
Co-Evolving Soccer Softbot Team Coordination
with Genetic Programming

Sean Luke
seanl@cs.umd.edu

Charles Hohn
hohn@wam.umd.edu

Jonathan Farris
jfarris@wam.umd.edu

Gary Jackson
garyj@wam.umd.edu

James Hendler
hendler@cs.umd.edu

Department of Computer Science
University of Maryland

College Park, MD 20742

Abstract

Genetic Programming is a promising new method
for automatically generating functions and algo-
rithms through natural selection. In contrast to
other learning methods, Genetic Programming’s au-
tomatic programming makes it a natural approach
for developing algorithmic robot behaviors. In this
paper we present an overview of how we apply Ge-
netic Programming to behavior-based team coordi-
nation in the RoboCup Soccer Server domain. The
result is not just a hand-coded soccer algorithm, but
a team of softbots which have learned on their own
how to play a reasonable game of soccer.

1 Introduction
The RoboCup competition pits robots (real and virtual) against
each other in a simulated soccer tournament [Kitano et al,
1995]. The aim of the RoboCup competition is to foster an in-
terdisciplinary approach to robotics and agent-based Artificial
Intelligence by presenting a domain that requires large-scale
cooperation and coordination in a dynamic, noisy, complex
environment.

For RoboCup’s “virtual” competition, players are not
robots but computer programs which manipulate virtual robots
through RoboCup’s provided simulator, the RoboCup Soccer
Server [Itsuki, 1995]. Players programs may not communi-
cate with each other except through the limited “speech” pro-
vided them by the Soccer Server itself. The RoboCup Soccer
Server’s loosely distributed nature of agent coordination and
dynamic environment make appealing a reactive, behavior-
based approach to coordinating the soccer team. However,
there are a wide variety of possible behaviors (even very sim-

0To appear in the proceedings of The First International Work-
shop on RoboCup, at the International Joint Conference on Artificial
Intelligence (IJCAI-97), Nagoya, Japan, 1997.

ple ones), and the number of permutations of behavior com-
binations amongst eleven independent agents can be quite
high. Instead of hand-coding these behaviors for each agent,
it’s attractive to have the agents learn good behaviors and
coordination on their own.

Beyond its interesting AI and Alife aspects, getting agents
to learn on their own can result in interesting solutions to the
problem that hand-coding may overlook. The dynamics of
the RoboCup soccer simulator are complex and difficult to
optimize for. Given sufficient time, a learned strategy can
evaluate a broad range of different behaviors and hone in on
those most successful. However, many learning strategies
(neural networks, decision trees, etc.) are designed not to de-
velop algorithmic behaviors but to learn a nonlinear function
over a discrete set of variables. In contrast, Genetic Pro-
gramming (GP) [Koza 1992] uses evolutionary techniques to
learn algorithms which operate in some domain environment.
This makes it natural for learning programmatic behaviors in
a domain like the Soccer Server.

Genetic Programming has been successfully applied in
the field of multiagent coordination a number of times.
[Reynolds, 1993] used GP to evolve “boids” in his ground-
breaking work on flocking and herd coordination. [Raik and
Durnota, 1994] used GP to evolve cooperative sporting strate-
gies, and [Luke and Spector, 1996] and [Iba, 1996] used GP to
develop cooperation in predator-prey environments and other
domains). The bulk of this paper describes GP and how we
use it to evolve coordinated team behaviors and actions for
our soccer softbots in RoboCup-97.

2 Genetic Programming
Genetic Programming is a variant of the Genetic Algorithm
[Holland, 1975] whose aim is to optimize, through pseudo-
evolution, functions or algorithms (“individuals”) to solve
some task. The most common form of Genetic Programming
is due to John Koza [Koza, 1992]. This form optimizes one
or more LISP-like “program-trees” formed from a primordial



if

goal

dribble

closest-mate

if

near-opp

goal

goal/2

mag>1/2

Figure 1: A Typical GP algorithm tree

soup of atomic functions. These trees serve both as the genetic
material of an individual, and as the code for the resultant
algorithm itself; there is no intermediate representation.

An example GP tree is shown in Figure 1. A GP individual’s
tree can be thought of as a chunk of LISP program code: each
node in the tree is a function, which takes as arguments the
results of the children to the node. In this way, Figure 1 can
be thought of as the LISP code

(if (mag>1/2 (/2 goal))
(if near-opp goal closest-mate)
(dribble goal))

GP trees are executed as algorithms by running them in some
program domain as if they were this LISP code.

Genetic Programming optimizes individuals very similarly
to the Genetic Algorithm. The user supplies the GP system
with a set of atomic functions with which GP may build tree
individuals. Additionally, the user provides an evaluation
function, a procedure which accepts an arbitrary GP individ-
ual, and returns an assessed fitness for this individual. The
GP system begins by creating a large population of random
individuals for its first generation. It then uses the evaluation
function to determine the fitness of the population, selects the
more fit individuals, and performs various breeding operators
on them to produce a new generation of individuals. It re-
peats this process for successive generations until either an
optimally fit individual is discovered or the user stops the GP
run.

GP’s breeding operators are customized to deal with GP’s
tree-structured individuals. The three most common operators
we use are subtree crossover, point mutation, and reproduc-
tion. GP’s mutation operator (shown in Figure 2) takes a
single individual, replaces an arbitrary subtree in this indi-
vidual with a new, randomly-generated subtree, and adds the
resultant individual to the next generation. GP’s crossover
operator swaps random subtrees among two fit individuals
to produce two new individuals for the next generation, as
shown in Figure 3. GP’s reproduction operator simply takes
a fit individual and adds it to the next generation.

goal

dribbleclosest-mate

if

near-opp

defgoal

avg

home

closest-mate

if

near-opp

Before

After

Figure 2: The point mutation operator in action. This oper-
ator replaces some subtree in an individual with a randomly-
generated subtree.

home

avg

goal

defgoal

dribble

/2

home

avg

goal

defgoal

dribble

/2

Before

After

Tree 1 Tree 2

New Tree 1 New Tree 2

Figure 3: The subtree crossover operator in action. This
operator swaps subtrees among two individuals.



Function Returns Description
(s1) bool Returns my internal state flag (1 or 0).
(mate-closer) bool 1 if a teammate is closer than I am to the ball, else 0.
(near-opp) bool 1 if there is an opponent within r distance from me, else 0.
(squadn) bool 1 if I am squadmate n, else 0.
(rand) bool 1 or 0, depending on a random event.
(home) vect A vector to the my “home position”.
(ball) vect A vector to the ball.
(defgoal) vect A vector to goal I am defending.
(goal) vect A vector to the goal I am attacking.
(closest-mate) vect A vector to my closest teammate.
(not bool1) bool Logical not.
(and bool1 bool2) bool Logical and.
(->+25 vect1) vect Rotates vect1 25 degrees in the direction I turned last.
(/2 vect1) vect Divides the magnitude of vect1 by 2.
(dribble vect1) vect Sets the magnitude of vect1 to some constant c.
(avg vect1 vect2) vect Returns the average of vect1 and vect2.
(if bool1 vect1 vect2) vect Evaluates bool1. If it is 1, evaluates and returns vect1, else evaluates and returns vect2.
(change-state vect1) vect Toggles my internal state flag, and returns vect1.

Table 1: A small sample of some of the functions in the “primordial soup” GP soccer function set.

3 Using Genetic Programming to Evolve
Coordinated Soccer Behaviors

The basic function set with which our soccer softbots are
built consists of terminal functions of arity 0 which return
sensor information, and nonterminal functions which operate
on this data, provide flow-control, or modify internal state
variables. We use Strongly-Typed GP [Montana, 1995] to
provide for a variety of different types of data (booleans,
vectors, etc.) accepted and returned by GP functions. Table
1 gives a sampling of the basic functions we provide our GP
system with which to build individuals.

The first step in evolving a team is to form a set of low-
level “basic” behaviors to be used by its players. Many basic
behaviors are so simple that there is little reason to “evolve”
them, because the soccer server effectively provides the data
for these behaviors. This includes behaviors like “kick the
ball into the goal”, or “go home”, which can be represented
as simple vectors to the appropriate places.

However, some low-level behaviors are more interesting to
evolve: “go to the ball” is more than a simple vector towards
the ball because the player must intercept a moving ball. An-
other interesting (and difficult) behavior is determining which
of several teammates is the best to kick to, or if a kick to the
goal is a better choice than a pass. We have used Genetic
Programming to search for good solutions to these behav-
iors, using the resultant solutions are part of the function set
available to our teams.

Once a suitable collection of basic functions has been devel-
oped, there are a variety of ways to use Genetic Programming
to “evolve” a soccer team. An obvious approach is to form
teams from populations of individual players. The difficulty
with this approach is that it introduces the credit assignment
problem: when a team wins (or loses), how should the blame
or credit be spread among the various teammates? We took a
different approach: the Genetic Programming “individual” is

the entire team itself; all the players in a team stay together
through evaluations, breeding, and death.

Given that the GP individual is the team itself, this raises the
question of a homogenous or heterogeneous team approach.
With a homogenous team approach, each soccer player would
follow effectively the same algorithm. With a heterogeneous
approach, each soccer player would develop and follow its
own unique algorithm. In a domain where heterogeneity
is useful, the heterogeneous approach provides considerably
more flexibility and the promise of more finely optimized be-
haviors and coordination. However, homogenous approaches
take far less time to develop, since they require evolving only a
single algorithm rather than (in the case of the Soccer domain)
eleven separate algorithms.

We have opted for a hybrid of the two: our teams are divided
into squads. Each squad develops a separate algorithm used
by all the players within the squad. It is still possible for each
player to develop its own unique behavior: the primordial
soup of functions includes functions allowing each player to
distinguish itself algorithmically from its squadmates.

The algorithm for a squad consists of two separate func-
tional Lisp-like programs, one executed whenever the player
is able to kick the ball, and the other executed when he can
see the ball but cannot kick it (whenever a player cannot see
the ball, the player simply searches for the ball). Both pro-
grams take as input various information about the state of the
world, and output a <Distance, Direction> vector indicating
an action (turning or kicking when in possession of the ball,
turning and dashing when not).

All told, a full team consists of between three and six squads
(depending on squad size), with two trees each, for a total of
between six and twelve trees. This is a large number of trees to
evolve within a single GP individual, requiring a large number
of generations to produce adequate teams. To address this
problem, we have experimented with using various stepped



evolution strategies to first develop good individuals, then
good squads from those individuals, then good teams from
those squads.

Our team-evaluation function uses co-evolution to deter-
mine team quality. To evaluate the fitness of all the teams in
the population, it first pairs off teams in the population, then
plays matches for each pair using the evaluation algorithm
shown in Figure 4. Fitnesses are based on a variety of factors
including (but not limited to) the number of goals, time in
possession of the ball, average position of the ball during the
fitness evaluation, etc. The resultant fitness assessments are
then used by the Genetic Programming system to determine
selection and breeding to form the next generation of soccer
teams.

We perform our GP runs using a custom strongly-typed
multithreaded version of lil-gp 1.1 [Zongker and Punch,
1995]. To compensate for the very long evaluation time nec-
essary in this domain (several seconds to several minutes),
we perform twenty to eighty evaluations in parallel on a DEC
Alpha workstation cluster. During GP evaluation, players
in a team are run in sync in a single thread of execution.
However, in the final RoboCup-97 competition, each player’s
algorithm-trees will actually run in a separate process inde-
pendent of other players.

Pair off all teams in the population
For each pair,

Prepare competition in Soccer Server.
Loop until evaluation is finished,

For each player on both teams,
Update player with any new sensor data.
If the player can kick the ball,

Call the player’s KICK program.
Turn in the direction of the resultant vector.
Kick the ball as directed by the vector.
Yell out the name of the teammate closest to

where the ball will go.
Else if the player can see the ball,

Call the player’s MOVE program.
Turn and dash as directed by the resultant vector.
Turn to face the ball again.

Else
Turn to look for the ball.

Update the state estimator.
Gather per-move information to evaluate fitness.

Compute and return each team’s fitness.
Based on fitness assessments in the population, perform GP

selection, mutation, crossover, and reproduction
to produce a new population.

Repeat as necessary.

Figure 4: Co-evolution evaluation algorithm for competitions

4 Acknowledgements
This research is supported in part by grants to Dr. James
Hendler from ONR (N00014-J-91-1451), AFOSR (F49620-
93-1-0065), ARL (DAAH049610297), and ARPA contract
DAST-95-C0037.

Our thanks to Lee Spector, Kilian Stoffel, Bob Kohout,
Daniel Wigglesworth, John Peterson, Shaun Gittens, Shu
Chiun Cheah, and Tanveer Choudhury for their help in the
development of this project.

References
[Holland, 1975] J.H. Holland. Adaption in Natural and Arti-

ficial Systems. University of Michigan Press, 1996.

[Iba, 1996] H. Iba. Emergent Cooperation for Multiple
Agents using Genetic Programming. In J.R. Koza, ed-
itor, Late Breaking Papers of the Genetic Programming
1996 Conference. Stanford University Bookstore, Stan-
ford CA, pages 66–74, 1996.

[Itsuki, 1995] N. Itsuki. Soccer Server: a simulator for
RoboCup. In JSAI AI-Symposium 95: Special Session
on RoboCup. December, 1995.

[Kitano et al, 1995] H. Kitano, M. Asada, Y. Kuniyoshi, I.
Noda, and E. Osawa. RoboCup: The Robot World Cup
Initiative. In Proceedings of the IJCAI-95 Workshop on
Entertainment and AI/ALife, 1995.

[Koza, 1992] J.R. Koza. Genetic Programming: On the Pro-
gramming of Computers by Means of Natural Selection.
The MIT Press, Cambridge MA, 1992.

[Luke and Spector, 1996] S. Luke and L. Spector. Evolving
Teamwork and Coordination with Genetic Programming.
In J.R. Koza et al., editors, Proceedings of the First An-
nual Conference on Genetic Programming (GP-96). The
MIT Press, Cambridge MA, pages 150–156, 1996.

[Montana, 1995] D.J. Montana. Strongly Typed Genetic Pro-
gramming. In Evolutionary Computation. The MIT
Press, Cambridge MA, 3(2):199–230, 1995.

[Raik and Durnota, 1994] S. Raik and B. Durnota. The Evo-
lution of Sporting Strategies. In R.J. Stonier and X.H.
Yu, editors, Complex Systems: Mechanisms of Adaption.
IOS Press, Amsterdam, pages 85–92, 1994.

[Reynolds, 1993] C.W. Reynolds. An Evolved, Vision–
Based Behavioral Model of Coordinated Group Motion.
In Jean-Arcady Meyer et al., editors, Proceedings of
the Second International Conference on Simulation of
Adaptive Behavior. The MIT Press, Cambridge MA,
384–392, 1993.

[Zongker and Punch, 1995] D. Zongker and B. Punch. lil-gp
1.0 User’s Manual. Available through the World-Wide
Web at http://isl.cps.msu.edu/GA/software/lil-gp, or via
anonymous FTP at isl.cps.msu.edu in the /pub/GA/lilgp
directory. 1995.


