orders have multiple S t e p p a b l e s 

Within each order, the S t e p p a b l e entities are executed once in a ran­
dom sequence, and the sequence is randomized every time step. The other 
critical timing mechanism used in this implementation is that agent in­
stances themselves do not determine which of their rules are executed, nor 
in what sequence. Instead, a member instance named R u l e s Sequence 
wrap Sequence, a MASON class for holding a static sequence of S t e p ­
p a b l e s . This static sequence contains a collection of rules, each of 
which is invoked in turn. A benefit of using Sequence is that the 
s t e p ( ) method in the agents or environment objects are small and sim­
ple, primarily calling s t e p ( ) for its RuleSequence . The R u l e S e -
quence instance, in turn, calls each rule in the original order specified 



186 Methodology and Tools 

when the rules were added during initialization. Sequence only has order 
m rules time complexity as opposed to order n entities x m rules complex­
ity in direct schedule usage . 

To provide for a flexible experimentation, a primary configuration file 
specifies rule execution order during runtime. Using reflection facilities of 
the Java language, initialization code translates text names for rules 
classes into object instantiations. This allows quick way to specify desired 
rule sequences without source code recompilation. 

Finally, there are rules that involve cellular automata (CA) type syn­
chronous treatment of all instances of a class (i.e. all enfities of one type). 
Pollution Diffusion (D) is an environment rule in which the states of all 
sites synchronously update without using MASON scheduling machinery. 

2.2 Space-time Interactions 

Many agent-based models have discrete space aspects that UML sequence 
diagrams cannot visualize. As an example, interactions in space and time 
are illustrated in Figure 1. This diagram provides insight into the local ef­
fects of agent harvesting when a) sites grow back during the harvesting 
time step, and b) sites are restricted from growing back until one full time 
step after the time step during which harvest occurred. The blue circle de­
picts the location of the agent at each time step. Bigbee (2005) has an ex­
tended discussion on this phenomenon and emergent behavior. 

2.3 Rules Implemented 

Table 1 describes rules implemented from the classic model and whether 
the rule can be added, removed, or reordered simply by editing the 
a g e n t _ r u l e s _ s e q u e n c e or e n v i r o n m e n t _ r u l e s _ s e q u e n c e 
lines in the runtime configuration file. 
Total source lines of code are approximately 3500 as counted by the 
SLOCCOUNT tool (Wheeler 2005). Total source lines of code for the 
rules is 934, with the ratio of rules code to other code being approximately 
1:3. The non-rules source lines of code involve model initializing, graphs 
and statistics, logging, and parameter sweeping. The total SLOC count for 
MASON version 8 itself, not including the supplied demonstration appli­
cations, is approximately 18000. This includes many classes not used by 
MASON Sugarscape, including other portrayals and 3-D visualization in­
frastructure. 
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3 Results 

Table 2 documents simulation outcomes and rule sets investigated as part 
of replication. Qualitative and other criteria are described in the table, 
such as whether aggregate statistics and shapes of graphs were matched, as 
well as an overall level of replication achieved—exact, general, or partial. 
The overall pattern of replication outcomes is that the outcomes docu­
mented in GAS were generally replicated in MASON Sugarscape simula­
tions. The most successful replications occurred for outcomes that did not 
involve movement/welfare-dependent agent survival; these outcomes in­
cluded Culture, Pollution Diffusion, Seasons, and other spatial phenom­
ena. Bigbee (2005) provides detailed discussion of each outcome and is­
sues in replicating. 

4 Summary 

The research yielded partial replication of the Sugarscape outcomes de­
scribed in GAS. A major lesson from this research is the difficulty in un­
derstand and constructing simulation models that appear simple yet have 
complex emergent behavior. 

Software engineering is a young field, although tools and techniques 
have emerged to support error/bug reduction, automated testing, and faster 
development. While 00-based software has been touted as an effective 
way of constructing software applications, 0 0 methodologies do not 
eliminate cognitive error nor complexity in development. Close examina­
tion of the psychology of software development is beyond the scope of this 
thesis, but attention to the biases and heuristics literature and cognitive er­
rors literature might yield some techniques and suggest tools appropriate 
for effective development of agent-based models. 

Bigbee (2005) offers a list of lessons learned and 10 heuristics and 
ideas to promote successful replication. Social scientists creating or repli­
cating agent-based models face a variety of challenges encountered in 
other fields and much work remains to be done to lower barriers to good 
science in this field. 
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Fig. 1. Space time interactions under two Growback rules 

Table 1. Implemented Rules 

Symbol 

^ _ _ 

M 

^[a,b] 

SaPY 

^Jt ,X 

D« 
S 

None 

None 

K 

T 

Name 

Sugarscape growback 

Agent movement 

Agent replacement 

Seasonal growback 

Pollution formation 

Pollution diffusion 

Agent mating 

Agent cultural transmission 

Group membership 

Agent culture 

Agent trade 

SLOC 
" ^ " l ^ ™ ^ " " " ™ ™ ' " ^ 

323 

17 

16 

18 

56 

163 

128 

177 
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Table 2. Replication Outcomes 

Outcome Rule Set Replication Criteria Replication 
Achieved 

Animation II-2 (p.29) ({Gj}, {M}) Hiving, peak clustering, Exact 
terrace sticking 

Figure II-5 (p. 31) ({Gi}, {M}) Small positive slopes. General 
equally spaced lines, 
visually estimated line 
coordinates 

Animation II-3 (p. 34) ({Gi},{M,R[6o,ioo]})Pareto distribution. 
maximum wealth bin 

Animation II-4 (p. 38) ({Gi},{M,R[6o,ioo]})Gini coefficient evolu-

Animation II-6 (p. 43) ({Gi}, {M}) 

Animation II-7 (p. 46) ({si,8,5o).{M}) 

Visual wave phenome­

non 
Seasonal clustering 

Animation II-8 (p. 49) ({Gi,Di}, {M,Pn})Migration patterns 
FigureIII-l(p. 58) ({Gj}, {M,S}) 
Animation III-l (p. 58)({Gi}, {M,S}) 

Figure III-2 (p. 63) 

Figure III-3 (p. 64) 

Figure III-4 (p. 65) 

Figure III-5 (p. 66) 

({G,},{M,S}) 

({G,}, {M,S}) 

({Gi}, {M,S}) 

({Gi}, {M,S}) 

Animation III-6 (p. 75) ({Gi}, {M,K}) 

Figure III-8 (p. 77) 

Animation IV-1 (p. 
100) 
Figure IV-4 (p. 110) 

({Gi}, {M,K}) 

({G,}, {M}) 

({G J , {M,T}) 

Stable time series 
Approximate stationar} 
age distribution 
Diverging Vision, Me­
tabolism 

General 

General 

General 

Exact 
Partial 
General 

^General 

General 

Small amplitude oscilla-General 
tions 
Large amplitude oscilla-Partial 
tions 
Severe population 
swings, extinction 
Homogenous popula-
t ion 

Time series extremes, 
random group conver­
gence 
Peak hopping, small 
population 
Significant trade vol­
umes over time 

General 

Exact 

Exact 

General 

Partial 


