
Replication of Sugarscape Using l\/IASON'

Anthony Bigbee, Claudio Cioffi-Revilla, Sean Luke

Center for Social Complexity and Evolutionary Computation Laboratory
George Mason University, Fairfax, VA 22030 USA ccioffi@gmu.edu

1 Introduction

The purpose of this research was to replicate the Sugarscape model
(Eptstein and Axtell 1996) and simulation outcomes as described in Grow­
ing Artificial Societies (GAS). Sugarscape is a classic agent-based model
and contemporary simulation toolkits usually only have a very simple rep­
lication of a few core rules. There is scant evidence of significant replica­
tion of the rules and simulation outcomes; code supplied with Repast,
Swarm, and NetLogo implement a minority of the rules in Sugarscape. In
particular, the standard Repast distribution only implements Growback,
Movement, and Replacement. Sugarscape implementations in these
toolkits are clearly provided only as basic demonstrations of how well-
known social models might be implemented, rather than complete
achievements of scientific replication.

A major goal included assessing the maturity of the new MASON
toolkit to replicate Sugarscape. MASON (Multiagent Simulator of Neigh­
borhoods) "is a fast discrete-event multiagent simulation library core in
Java, designed to be the foundation for large custom-purpose Java simula­
tions, and also to provide more than enough functionality for many light-

Presented at The 4'̂ International Workshop on Agent-based Approaches in Economic
and Social Complex Systems (AESCS 2005), Pacific-Asian Association for Agent-based
Approach in Social Sciences (PAAAA), Tokyo Institute of Technology, Tokyo, July 9-
13, 2005. The authors thank Joshua Epstein and Robert Axtell for comments on Bigbee
(2005).

mailto:ccioffi@gmu.edu

184 Methodology and Tools

weight simulation needs." (Luke et al. 2005). Since MASON was designed
to be a tool for social science research, among other uses, replication of
one of the most recognized agent-based social science models would dem­
onstrate its maturity and usability for its intended purpose.

Replication of well-known models is also important given the relative
novelty of agent-based modeling in social science. Better tools and tech­
nique for lowering barriers to entry by social scientists are desirable out­
comes.

2 Approach

Epstein and Axtell (1996) offer a framework - Sugarscape - for agent-
based modeling and simulation that revolves around the following ele­
ments: agents, environment, rules. Epstein and Axtell state that the defin­
ing feature of the Sugarscape/artificial society model is that "fundamental
social structures and group behaviors emerge from the interaction of indi­
vidual agents operating on artificial environments under rules that place
only bounded demands on each agent's information and computational ca­
pacity." Computationally, Sugarscape rests on an 'object-oriented' ap­
proach consisting of:

Instance variables representing agents' internal states or attributes (such as sex,
age, wealth);

Methods for agents' rules of behavior (such as eating, trading, combat);
Encapsulation of agents internal states and rules to facilitate agent-based model

construction.

Details regarding object-oriented (00) techniques in Sugarscape are
generally omitted from GAS. Appendix A contains a short section on 0 0
techniques used and considered. Polymorphism is not discussed and in­
heritance was considered but was not used due to "efficiency considera­
tions In total, each agent has over 100 methods." By comparison, the
single agent class in MASON Sugarscape has approximately 32 methods,
although only 75-80% of all Sugarscape rules were implemented. A proto­
type implementadon of Sugarscape using ASCAPE appears to employ
polymorphism and inheritance.

Replication of Sugarscape Using MASON 185

2.1 MASON

Although the MASON distribution includes a variety of graphics, utility,
and other supporting infrastructure and examples, discussion of MASON
in this paper focuses on timing and scheduling. Controlling and determin­
ing what behaviors are executed and when are critical aspects of simula­
tion. In addition to overt requirements - such as an agent having to scan
its surroundings and move to a site before it can harvest resources - syn­
chronous and asynchronous interactions occur between entities. A neces­
sary, but not sufficient, requirement is that actions are executed in time ex­
actly as desired—this requires a precise scheduling mechanism.

2.1.1 Scheduling and Time

The MASON Version 10 Schedule class sequences and executes objects
that implement the S t e p p a b l e interface. Classes implementing S t e p -
p a b l e have a S t e p method for the schedule to initiate behav­
ior/execution. A primary construct in S c h e d u l e is order, a collection of
executable objects that enable a deterministic sequence of execution. For
each time step, all order zero objects are executed first, followed by order
one, and so forth. Implementation of rules in specific orders is a key as­
pect of this replication and orders for agent and environment rules are cur­
rently specified in the Sugarscape class as constants. These constants
could easily be redesigned as parameters in the primary configuration file
for more flexible experimentation.

Seasons , in addition to statistics, charts and logging, uses another
MASON class - M u l t i S t e p to enabling S t e p p a b l e s - to be executed
less than once every time step but with a regular periodicity. Sched­
u l e . s e t R e p e a t i n g method that has an interval has better performance
than M u l t i s t e p when orders have multiple S t e p p a b l e s

Within each order, the S t e p p a b l e entities are executed once in a ran­
dom sequence, and the sequence is randomized every time step. The other
critical timing mechanism used in this implementation is that agent in­
stances themselves do not determine which of their rules are executed, nor
in what sequence. Instead, a member instance named R u l e s Sequence
wrap Sequence, a MASON class for holding a static sequence of S t e p ­
p a b l e s . This static sequence contains a collection of rules, each of
which is invoked in turn. A benefit of using Sequence is that the
s t e p () method in the agents or environment objects are small and sim­
ple, primarily calling s t e p () for its RuleSequence . The R u l e S e -
quence instance, in turn, calls each rule in the original order specified

186 Methodology and Tools

when the rules were added during initialization. Sequence only has order
m rules time complexity as opposed to order n entities x m rules complex­
ity in direct schedule usage .

To provide for a flexible experimentation, a primary configuration file
specifies rule execution order during runtime. Using reflection facilities of
the Java language, initialization code translates text names for rules
classes into object instantiations. This allows quick way to specify desired
rule sequences without source code recompilation.

Finally, there are rules that involve cellular automata (CA) type syn­
chronous treatment of all instances of a class (i.e. all enfities of one type).
Pollution Diffusion (D) is an environment rule in which the states of all
sites synchronously update without using MASON scheduling machinery.

2.2 Space-time Interactions

Many agent-based models have discrete space aspects that UML sequence
diagrams cannot visualize. As an example, interactions in space and time
are illustrated in Figure 1. This diagram provides insight into the local ef­
fects of agent harvesting when a) sites grow back during the harvesting
time step, and b) sites are restricted from growing back until one full time
step after the time step during which harvest occurred. The blue circle de­
picts the location of the agent at each time step. Bigbee (2005) has an ex­
tended discussion on this phenomenon and emergent behavior.

2.3 Rules Implemented

Table 1 describes rules implemented from the classic model and whether
the rule can be added, removed, or reordered simply by editing the
a g e n t _ r u l e s _ s e q u e n c e or e n v i r o n m e n t _ r u l e s _ s e q u e n c e
lines in the runtime configuration file.
Total source lines of code are approximately 3500 as counted by the
SLOCCOUNT tool (Wheeler 2005). Total source lines of code for the
rules is 934, with the ratio of rules code to other code being approximately
1:3. The non-rules source lines of code involve model initializing, graphs
and statistics, logging, and parameter sweeping. The total SLOC count for
MASON version 8 itself, not including the supplied demonstration appli­
cations, is approximately 18000. This includes many classes not used by
MASON Sugarscape, including other portrayals and 3-D visualization in­
frastructure.

Replication of Sugarscape Using MASON 187

3 Results

Table 2 documents simulation outcomes and rule sets investigated as part
of replication. Qualitative and other criteria are described in the table,
such as whether aggregate statistics and shapes of graphs were matched, as
well as an overall level of replication achieved—exact, general, or partial.
The overall pattern of replication outcomes is that the outcomes docu­
mented in GAS were generally replicated in MASON Sugarscape simula­
tions. The most successful replications occurred for outcomes that did not
involve movement/welfare-dependent agent survival; these outcomes in­
cluded Culture, Pollution Diffusion, Seasons, and other spatial phenom­
ena. Bigbee (2005) provides detailed discussion of each outcome and is­
sues in replicating.

4 Summary

The research yielded partial replication of the Sugarscape outcomes de­
scribed in GAS. A major lesson from this research is the difficulty in un­
derstand and constructing simulation models that appear simple yet have
complex emergent behavior.

Software engineering is a young field, although tools and techniques
have emerged to support error/bug reduction, automated testing, and faster
development. While 00-based software has been touted as an effective
way of constructing software applications, 0 0 methodologies do not
eliminate cognitive error nor complexity in development. Close examina­
tion of the psychology of software development is beyond the scope of this
thesis, but attention to the biases and heuristics literature and cognitive er­
rors literature might yield some techniques and suggest tools appropriate
for effective development of agent-based models.

Bigbee (2005) offers a list of lessons learned and 10 heuristics and
ideas to promote successful replication. Social scientists creating or repli­
cating agent-based models face a variety of challenges encountered in
other fields and much work remains to be done to lower barriers to good
science in this field.

References

Bigbee A (2005) Replication of Sugarscape Using MASON. Unpublished mas­
ter's thesis, George Mason University, Fairfax, VA.

188 Methodology and Tools

Densmore O (2005) Sugarscape. Retrieved April 1, 2005, from
http://backspaces.net/Models/sugarscape.html

Doran J (2000) Questions in the Methodology of Artificial Societies. In.
Suleiman R, Troitzsch K, Gilbert N (eds), Tools and Techniques for Social
Science Simulation. : Physica-Verlag, Heidelberg

Epstein J, Axtell R (1996) Growing Artificial Societies: Social Science from the
Bottom Up. Brookings Institution Press, Washington, D.C.

Hegselmann, R, Flache A (1998, June) Understanding Complex Social Dynam­
ics: A Plea for Cellular Automata Based Modeling. J Artificial Societies and
Social Simulation 3, Retrieved August 1, 2004, from
http://www.soc.surrey.ac.Uk/JASSS/l/3/l.html

Huberman B, Hogg T (1988) The Behavior of Computational Ecologies. In B.
Hubcrman (Ed.), The Ecology of Computation. Amsterdam: North-Holland.

Kleiber C, Kotz S (2003) Statistical Size Distributions in Economics and Actuar­
ial Sciences. Wiley, Hoboken, NJ

Kliemt H (1996) Simulation and Rational Practice. In R. Hegselmann, U. Muel­
ler (Eds.), Modelling and simulation in the social sciences from a philosophy
of science point of view. Kluwer, Dordrecht

Luke S, Cioffi-Revilla C, Panait L, Sullivan K, Balan G (2005) MASON: A
Multi-Agent Simulation Environment. Simulation 81: 517-527

Nowak A, Lewenstein M (1996) Modeling social change with cellular automata.
In R. Hegselmann, U. Mueller (Eds.), Modelling and simulation in the social
sciences from a philosophy of science point of view. Kluwer, Dordrecht

Wheeler D SLOCCount. Retrieved April 1, 2005, from
http://www.dwheeler.com/sloccount/

http://backspaces.net/Models/sugarscape.html
http://www.soc.surrey.ac.Uk/JASSS/l/3/l.html
http://www.dwheeler.com/sloccount/

Replication of Sugarscape Using MASON 189

Fig. 1. Space time interactions under two Growback rules

Table 1. Implemented Rules

Symbol

^ _ _

M

^[a,b]

SaPY

^Jt ,X

D«
S

None

None

K

T

Name

Sugarscape growback

Agent movement

Agent replacement

Seasonal growback

Pollution formation

Pollution diffusion

Agent mating

Agent cultural transmission

Group membership

Agent culture

Agent trade

SLOC
" ^ " l ^ ™ ^ " " " ™ ™ ' " ^

323

17

16

18

56

163

128

177

190 Methodology and Tools

Table 2. Replication Outcomes

Outcome Rule Set Replication Criteria Replication
Achieved

Animation II-2 (p.29) ({Gj}, {M}) Hiving, peak clustering, Exact
terrace sticking

Figure II-5 (p. 31) ({Gi}, {M}) Small positive slopes. General
equally spaced lines,
visually estimated line
coordinates

Animation II-3 (p. 34) ({Gi},{M,R[6o,ioo]})Pareto distribution.
maximum wealth bin

Animation II-4 (p. 38) ({Gi},{M,R[6o,ioo]})Gini coefficient evolu-

Animation II-6 (p. 43) ({Gi}, {M})

Animation II-7 (p. 46) ({si,8,5o).{M})

Visual wave phenome­

non
Seasonal clustering

Animation II-8 (p. 49) ({Gi,Di}, {M,Pn})Migration patterns
FigureIII-l(p. 58) ({Gj}, {M,S})
Animation III-l (p. 58)({Gi}, {M,S})

Figure III-2 (p. 63)

Figure III-3 (p. 64)

Figure III-4 (p. 65)

Figure III-5 (p. 66)

({G,},{M,S})

({G,}, {M,S})

({Gi}, {M,S})

({Gi}, {M,S})

Animation III-6 (p. 75) ({Gi}, {M,K})

Figure III-8 (p. 77)

Animation IV-1 (p.
100)
Figure IV-4 (p. 110)

({Gi}, {M,K})

({G,}, {M})

({G J , {M,T})

Stable time series
Approximate stationar}
age distribution
Diverging Vision, Me­
tabolism

General

General

General

Exact
Partial
General

^General

General

Small amplitude oscilla-General
tions
Large amplitude oscilla-Partial
tions
Severe population
swings, extinction
Homogenous popula-
t ion

Time series extremes,
random group conver­
gence
Peak hopping, small
population
Significant trade vol­
umes over time

General

Exact

Exact

General

Partial

