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Abstract— Developing behaviors for humanoid robots is dif-
ficult due to the high complexity of programming these robots,
which includes repeated trial and error cycles. We have recently
developed a learning from demonstration system capable of
training agent behaviors from a small number of training
examples. Our system represents a complex behavior as a
hierarchical finite automaton, permitting decomposition of the
behavior into simple, easier-to-train sub-behaviors. The system
was originally designed for swarms of virtual agents, but based
on recent Robocup experience, we have ported the system to
our humanoid robot platform. We discuss the system and the
platform, and preliminary experiments involving both novice
and expert users in a stateful visual servoing task.

I. INTRODUCTION

The RoboPatriots [1] is a team of humanoid robots of our
own construction for use in dynamic multirobot tasks such
as those found in the RoboCup robot soccer competition
[2]. Ordinarily we build behaviors for these robots by hand,
often in simulation, then deploy them to the robots in the
real environment. This task can be laborious, involving
repeated cycles of offline coding and online testing, and so
it is attractive to consider an alternative: training the robots
to perform tasks through a series of demonstrations. This
application of supervised learning to real-time robotics is
broadly known as learning from demonstration.

We have developed a methodology for rapidly training
virtual and game agents to perform complex and robust
behaviors involving internal state [3]. This methodology
allows us to train both individual agent behaviors and and
swarm agent behaviors in a supervised fashion. We have
recently ported this methodology to the real-world robot
case, focusing (for now) on the single-robot scenario and its
application to our humanoid robot platform.

Learning from demonstration on humanoid robots is
difficult for a number of reasons. First, the potential number
of degrees of freedom and features can, depending on the
approach taken to learning, result in a learning task of high
dimensionality. Second, such high dimensionality may in
turn require a large number of examples, which in turn
can translate to many presentations in real time. Third, in
our experience training in real time is often fraught with
demonstrator error and noise, and this requires approaches to
revising training examples, and the learned model, on the fly.

Our goal is ultimately to train humanoids to perform
relatively sophisticated behaviors potentially requiring signif-
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icant internal state, many actions, and a variety of features
gleaned from the environment. These all result in a learning
space of high dimensionality: but we cannot afford the time
necessary to sample such a space effectively. Our approach
is to use a variety of methods to reduce the dimensionality
and complexity of the learning space as much as possible
in order to reconcile these conflicting needs. We do this in
several ways:

• Hierarchical Space Decomposition Our primary trick
is to decompose a behavior into a hierarchy of much
simpler behaviors.

• Per-behavior Feature, State, and Action Reduction
When training a behavior we reduce the learning space to
include only those features, actions, and states necessary
to learn the given behavior. This dramatically reduces
the dimensionality of the space by essentially projecting
it into subspaces of minimum dimensionality.

• Parameterization Our behaviors are parameterizable.
For example, rather than train a behavior such as go to
home base, we may train a behavior go to A, where A
is a parameter to be bound to some target element at a
later date. This allows us to reuse a behavior at several
places in the hierarchy, reducing the total amount of
training sessions required to learn a complex behavior.

• Optional Statefulness Our method learns stateful
behaviors by default. However, many simple behaviors
require no state at all, and in fact benefit from a lack
of state because it simplifies the learning space. We can
learn either stateful or stateless behaviors with the same
technique.

Our learned model is a hierarchical finite-state automaton
(HFA). In this formulation, each learned behavior is a
deterministic finite-state automaton in the form of a Moore
Machine. Each state in the automaton is itself a behavior.
Some of these behaviors may be basic behaviors, which
are hard-coded; other behaviors are themselves finite-state
automata which had been trained at some earlier time. These
lower-level automata may themselves be built on even lower-
level automata, and so on. No recursion is permitted, so
ultimately the leaf nodes in the hierarchy must be basic
behaviors.

To learn a behavior, we start with an existing library of
behaviors. Each behavior is represented by a state in the finite
state automaton to be learned. The demonstrator specifies
the features to use in the training task, then directs the robot
to perform behaviors from this library, transitioning from
state (behavior) to state as necessary. When enough examples
have been gathered, the system learns a transition function



for each state in the automaton based on the examples. The
learned automaton may be tested, then updated with additional
examples. When training is complete and satisfactory, unused
states and their associated behaviors are discarded, and then
the automaton is added to the library as a new available
behavior.

The demonstrator builds a hierarchical behavior from the
bottom up. Initially the only behaviors available in the library
are hard-coded basic behaviors. The demonstrator then trains
one or more simple automata using these basic behaviors, then
more abstract automata which rely on the simple automata
(among other behaviors) as states, and so on, ultimately
leading to the top-level automaton.

In this paper we first review related work in robotics
and learning from demonstration. We then describe our
humanoid robot architecture. From there, we describe the
learning approach and demonstrate its use on the humanoid
architecture. We conclude with a discussion of future work.

II. RELATED WORK

Much of the learning from demonstration literature may
be divided into to systems which learn plans and those
which learn (usually stateless) policies. The first set of
literature is closely related to our own work, and involves
learning plans in the form of acyclic graphs of parameterizable
behaviors [4], [5], [6], [7], [8]. These graph structures are
usually induced from ordered sequences of actions intended to
produce a desired goal. As a result, they generally have limited
recurrence (simple loops if any iteration at all). In contrast,
as we are interested in behaviors rather than goal direction,
our model generally assumes a rich level of recurrence, and
disregards specific ordering of action sequences.

Other literature describes the learning of policies (usually
stateless functions of the form π(situation)→ action) from
observing a demonstrator perform various actions when in
various world situations. This is naturally cast as a supervised
learning task [9], [10], [11], [12], [13], [14]. Some literature
instead transforms the problem into a reinforcement learning
problem by building a reinforcement signal based on the
difference between the agent’s actions and those of the
demonstrator [15], [16]. Beyond our own approach, it’s also
possible to include internal state in a policy by learning
stateful hidden Markov models (for example, [17]).

Hierarchies and Learning From Demonstration: Hierar-
chies are hardly new: they are a natural way to achieve layered
learning [18] via task decomposition. But use of hierarchy
in supervised learning from demonstration is surprisingly
uncommon. Even methods which discuss hierarchical models
and also discuss learning from demonstration [19] do not
often combine the two. Hierarchies of one sort or another are
more common in reinforcement learning from demonstration
(for example, [20]).

III. HUMANOID ARCHITECTURE

The RoboPatriots are constructed from easily available
commercially available hardware resulting in an inexpensive
yet powerful platform. Because we are interested in the
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Fig. 1. The hardware architecture of the RoboPatriots, and the information
flow between components.

development of large teams of humanoids, our autonomous
humanoid platform is distinguished in its attempt to provide
as much functionality as possible for a minimum of cost: typ-
ically less than $2000 per robot. Figure 1 shows the hardware
architecture and information flow between components. The
robot base is a modified Kondo KHR-3HV. Each robot has 3
DOF per arm, 5 DOF per leg, and 2 DOF in the neck. The
sixteen Kondo KRS-2555HV digital servos used in the arms
and legs produce 14 kg-cm of torque at a speed of 0.14 sec
/ 60 degrees. The 2555HV servos communicate via a serial
protocol and are controlled by the RCB-4 servo controller
board. In addition, two KRG-3 single axis gyros connect to
the RCB-4. The two Kondo KRS-788HV digital servos used
our pan/tilt mount produce 10 kg-cm of torque at a speed of
0.14 sec / 60 degrees. These servos are controlled via PWM.

Our main sensor is the Surveyor SVS (Stereo Vision
System) [21]. The SVS consists of two OmniVision OV
7725 camera modules connected to two independent 600 MHz
Blackfin BF537 processors. The camera modules are mounted
on a pan/tilt mount with 10.5 cm separation. See Figure 2(b).
Each camera module operates at 640x480 resolution with a
90-degree field of view. The two processors are connected by
a dedicated SPI bus, and the camera unit provides a Lantronix
Matchport 802.11g wireless unit. Two single axis RAS-2 dual-
axis accelerometers connect to the SVS. A custom inverter
board allows serial communication at 115200 bps between
the RCB-4 and the SVS.

The Blackfin cameras run a simple blob detection algorithm.
If the master camera cannot see the ball (caused for, by
example, occlusion from the shoulder), it asks the slave
camera for its blob information. The Blackfins return the
bounding box of the blob, size of the blob (in pixels), and
which camera detected the blob.

At present, the learning system runs on a remote laptop
which queries the robot for vision data. The laptop also issues
commands to the RCB-4 for execution. The demonstrator
uses a Nintendo WiiMote during training.

IV. THE TRAINING APPROACH

We train the humanoid robot from the bottom up by
iteratively building a library of behaviors. The library initially



(a) Complete RoboPatriot robot (b) Close up of robot head

Fig. 2. 2010 RoboPatriot’s robot and close up of stereo vision head and pan/tilt mount.

consists of atomic behaviors: hard-coded low-level behaviors
such as “go forward” or “kick the ball”. We then train a finite-
state automaton whose states are associated with behaviors
chosen from this library. After training, the automaton itself
is saved to the library as a behavior. Thus we are able to first
train simple automata, then more abstract automata which
include those simple automata among their states, and so on,
until we reach sufficiently powerful automata to perform the
necessary task. A more detailed description of the system
may be found in [3].
A. Model

Our basic model is a hierarchy of finite-state automata
in the form of a Moore machines. An automaton is a tuple
〈S, F, T,B,M〉 ∈ H defined as follows:
• S = {S1, ..., Sn} is the set of states in the automaton.

Among other states, there is one special start state S1,
and zero or more flag states. Exactly one state is active
at any time, designated St.

• B = {B1, ..., Bk} is the set of atomic behaviors. Each
state is associated with either an atomic behavior or
another automaton chosen from H, with the stipulation
that recursion is not permitted. That is, there is a one-to-
one mapping M : S → H ∪ B such that if automaton
H ∈ H contains another automaton H ′ ∈ H as a child
behavior, H ′ may not in turn include H among its
descendant behaviors.

• F = {F1, ..., Fm} is the set of observable features in the
environment. At any given time each feature has a current
value: a single number. The collective values of F at
~ft = 〈f1, ..., fm〉, is called the environment’s current
feature vector. A feature may be of one of three kinds: a
categorical feature, whose values are chosen from a finite
and unordered set; a continuous feature, whose values
are chosen from a one-dimensional metric continuous
space; or a continuous toroidal feature, whose values
are chosen from a one-dimensional toroidal continuous
space.

• T = F1 × ...× Fm × S → S is the transition function
which maps the current state St and the current feature
vector ~ft to a new state St+1.

An automaton starts in its start state S1, whose behavior
simply idles. Each timestep, while in state St, the automaton
first queries the transition function to determine the next
state St+1, transitions to this state, and if St 6= St+1,
stops performing St’s behavior and starts performing St+1’s
behavior. Finally, the St+1’s associated behavior is pulsed to
progress it by an epsilon.

The underlying behavior associated with a given state may
either be an atomic behavior, or it may itself be another
automaton. When the automaton’s behavior is “started”, it
resets its start state to S1. When pulsed, the automaton itself
performs one iteration as described in the previous paragraph.

The purpose of a flag state is only to raise a flag in
the automaton to indicate that the automaton believes some
condition is now true. We have two such conditions: done
and failed. On transitioning to a flag state, its behavior raises
this flag and transitions immediately to the start state. Flag
states are useful for creating behavior sequences and are only
a convenience, not a requirement.

Features may describe both internal and external (world)
conditions, and may be toroidal (such as “angle to goal”),
continuous (such as “distance to goal”), or categorical or
boolean (such as “goal is visible”). The done and failed
features are boolean features which are true if and only if
the current state’s associated behavior is itself an automaton,
and that automaton has raised its done (or failed) flag.

Our behaviors and features may be optionally assigned
one or more parameters: rather than have a behavior called
go to the ball, we can create a behavior called goTo(A),
where A is left unspecified. Similarly, a feature might be
defined not as distance to the ball but as distanceTo(B). If
such a behavior or feature is used in an automaton, either its
parameter must be bound to a specific target (such as “the
ball” or “the nearest obstacle”), or it must be bound to some
higher-level parent C of the automaton itself. Thus finite-state
automata may themselves be parameterized. Ultimately to
use an automaton, all parameters must be bound to targets.
In the study described in this paper, we have chosen not to
use the parameterization feature.



B. Training with the Model

Our system learns the transition function T of the automa-
ton. We divide T into disjoint learned functions TS(~ft)→ S′,
one for each state S, which map the current feature vector
to a new state S′. Each of these is a classifier. At the end
of the learning process we have n such classifiers, one for
each state S1...Sn. At present we are using decision trees
with probabilistic leaf nodes for our classifiers.

The learning process works as follows. When the robot is
in the training mode, it performs the directives given it by the
demonstrator. Each time the demonstrator directs the robot to
perform a new behavior, the robot stores two example tuples:
the first tuple consists of the current state St, the state St+1

associated with this new behavior, and the current feature
vector ~ft; the second tuple, which provides a default example,
consists of St+1, St+1, and ~ft. After enough examples have
been gathered, the demonstrator switches the robot to the
testing mode, at which time the classifiers are built from
the examples and the robot begins to follow the trained
automaton. If at any time the robot performs an incorrect
behavior, the demonstrator may switch back to the training
mode and correct the robot, which adds further examples.
When the demonstrator is satisfied with the performance of
the robot, he may then save the automaton to the behavior
library and begin working on a new higher-level automaton
(which may include the original automaton among its states).

Note that the particular behaviors/states and features used
by an automaton may vary from automaton to automaton.
This allows us to reduce the feature and state space to be
learned on a per-automaton basis.

Some simple learned behaviors do not require internal
state and thus the full capacity of a finite-state automaton:
and indeed the internal state of the automaton simply makes
the learning space unduly complex. In these situations we
can simply define each of the TS to use the same classifier.
This effectively reduces the model to a stateless policy π(~f).
Finally, some learned behaviors may of course require more
than one state to be associated with the same behavior,
to handle aliased environmental states for example. It is
straightforward to create multiple states with the same
behavior B: the simplest approach is to quickly train a trivial
automaton B′ which only does behavior B: now both B′

and B may appear as states in higher-level automata, but do
exactly the same thing.

V. EXAMPLE

Our port is very new but we have been able to perform
certain preliminary experiments. First, we performed an
experiment illustrating how the learning system can be used
by novice users. Taking our RoboCup work as motivation, we
aimed to teach the robot visual servoing. The goal was for the
robot to search for the ball, orient towards the ball by turning
the “correct” direction, and walk towards the ball. The robot
uses two features from the camera: the x-coordinate of the
ball within the frame, and the number of pixels in the ball’s
bounding box. Finally, the robot has three basic behaviors
available to it: turn left, turn right, and walk forward. The

Fig. 3. Experimental setup. The orange ball rests on a green pillar on a
green soccer field at eye level with the humanoid robot. The robot must
approach to within a short distance of the pillar, as denoted by the dotted
line.

robot’s head remains fixed looking forward, and the ball does
not move. To ensure the ball does not drop out of the bottom
of the frame during the experiments, we raised the ball to
the robot’s eye level (Figure 3).

Note that this is a very simple example of a behavior
which may best be learned in a stateful fashion. When the
ball disappears from the robot’s field of view, which direction
should the robot turn? This could be determined from the x-
coordinate of the ball in the immediate previous frame, which
suggests where the ball may have gone. But if the robot only
follows a policy π(~f), it does not have this information, but
simply knows that the ball has disappeared. Thus π would
typically be reduced to just going forwards when the robot
can see the ball, and turning (in one unique direction) when it
cannot. Half the time the robot will turn the wrong direction,
and as a result spin all the way around until it reacquires the
ball. This can be quite slow.

Our learning automaton setup had four states to compensate
for this. We had two states, left and right, which turned left
and turned right respectively, but also had two identical states,
notionally called forwardL and forwardR, which both simply
moved forward. A demonstrator could use these two states
as follows: when the ball is in the left portion of the frame,
he instructs the robot to go forwardL. When the ball is in
the right portion of the frame, he instructs the robot to go
forwardR. When the ball has disappeared, he instructs the
robot to turn appropriately. Ultimately the robot may learn
that if the ball disappeared while it was in the forwardL state,
it should then transition to turning left; and likewise turn right
if the ball disappeared while the robot was in the forwardR
state.

We asked five students to train the robot for five minutes
each. The students had no prior experience with the system
nor the humanoid robot platform. We instructed the students
on how to control the robot and what the features meant,
and suggested to them how they might use the forwardL and
forwardR states strategically. Otherwise, the students were
were given no further guidance as to how the task should
be performed. The students saw feature information from
the camera in real time, and could also observe the robot
directly. After the five minutes of training were up, we built
a learned automaton behavior from the training examples.
We then placed the robot at three starting locations with
very different ball positions within the frame (see Figure 4).



(a) Starting Position 1 (b) Starting Position 2 (c) Starting Position 3

Fig. 4. Typical views from the three different starting positions. In Starting Position 2, the robot is facing away from the ball.
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Fig. 5. Histograms of times to reach the ball from each starting position (compare to Figure 4), of the four successful trials.

The locations were approximately 140 centimeters from the
ball. For each trained behavior and each location, we ran 10
independent experiments, where the experiment stopped when
the robot was within approximately 15 centimeters of the ball
as determined by visual inspection. Our performance measure
was the average time necessary for the robot to complete the
task. All training and experiments were conducted on the
same robot.

In this experiment, four of the five students successfully
trained the robot to consistently and robustly approach the ball.
The remaining trained behavior never successfully approached
the ball, independent of the robot’s starting location. Figure
5(a) and (b) show that in most cases the robot can quickly
servo to the ball (even if the ball is lost). However, in several
cases the robot takes significantly longer to successfully
approach the ball, usually due to sensor noise and/or poor
training.

We also tested the system’s hierarchical ability. In this
experiment, an expert (an author of this paper) trained the
robot to approach the ball as before, but also to stop when
the robot was close to the ball. This was done in two ways.
First, the expert attempted to train the robot to do all these
tasks in the same automaton. Second, the expert first trained
the robot to approach the ball using only the ball position

within the frame, and then using this saved approach behavior,
trained a simple higher-level automaton in which the robot
would approach the ball until it was large enough, then stop.
Anecdotal results suggest that the hierarchical approach is
much easier to do rapidly than the monolithic approach.
Learning the monolithic behavior requires significantly more
training exemplars because the joint training space (in terms
of states and features) is higher.

VI. OBSERVATIONS AND FUTURE DIRECTIONS

Our ultimate goal is to extend the hierarchical learning
procedure to the multiple agent case, by training hierarchies
of groups of agents as well as hierarchies of behaviors.
This would enable us, for example, to train set plays and
other coordinated behaviors in soccer problems. Multiagent
coordination would also (in theory) allow the extension of
decomposition further to subparts of the agent (arms, legs,
etc.), or even to individual servos and effectors.

For now, however, in the real-robot case we must focus on
the single-agent situation. The primary challenge to learning
in this scenario is the low number of examples that can be
collected due to their high cost.

Unlearning: One consequence of the low number of
examples is that it is very hard for the learning method to
distinguish between an outlier due to a demonstration error



and a crucially important correct outlier in the model. We can
compensate for this only to some degree using generalization
methods (such as automated tree pruning, in the decision tree
case). At present we only add new examples to the model:
but ultimately we will need a method to remove or modify
invalid examples after they have added to the model.

We see two ways to go about this. First, we might add
an undo stack: when the demonstrator performs one or more
“typos”, so to speak, he could undo these recent incorrect state
transitions, reverting the robot to an earlier state, and continue
from there. Perhaps more interesting would be observing and
correcting incorrect behavior during testing of the behavior.
Ideally the system would not only add the corrected results
but identify which earlier examples were most responsible
for the model choosing an incorrect behavior at that point in
time, and remove them.

Demonstration vs. Declaration: The very low number
of examples also place techniques like ours in the nebulous
region between learning and explicit programming. The
more we explicitly add domain knowledge into the problem,
through express decomposition and per-behavior feature
reduction, the closer we get to essentially programming
the robots. Furthermore if the number of examples and
dimensionality are sufficiently low, a demonstrator may be
(perhaps fairly) accused of largely delimiting the boundaries
between behaviors with examples as sentinels. We are not
troubled by such an accusation: ultimately the goal is to
create a robust behavior through demonstration, and is still
reasonable if it contains a mixture of machine inference and
explicit domain knowledge and simplification.

VII. CONCLUSIONS

We have presented a learning from demonstration system
designed for low numbers of examples and its application to
a humanoid robot platform. The system takes advantage of a
hierarchical decomposition of behaviors, which allows us to
use a limited number of training examples to learn complex
behaviors. Using a limited number of examples is particularly
appealing for learning from demonstration on robots (rather
than simulation) where the cost and time associated with
extensive data gathering are prohibitive. Novice users were
able to train our RoboPatriots humanoids to visually servo
towards a ball, and approach the ball with only a few minutes
of training.
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