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Abstract

How does group memory affect sociality? Most computatiomalti-agent social simulation models
are designed with agents lacking explicit internal infotioraprocessing structure in terms of basic
cognitive elements. In particular, memory is usually nqtleitly modeled. We present initial results
from a new prototype called “Wetlands”, designed to invges the effect of group memory structures
and interaction situations on emergent patterns of sogiaticollective intentionality. Specifically, we
report on initial computational experiments conducted aitucally-differentiated agents endowed with
finite and degradable memory that simulate bounded mnenfionation and forgetfulness. Our main
initial findings are that memory capacity and engram retenkioth promote sociality among groups,
probably as nonlinear (inverse) functions. Wetlands litnjgemented in the new MASON 3 (Multi-
Agent Simulator of Networks and Neighborhoods) computaticenvironment developed at George
Mason University.
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1 Introduction

Mnemonic storage capacity is fundamental for computatibnanan and social dynamics, because every
real-world agent, whether individually or group, neceibgaelies on memory—and other internal cognitive
structures (such as learning)—to estimate its own statapate a plan and produce behavioral acts based
upon experiencé. Accordingly, systems of short- and long-term memory aremtis—rfunctionally and
logically—for retaining and accessing information comeeg external situational environments and internal
states. Without memory capacity an agent cannot functiakimy memory a cross-cultural universal for
both individuals and cultures. Memory thus links micro aracne scales in human and social dynamics.
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IThis ontology is based on a view of agents as consisting ofvletdne, goals, and behavior/acts. Throughout this paper an
“agent” may refer to an individual, such as a single persoerarpaggregate of individuals, such as a group, societypmatir
system thereof. However, as explained in Section 2.1, thatagn our computational model (Wetlands 1.1) consist ofigs, not
individuals.
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Interestingly, memory is not uniform across agents, wheithgdividuals or aggregates—groups, soci-
eties, or nations—because different agents have diffeneeimonic structures. Exactly how does memory
affect “sociality’ or collective intentionality? Is memory significant or sedary for collective action?
How do different mnemonic structures—diverse memoryaitds such as capacity and retention—affect
collective social behavior? How do societies interact whgants have heterogeneous cultural identities?
How do mnemonic transformations affect human and sociahatycs?

Most computational multi-agent social simulation modeis designed with agents often capable of
generating collective intentionality, in a generativesse(Epstein, 2004), but computational social agents
commonly lack an explicit internal information-procegsiarchitecture in terms of basic cognitive struc-
tures. Cognitive structures include memory, learningcffand other common human cognitive properties.
As a result, the “internal environment” (Simon, 1999) of mtgeoften remains a black box.

We present preliminary results from a prototype model desigio investigate the effect of mnemonic
function on emergent patterns of sociality or collectivieemtionality. Our model is intentionally simple in
order to easily identify experimental results caused byimdations of mnemonic structure. Specifically,
we present a series of computational experiments deriagal &n initial model (Wetlands 1.1) populated by
group-level agents endowed with memory and bounded rditipn®/e explore the effects of variations of
memory capacity and retention on sociality or collectivecc

The following sections of this paper focus on our methods,lts, discussion, and conclusions.

2 Method

We are interested in collective intentionality and cogmifpbrocesses such as memory and learning. Among
the senior authors, we combine expertise in computatiomgibkscience (Cioffi), computer science and
Al (Luke), and computational neuroscience (Olds). Our pdute involved two stages. We constructed an
experimental model—the first of several—to generate a nahbut nonetheless interesting artificial society
of agents endowed with mnemonic structure and communitatica simple multi-agent social simulation
model called “Wetlands”, as described below. We then cotedliovo initial experiments in Wetlands 1.1 to
examine the effects of memory capacity, retention, and Isimgmmunication on emergent behavior.

2.1 The Wetlands model

Wetlands 1.1—the agent-based experimental model useisttldy—is based on an Sean M. Paus’ earlier
“Floodland” model (2003) and uses the MASON 3 multi-agemitdation framework for complex adaptive
systems”. Next we describe the architecture, dynamics, and initielad@alibration of Wetlands.

Architecture  Wetlands 1.1 consists of a class of situated, autonomoastiad, bounded-rational (in the
sense of Simon), group-levagentsnteracting at two levels:i{among themselves anid)(with an environ-
ment composed of physickEndscape simpleweather(moisture from rain), sites witfood and sites with
shelter The Wetlands 1.1 landscape is composed of hexagons to thidnited orthogonal interaction
opportunities of a von Neumann neighborhood, or the arbjtreorner effects of a Moore neighborhood

230ciality” means the essence of—what fundamentally darties—social phenomena, similar to physicality, chergjseli-
giosity, or musicality in their respective domains.

3SMASON (Multi-Agent Simulator Of Networks and NeighborhaéLuke et al., 2003)) is an open source simulation core
written in Java, available at http://cs.gmu.edetlab/projects/mason/. MASON is a collaborative projeicthe Evolutionary
Computation Laboratory and the Center for Social CompjexfitGeorge Mason University.
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Figure 1: Wetlands initial visualization and layers. Comiovisualization (a) consisting of moisture layer
(b), food sites layer (c), shelter sites layer (d), and agyter (e). Agents are mobile but all environmental
components are fixed in Wetlands 1.1 (though environmeptaponents may change in value).

(Cioffi-Revilla, 2002; Gilbert and Troitzsch, 1999). Wettis' hexagons may be thought of as elementary
Thiessen polygons, common for modeling neighboring santaractions among sites or interaction nodes
on a regional scale. Socially, each agent in the Wetlandsshtmiresponds to a smatoup of kin-related
individuals in a real (“target”) world, on the scale of a fanor extended family (approximately 2—20
individuals)#

Wetlands 1.1 is inhabited by two types of groups (societiesljed Atis and Etis, based on the Culture
attribute defined on the Group class. Ati and Eti groups acsvehin black and red (or black and gray),
respectively, in Figure 1la and le. In addition to havinguraltidentity, agents also have memory, such
that each group-agent can “remember” at most shihséored engrams which degrade over time. Thus the
memory has both a capacity and a retention qualityn addition, each society—Ati and Eti cultures—wiill
have its own memory in future versions of Wetland.)

Moisture, food, and shelter are randomly distributed oler\Wetlands lanscape, as shown in Figures
1b—d. Food grows where landscape has sufficient moisture.

4We identify the scale of each computatiorgjentin Wetlands as a kin-basegtoup, rather than arndividual person be-
cause all agents exhibit formally homogeneous dynamicganching for food, shelter, and avoiding rain. Such behavéze
anthropologically (ethologically) consistent with kieviel societal aggregation, not with strictly individuahlagiors.

5An engram in the sense of Lashley (1929), is a physical (in our casepotational) memory trace that records information.
Sociologically, an engram can be the computational reptatien of aninfon, in the sense of Devlin (1991).
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Dynamics Each agent-group goes about searching for food, avoidimg aad seeking shelter to stay
dry. The main simulation loop may be described as followschBane-step begins with agents located at
various sites in the landscape with a given memory stateagong an engram (record) of food and shelter
locations stored in memory as an n-tuple. Each agent loaksdrits neighborhood to acquire additional
information on food quality and locations nearby. Besidesal/ery, information on food and shelter is also
acquired through exchange during an encounter (withirusad) between culturally similar groups (e.qg.,
Ati-Ati or Eti-Eti). Information is not exchanged during esunters between dissimilar groups (Ati-Eti or
Eti-Ati), to model the idea of lack of trust between “foreggs” (Polk, 1997). We expect to make further
use of this in-group (‘we’) vs. out-group (‘they’) featume subsequent work; here we use it only for simple
communication between similar groups.

Fresh information is entered into the agent's memory. If mems full, then new information will
dislodge prior information that is inferiogven if (by Simon’s Satisficing Principle) the new informoati
is only locally (not necessarily globally) superio©Once memory is updated the agent moves one step
towards its preferred food (or shelter — depending on whethenot it is raining). The agent moves
towards the “best” food or shelter it remembers, using a lateig scheme which considers both the believed
distance from the food/shelter (closer is better) and thelity” of the food/shelter (higher quality shelter
is surrounded by other shelter; high-quality food is basedhe moisture content). In a future version of
the model, agents’ engrams will be degraded through theiaddif random noise.

Interactions The main agent-based interactions in Wetlands iateefween agents and their environment
(food, moaisture, shelter); andi X among groups of similar or different culture (homogenouseteroge-
neous interaction$).Memory plays an explicit and key role in each form of agergduinteraction. In the
former context (environmental) memory stores qualitaéime locational information about food, moisture,
and shelter. In the latter context (cultural) memory is upddy—and hence benefits from—homogenous
or within-culture contacts. Contact with “foreigners” gdimilar groups: Ati-Eti or Eti-Ati) (Polk, 1997)
does not produce information exchange.

Emergence Based on these minimal simple attributes and rules, we deetalgenerate and observe
two significant emergent collective patterns in the Wettaadificial world. The first—and arguably most
important—consists oflustering among groups of Atis and Et&s shown in Figure 1a. This basic pattern
occurs for both feeding and seeking refuge, thereby lenduidjtional external validity to the model—
culturally similar groups ultimately tend to seek food ahélgercollectivelyas a communityqua comuni-
tas), not autonomously, as they spread memories of high-gu@litd and shelter. The model purposively
avoids generating any other more complex social patterosder to provide a simple experimental bench
for conducting memory experiments.

The second significant emergent pattern of collective behalvat is observed is diachronic: after the
initial burn-in period of a few hundred time-steps we obsgrgriodic migrationsbetween food areas and
shelter areas, similar to the daily movement of groups, ®stasonal movement from hunting and gathering
regions in the summer to refuge areas in the winter. The fgolkavould seem to indicate the former, but
in any case the periodic movement of groups is distinct.

60ther object-based interactions not involving agentsidelthose between weather (moisture) and food. In Wetladd®dd
grows around moisture concentrations and propagatesdewaid areas. Moisture regenerates food after agentsmanisas they
move around the landscape.

"We are developing an appropriate indicator of collectivgratiory behavior to portray collective “swarming” in termmsa
time-series metrigA(t).
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Calibration In relative chronology, the Wetlands target world may benaki a holocene environment
inhabited by paleolithic to early neolithic human groupshahter-gatherers searching for food to survive
and seeking shelter away from rain to protect themselvas fhe elements. Wetlands 1.1 contains no other
phenomenology, making it somewhat comparable to huntiiegar models by Reynolds (2002) from a
social evolutionary perspective. In addition, Wetlandk$aany explicit technology.

In this study we used Wetlands as an experimental artifactdoducting memory experiments. Other
MABSS that display comparable sociality (e.g., Schelbngggregation model, HeatBugs, Sugarscape, and
others, Epstein and Axtell (1996), (Gilbert and Troitzstd99, 158-193), Macy and Willer (2002)) are also
feasible platforms for conducting similar memory experitse We chose to develop Wetlands because it
provides an initial model for early social evolution withmimally complex and yet interesting collective
intentionality (“sociality”), desirable properties famiestigating memory.

2.2 Memory experiments

Agent mnemonic structure and dynamics, or how informatsomaintained and accessed in the short- and
long-term memory of an agent, can be modeled in variety ofsvesypart of an agent’s “inner environment”
Simon (1999). In this initial study we considered the follogritwo experiments.

Experiment 1: Variation of memory size In the first computational experiment we conducted a series
of variations on the agent's memory size. Specifically, weedathememory capacity @f each agent
using values of 1, 10, and 25 engrams, to observed whethesftis occurred in the qualitative or quan-
titative emergence of collective behavior (swarming). @search hypothesis this first experiment was
that greater memory capacity would enhance the probalifigollective action, because memory capac-
ity can support a greater volume of inter-agent informaganhange. However, the precise form of such
co-variation—i.e., whether linear, nonlinear, concawvex, polynomial, exponential, etc.—is impossible
to derive from first principles. Some form of nonlinearity uid seem likely (albeit not certain), given the
nonlinear properties of information.

Experiment 2: Variation of engram duration In the second experiment we varietemory retention
R by manipulating the duration of engrams stored in a agengmary. Our research hypothesis in this
experiment was that the longer the time period that engramddalast in an agent’s memory, the more
efficient the agent's movements—searching for food andrimdiry shelter— would be, especially when
boosted by information exchange from encountering othikm@lly similar groups. Operationally, variation
in memory retention was implemented by varying the numbetinoé-steps that a given engram would
remain stored in memory. In Wetlands 1.1 engram loss was ledds a simple step function without noise,
not as a gradual process (e.g., exponential or logistic mghass). This will change in future versions.

Other memory experiments We continue to conduct other memory experiments with thelaids
model, to test for episodic effects, noise, memory loss aglatiation, traumatic stress memory disor-
ders, and other cognitive conditions related to mnemonictire. These will be reported in our final paper.
All simulation runs are conducted with MASON 3.
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3 Results

Thus far the main results from our computational memory grpmts with Wetlands 1.1 can be summa-
rized as follows. Subsequent results will be reported arperiments continue.

3.1 Emergent sociality and memory capacity

Repeated simulation runs showed that the time requiredhéemmergence of sociality (collective behavior),
T, decreased with increasing memory capacityherefore confirming our first research hypothesis. Groups
takelesstime to display spatially clustered formations (they sthetnging together” more quickly) when
their memory capacity igreater. Conversely, they takiengerto gather as a culture when the lower group-
level memory idow.

Moreover, our initial results also indicate that the obedrwegative relationship appears to be both
monotonic and nonlinear (concave), with time to emergehagecreasing in approximately inverse and
marginally decreasing proportion to memory capaCityr

a

wherea andk are scale and shape parameters, respectively, both positiv

3.2 Emergent sociality and memory retention

In terms of our second experiment, repeated simulationshawed that the time required for the emergence
of collective behaviorT, also decreased with increasing memory retenti®nT his conformed our second
research hypothesis. Here again, groups emjasgtime to achieve spatially clustered formations when
they are able to retain memory fot@nger period of time (number of time-steps). Conversely, groas t
longer to “start hanging around together” when their growgmary is brief.

In the second experiment our results indicated a similaticgiship: the observed negative relationship
again appears to be both monotonic and nonlinear (conacaitb)time to emergence& decreasing in inverse
and marginally decreasing proportion to memory retenipar

b

T:@,

(2)

whereb andh are scale and shape parameters, respectively, both positiv

4 Discussion

Moving from the specific focus of this investigation to breadonsiderations beyond the experiments re-
ported here, we now discuss our results in terms of computfindings, broader theoretical implications
for sociality and collective intentionality and future easch directions.

4.1 Computational findings

Results from this study within Wetlands demonstrate thatadity or the social behavior of groups—for
example, groups’ propensity to cluster together—is nogpahdent of group-level memory structures and
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processes. Both memory capacity and engram retention gviéicant effects on how promptly social-
ity emerges among groups. Both features also have quaditatsimilar effect in terms of increasing the
probability of emergent collective behavior (equationsd a).

Verification Our initial Wetlands 1.1 model has undergone extensivefigation, so we feel confident
about the veracity of the observed experimental effectsevhory capacity and retention on the probability
of collective action. Nonetheless, we continue to exantieestmulation runs closely, to ensure that sociality
remains unaffected by bugs.

Robustness Repeated simulation runs of both experiments under diffestchastic conditions have thus
far failed to invalidate our main results. In the future, vemaise MASON'’s intrinsic separation of compu-
tation from visualization to execute a large number simottest runs in a short amount of time to explore the
parameter landscape for robustness.

4.2 Theoretical implications

Which theoretical inferences from the computational warfdVetlands 1.1 may be warranted in terms
of our computational experiments? Our findings suggestsnabeu of plausible theoretical implications
extending beyond “the observed facts” (Lave and March, 18998&rms of broader social science themes,
Simon’s Conjecture, and social scale.

A broader social science and ALife perspective So far our research with Wetlands has touched upon
half of the six major research themes in Max Steuer’s recgsgssment of the social sciencElse Scientific
Study of Society2003): migration, kin-groups (family), and shelter (himgg2 While Steuer’s survey
covers only statistical research on these topics, our ctatippal analysis of the effect of memory on
social patterns takes advantage of the unique experimemiabnment provided by an agent-based model
such as Wetlands. Whereas most statistical social scieseanch is based on survey research, even when
cross-cultural in scope, computational social sciencearefi can contribute new insights through virtual
experimentation (Epstein and Axtell, 1996).

In terms of social science and ALife perspectives, our mregmwith Wetlands so far seems promising,
especially in the area of providing cognitive attributesatgents. Experience with Wetlands should also
prove helpful as we attempt to generate other emergentipsittd sociality, such as trade or conflict (Min
et al., 2003).

Simon’s Conjecture Herbert A. Simon [1916-2001] hypothesized that emergentab@omplexity—
observed patterns of sociality and collective intentidpatis caused primarily by thedaptivebehavior
of bounded-rational agents (individuals or groups) inteng in complex environmentsot by any inter-
nal complexity of the agents themselves (1999, 7-8). Saeoialplexity is environmentally induced; not
the product of agent complexity (“Simon’s Conjecture”). lldod’s (1995) approach to modeling complex

8The value of Steuer’s survey cannot be understated, pltigin terms of highlighting the growth of positive knovdge
about society. However, the absenceaffiflictas a major research topic across the social sciences—augtodSteuer’s otherwise
excellent survey—is unfortunate, particularly in lighttb® growing body of knowledge that exists in this area (ConRiesearch
Consortium, 2004; Diehl, 2004).
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adaptive systems (CAS) is similar: simple agent rules careige complex emergent patterns if the envi-
ronment or task is sufficiently challengifigndeed, one could argue that the epistemology of generative
computational social science is fundamentally based ort wilag be called “Simon’s Conjecture”: social
complexity emerges from the adaptation of simple agenttoptex environments, not from inherently
complex agents.

In terms of Simon’s Conjecture, thus far our computationadifigs from the Wetlands experiments—
summarized by equations 1 and 2—suggest that complex aeapghavior (such as social aggrega-
tion) could well indeed result from simple internal mechlsams, and—interestinglgnd beyondSimon’s
Conjecture—simple linear variations in mnemonic structufeamely, capacityC and retentiorR) cause
nonlinear effectson the timingT of emergent behavioral complexity. This theoretical (“getive”) im-
plication is new, based on computational findings, and do¢seem to follow (nor arguably contradicts)
Simon’s Conjecture.

Memory and social scale Scale and complexity are long-standing classical puzzdhe physical and
biological sciences (Asimov, 1983; Labrador, 2002; Motapw2002). Unfortunately, social scientists pay
less attention to issues of scale and complexity, with sootetate exceptions (Eulau, 1996; Schelling, 1971;
Singer, 1961; Young, 1998).

Memory is essential to understanding different human anthkscales, from individual to societal (and
perhaps to global). Our findings offer new insights on midtigcales of sociality. For instance, although
agents in Wetlands seem to approximate groups, our resalfssoggest new research hypotheses on the
effect of mnemonic stricture on individual (micro) or swgn@up (macro societal) collective behavior.

Formal analysis from computational results From a more formal perspective, equations 1 and 2—which
for now we view only as approximate computational genea#itins—suggest a number of implications.
Both functions represergower lawsin terms of the independent variabl€sand R, so their asymptotic
behavior is intrinsically interesting.

In addition to formal inferences that can be derived fromagigms 1 and 2, estimating the numerical
value of the corresponding exponeritsandh, is important because such values have implications for the
relative (marginal) effects of memory capacity and retamti For instance, knowing even just the values
of these parameters (which is larger?) can shed light om thkitive importance to derive “dominance
principles” (Cioffi-Revilla, 1998, 289). Estimating theard other parameters is possible by running a very
large number of fast simulations, a core task for which MAS©®MNesigned (Luke et al., 2003).

5 Conclusions

This investigation began by asking the question: How doesgmemory affect sociality? More specifi-
cally, we asked how does memory capacity and the duratiomgraens in memory affect the probability
of sociality or collective intentionality? Most computatial multi-agent social simulation models are de-
signed with agents that usually — or most typically — lackletinternal information-processing structure
in terms of basic cognitive elements. In particular, memsnysually not explicitly modeled.

%In computational social science, the view of society as ‘mpiex adaptive system” was formulated shortly after Worlarw
Il by Karl W. Deutsch (1949, 1951a,b, 1963), under the infageaof W. Ross Ashby and Norbert Wiener. Among early piongerin
works, see also Buckley (Buckley, 1967, 1968).
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We presented initial results from a new prototype calledtliévels”, a multi-agent-based social simula-
tion (MABSS) designed to investigate the effect of group ragnstructures (such as capacity and retention)
and interaction situations on emergent patterns of stciaticollective intentionality. Specifically, we re-
ported on initial computational experiments conducted oftucally-differentiated agents endowed with
finite and degradable memory that simulate bounded mnenfumition and forgetfulness.

Our main initial findings are that memory capacity and engrarantion both promote sociality among
groups, probably as nonlinear (inverse) functions. Welah.1 was implemented in the new MASON 3
(Multi-Agent Simulator of Networks and Neighborhoods) qartational environment developed at George
Mason University as a collaboration between the EvolutipfZomputation Laboratory and the Center for
Social Complexity.
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