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My Current Multiagent Systems Problem



• RoboCup

• Multiagent and Multi-robot Systems

• Pheromone-based Robotics: An Example of Emergent Behavior

• HiTAB: Single-Agent and Single-Robot Training

• Unlearning: Dealing with noise in single-agent training

• Behavioral Bootstrapping: training a flat (leaderless) swarm

• M-HiTAB: Hierarchical Multiagent and Multi-Robot Training
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A Multiagent System     (or MAS)

• Agent: an autonomous entity which iteratively manipulates its 
environment in response to feedback received from the environment.

• Multiagent System: a system of ... you know ... multiple agents.

• Agent interaction

• Emergence

• Distributed Systems Problem: given multiple processors and 
resources under your control, solve a given task.

• Multiagent Systems Problem: given multiple agents with major 
constraints on communication or mutual knowledge, solve a given 
task.



Why Develop / Simulate MAS?

• Science: MAS models can help us make predictions 
and test hypotheses when it would be impossible, 
immoral, or unrealistic to perform real-world tests.

• Biology, Physics, Social Sciences

• Goal: accurate replication of existing phenomena

• Engineering: MAS methods help us test new techniques or inventions.

• Games, Animation, Networked Agents, Multirobotics

• Goal: optimization or demonstration of new methods



Multiagent Systems (for Engineering)

• Agent or Robot Teams
Small Numbers,
Often Heterogeneous
Lots of Communication/Interaction
Global Communication

• Agent or Robot Swarms
Large Numbers

• Modular Robots
A Robot Consists of Modules (the “Agents”)
Moderate Numbers, Usually Homogeneous
Communication via Internal Network
Is this really a multiagent system?



Multiagent 
Systems 
Are Very 

Complex



The Multiagent Systems Design Space is Big

• Factors in the complexity of a Multiagent Systems Design:

• Number of Agents

• Complexity of Agent Behavior and Capability

• Heterogeneity of Agents

• Degree of Agent Interaction

• Communication Complexity

• Designing Robust and Cost-Effective Designs

• This becomes very complicated very quickly



Tradeoffs (in Multirobotics)

• Agent or Robot Teams
Small Numbers (often 2 or 3!)

• Agent or Robot Swarms
Homogeneous
Little Communication/Interaction
Local Communication
Very Simple Behaviors

• The more agents,
the simpler they get!



Emergent Behavior

• Simple Micro-Level Behaviors

• Complex Emergent Macrophenomena

• Can you Predict the Macrophenomena
given the Micro-level Behaviors?

• Complexity Theorists Love Emergence

• Multiagent / Multirobot Designers
Hate Emergence

Can you predict this?



Example: Ant Pheromone Foraging

• Most ant pheromone literature uses a 
single pheromone
(Biologically plausible, but bad algorithms)

• We use multiple pheromones
2 in this example: Food and Nest

• Each ant follows one pheromone but 
updates another.

• Each ant is in a state, which determines 
which pheromones it follows / updates.



Example: Ant Pheromone Foraging

• States:! ! ! ! Follow Pheromone:! ! Update Pheromone:
Looking for Food! Food! ! ! ! ! ! Nest
Looking for Nest!! Nest! ! ! ! ! ! Food

• Following:
An ant is in state s’
Go to square s’’ with highest pheromone Up(s’’)

• Updating:
An ant is in state s’
Update Up(s’)
Reward R(s’) is received only if at nest / food

• Form of multi-utility value iteration



Example: Ant Pheromone Foraging



Example: Ant Pheromone Foraging With Beacons

• The Flockbots

• Small (15cm diameter) 
differential drive robots
capable of deploying, moving, 
and removing cans

• Cans contain Sensor Motes 
which act as movable 
pheromone beacons



Example: Ant Pheromone Foraging With Beacons



Example: Ant Pheromone Foraging With Beacons



Agent Learning and Training

• Machine Learning
Given a sample of data drawn from an environment, construct a model 
which explains the environment.

• Agent Training
An agent is using machine learning, but there is a trainer present who 
observes the agent build and use its model, and suggests corrections.

• Learning from Demonstration
A robot learns to do a task after being given sample data by a human.
This is training only if the human iteratively updates the sample data to 
provide corrections or suggestions.  It is also very expesive.

• Our Research
1. Develop methods to do training of nontrivial single agent behaviors.
2. Develop methods to do training of nontrivial multiagent behaviors.



Single and Multi-Agent Training with Few Samples

• Single-Agent Training Challenge
The Curse of Dimensionality.  The size of the training / learning space 
can be very large for complex behaviors, but the number of samples is 
very small.

• Multi-Agent Training Challenge
The Multiagent Inverse Problem.  Training multiple agents presents a 
difficult inverse problem which gets worse and worse with more agents, 
more interactions, and more complex behaviors.



Current Learning from Demonstration Systems

• Learning Paths or Trajectories
Large numbers of samples
Machine learning is easy

• Learning Behaviors or Plans
Small numbers of samples
Machine learning is very difficult

• We want to learn sophisticated behaviors based on a very small 
number of samples.



HiTAB! ! ! ! ! ! ! ! !  (Single-Agent Training)

• Goal
Train complex, stateful behaviors from a very small number of samples 
in real time on simulated agents or robots.

• Difficulty
Curse of dimensionality.  Robot behaviors can be complex, but we 
only have to train on a small number of samples.

• Solution: Behavioral Decomposition
Manually break complex behaviors into simpler behaviors.  Learn the 
simpler behaviors.  Then learn their composition into the complex 
behaviors.

This projects the complex behaviors’ joint space into smaller, simpler 
spaces that are much easier to learn with few samples.



HiTAB Single-Agent Model

• Hierarchical Finite-State Automata (HFA) as Moore Machines

• Each Behavior is a State

• Recursive" " Behaviors may themselves be other automata

• Transitions from State to State based on environment Features

• Parameterizable!! “Go to X” rather than “Go to the Ball”

• Each timestep

• Transition function is queried based on current environment features, 
possibly resulting in a new current state

• Current state’s behavior is pulsed one iteration



Moore Machines

• A Moore Machine is a
Finite-State Automaton with:

• A set of states 
corresponding to behaviors

Go 
Forward

Turn Left

Grab the 
Bottle



Moore Machines

• A Moore Machine is a 
Finite-State Automaton with:

• A set of states 
corresponding to behaviors

• A special START state
(there are no end states)

Go 
Forward

Turn Left

Grab the 
Bottle

START



Moore Machines

• A Moore Machine is a 
Finite-State Automaton with:

• A set of states 
corresponding to behaviors

• A special START state
(there are no end states)

• A set of directed edges

• All edges leaving a state 
are called its transition 
function

Go 
Forward

Turn Left

Grab the 
Bottle

START

Else

If I am 
Near the Bottle

If I am
 At the Wall

If I am 
Near the Bottle

If the 
Way is Clear



Moore Machines

• A Moore Machine is a 
Finite-State Automaton with:

• A set of states 
corresponding to behaviors

• A special START state
(there are no end states)

• A set of directed edges

• All edges leaving a state 
are called its transition 
function

• No self-edges (they are 
implied and mean “else”)

Go 
Forward

Turn Left

Grab the 
Bottle

START

Else

If I am 
Near the Bottle

If I am
 At the Wall

If I am 
Near the Bottle

If the 
Way is Clear

ELSE

ELSE

ELSE
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Training a HiTAB Automaton

• For each state s, we learn the transition function T(s,f) 
for edges leaving s.

• Gather Data.  When the user transitions to a new state/behavior, log:
[ old behavior, current feature vector, new behavior"]

• Build T(s,f) ⇒ s’ for each state s

Gather all samples [s, f, s’] starting with s 
Reduce to just f ⇒ s’

This is just a classification task

• Delete all unused states, add to library
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Right

Forward
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Done
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Z(A) < 0.2Z(A) < 0.2
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Figure 3: Decomposed hierarchical finite-state automaton learned in the demonstration. See discussion in the
text on each subfigure. Most behaviors form a hierarchy within an individual robot, but CollectivePatrol and
CollectivePatrolAndDefer form a separate hierarchy within the team controlling agent. Though the transition
condition descriptions here are categorical sounding, most are in fact derived from continuous values: for
example, Left(Color) is trained based on X coordinates of the color blob in the field of view.

ward into simple, easily trained behaviors with small numbers
of features and states, simple (indeed often trivial) and easily
trained transition functions, and features and states which
may vary from behavior to behavior.

5. SIMULATION EXPERIMENTS

After conducting the robot demonstration above, we pro-
ceeded to conduct simulation experiments to quantify the
benefit of controller agents, particularly as the hierarchy grew
from a single controller to multiple levels of controllers. We
applied our multiagent homogeneous hierarchies to a simu-
lated box foraging problem: agents hunt for boxes, then pull
them to a known deposit location. The boxes are randomly
distributed throughout the environment, and after collection
at the deposit, the box disappears and a new box is placed
randomly in the environment. The environment consists
of various circular “boxes” of different sizes, which likewise
require different numbers of agents (5, 25, 125) to pull them.
We performed experiments involving swarms of indepen-

dent agents, groups of agents under a single layer of controllers
(called Level 1 controllers), and groups of agents under mul-
tiple layers of controllers (Level 1, Level 2, and so on). To
perform these experiments required training three kinds of
behaviors. First, we trained behaviors for each basic agent,
then we trained behaviors for Level 1 controllers (designed
to control basic agents), and finally we trained behaviors for
Level N≥2 controllers (designed to control other controllers).

This set of behaviors was sufficient to scale to any number
of levels. We now describe the basic behaviors and features,
and trained decompositions.

Basic Agent Behavior Decomposition. We decomposed
and trained a basic agent’s behavior hierarchy as follows:

• Agents’ basic features wereDistanceTo(X), DirectionTo(X),
ICanSeeABox, IAmAttachedToABox, and Done. The first
two features were parameterizable to either visible boxes
or to the deposit location. The last feature was true when
the done flag had been raised. Boxes could only be seen if
they were within 10 units.

• Agents’ basic behaviors were Forward, RotateLeft, Rota-
teRight, GrabBox, ReleaseBox, ReleaseBoxAndFinish, and
Done. Both ReleaseBox and Done would raise the done
flag and (as normal) immediately transfer to the start
state. ReleaseBoxAndFinish would as well, except that it
would also raise a finished flag in the agent which could
be detected by controllers as a feature. Boxes could only
be grabbed if they were sufficiently close (5 units).

• Using Forward, RotateLeft, and RotateRight, we trained
Wander, which wandered randomly.

• Using Forward, RotateLeft, and RotateRight, plus the Dis-
tanceTo(X) and DirectionTo(X) features, we trained the
behavior Goto(X), which servoed to a given target.

Statefulness Is Important

• A Policy #(f)→a
is not a sufficiently 
rich representation 
to learn many 
robot behaviors.

• We learn a finite 
state machine 
transition function 
T(s,f) →s



Demonstration...

Home Base

Elsewhere

Third Place



Unlearning: Training Despite Noise! !  (IJCAI 2013)

• Situation: Training
When the agent performs its learned behavior incorrectly, the trainer 
corrects the behavior.

• Problem
How do we use the corrective information to update the model?

• Complication
We have a very small number of samples.  (Samples are precious).

• In typical machine learning (with many samples), we’d just add the 
corrective samples to our sample set and re-learn the model.

• In unlearning, we use the corrective samples to detect and remove 
noisy sample data.



Unlearning

• We have:
S!! Original sample set (with some noisy samples)
M! Original learned model from S
C!! Set of corrective samples

• We produce:
S’! Revised sample set (identifying/removing some noisy samples)
M’! Revised learned model from S’

• Approach
Identify the samples B ⊆ S which caused M to misclassify C
Determine which samples in N ⊆ B are likely to be noise
Remove N from S, producing S’



Identifying Noise in Samples

• Identifying B requires algorithms customized for your particular 
model algorithm
C4.5,   K-NN,   SVMs 

• A sample in b∈B caused M to misclassify c∈C for two reasons:

1.!! b is noisy     or
2. ! The sample space in S is too sparse, so b was inappropriately
! ! made responsible too large a region.

• Based on the model M and the algorithm which produced b, we 
determine if it’s probably #1 or #2

• How many other samples are misclassifying c?  [if many, it’s likely #2]

• How far is b from c?! ! ! ! ! ! ! ! ! [if far, it’s likely #2]



Noise = 1 / 5 Noise = 1 / 20 Noise = 1 / 100

Dataset U+C U+C+E Metric Non-Metric U+C U+C+E Metric Non-Metric U+C U+C+E Metric Non-Metric
1-NN

Iris 0.9553 0.9131 0.9307 0.9255 0.9553 0.8002 0.8901 0.8601 0.9553 0.7519 0.9461 0.8490
Glass 0.6921 0.6707 0.6810 0.6822 0.6921 0.6441 0.6816 0.6705 0.6921 0.5653 0.6887 0.6421
Wine 0.9533 0.9370 0.9464 0.9442 0.9533 0.7998 0.9506 0.8722 0.9533 0.7566 0.9520 0.8488

3-NN
Iris 0.9537 0.9409 0.9468 0.9492 0.9537 0.8887 0.9361 0.9295 0.9537 0.8539 0.9370 0.9331

Glass 0.7008 0.6734 0.6895 0.6980 0.7008 0.6615 0.6927 0.6971 0.7008 0.6193 0.6866 0.6828
Wine 0.9615 0.9524 0.9607 0.9594 0.9615 0.8895 0.9511 0.9472 0.9615 0.8548 0.9462 0.9408

Decision Tree (Unpruned)
Iris 0.9459 0.8705 0.8915 0.8877 0.9459 0.8029 0.8497 0.8535 0.9459 0.8014 0.8765 0.8616

Glass 0.6701 0.6379 0.6577 0.6572 0.6701 0.6355 0.6544 0.6514 0.6701 0.6306 0.6591 0.6492
Wine 0.9332 0.8321 0.8638 0.8636 0.9332 0.7375 0.8103 0.7956 0.9332 0.7206 0.8365 0.8079

Decision Tree (Pruned)
Iris 0.9427 0.9135 0.9213 0.9226 0.9427 0.8761 0.9081 0.9094 0.9427 0.8799 0.9250 0.9213

Glass 0.6711 0.6330 0.6520 0.6529 0.6711 0.6274 0.6460 0.6426 0.6711 0.6301 0.6501 0.6496
Wine 0.9340 0.8591 0.8811 0.8846 0.9340 0.8185 0.8749 0.8715 0.9340 0.8093 0.8892 0.8844

Support Vector Machine
Iris 0.9102 0.3886 0.4280 0.9070 0.9102 0.7389 0.8649 0.8705 0.9102 0.7374 0.8695 0.8668

Glass 0.3346 0.3311 0.3163 0.3393 0.3346 0.3329 0.3313 0.3284 0.3346 0.3249 0.3259 0.3350
Wine 0.9329 0.3906 0.3991 0.9350 0.9329 0.6400 0.8828 0.8861 0.9329 0.6544 0.8834 0.8867

Table 1: Results for ω = 100%. Bold numbers indicate statistically significant difference between the naive approach (U+C+E)
and unlearning, while underlined numbers indicate a statistically significant difference between metric and non-metric unlearning.
The column U+C represents a perfect dataset and serves as an upper bound on unlearn performance.

• Data Sparsity. While the Wine, Glass, and Iris data
sets are already fairly small (between 100 and 250 data
points), our learning from demonstration research tends
to use even smaller sets. Thus we experimented with
three data set sizes: the full (ω = 100%) data set, an ω =
50% sized set, and a ω = 25% sized set. For the last two,
the set was reduced by removing random data points.

We were curious as to how sensitive our algorithms are to
their parameters and so performed some informal parameter
tuning. In the non-metric unlearning algorithms, we varied
α from 0 to 1 in steps of 0.1, while in the metric unlearning
algorithm, we varied γ over 0.5, 0.75, and 1.0 while β ranged
from 0 to 1 in steps of 0.1. Additionally, we varied µ from 0
to 5 in steps of 1. In general, γ has little effect on classification
accuracy. However, for unpruned decision trees on the Wine
dataset, increasing γ results in decreased accuracy. Addition-
ally, β appears to have minimal effect, but this is probably
due to the infrequency of the second hypersphere containing
a single point. In the non-metric algorithms, accuracy either
stays constant or increases as α increases from 0 to 1. For
K-NN, setting µ = 2 results in the best performance with no
statistically significant impact as µ increases to 5.

Based on these trends, for metric unlearning, we fixed
γ = 0.5 and β = 0.5 while for non-metric unlearning we set
α = 0.9. For K-Nearest Neighbor, we set µ = 2, and, as men-
tioned earlier, for Support Vector Machines we set τ = 2.
Table 1 shows the results. For each algorithm and dataset, we
compared against simply adding a point (which we call the
“naive” approach) and running our unlearning algorithms. Bold

numbers indicate a statistically significant increases over the
naive approach, while underlined numbers indicate the statisti-
cally higher performance between the metric and non-metric
unlearning algorithms. All statistical tests were at the 95%
confidence level with the appropriate Bonferroni correction.

In general, the unlearning algorithms perform better than the
naive approach, with metric unlearning slightly outperforming
non-metric algorithms. However, in all cases, the unlearning
algorithms failed to completely remove the error points.

Next, we investigated how these trends hold up with smaller
datasets by changing the experimental procedure: at the start
of each iteration, we randomly shuffled the data and then used
the top ω%. Table 2 shows the results for ω = 50% and Table
3 shows the results for ω = 25%.

We see the same trends as before: unlearning performs
better than the naive approach, with metric unlearning per-
forming slightly better than non-metric unlearning. But as the
dataset shrinks, unlearning algorithms start to perform closer
to the naive approach due to the fewer available points and
associated information for our unlearning algorithms.

5 Conclusions
We presented two algorithms to correct errant classifiers as-
suming a paucity of examples. This paucity is common in
learning from demonstration environments. Our approaches
use two heuristics, similarity and strength in numbers, to po-
tentially remove noisy examples and protect correct examples
which have overgeneralized the space. Our algorithms per-
formed well compared to simply adding additional datapoints.

Typical Results



RoboCup 2012

• Use HiTAB to train a humanoid robot team
at the competition

• Learn 17 Finite-State Automata
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Simple “Flat” Swarms with HiTAB

• Homogenous Case: Every agent uses the same behavior.
! This is not just parallel: the agents interact.

• Heterogeneous Case:  Agents belong to disjoint classes.  Only agents 
in the same class use the same behavior.

• If the interesting behaviors require interaction, how do you train agents 
simultaneously?

• Example: to passing behaviors, you must teach two robots at the same 
time how to coordinate passing and receiving.



Behavioral Bootstrapping

• If you have multiple agents that must be trained simultaneously

• ... and you only have one trainer ... ?

• Homogeneous Case

1. Set all agents to empty behaviors (doing nothing)

2. Select an Agent and train a slightly better behavior in the context of 
the agents’ existing behaviors

3. Distribute this behavior to all the agents

4. Go to 1



Behavioral Bootstrapping

• Heterogeneous Case" " (2-agent example)

1. Set both agents to empty behaviors (doing nothing)

2. Select Agent A and train a slightly better behavior in the context of 
Agent B’s existing behavior

3. Select Agent B and train a slightly better behavior in the context of 
Agent A’s existing behavior

4. Go to 1



Behavioral Bootstrapping: Keepaway Soccer

• Three Keepers,  Two Takers
The Keepers have control of the ball 
The Takers are trying to take the ball

The Takers are hard-coded
We are training the Keepers (Homogeneous)

• Passing Requires coordination between
a passer and a receiver

Player 1 decides to pass 
to Player 2

As Player 1 passes, it also 
yells to Player 2

1

2

3

1

2

3

1

2

3

Player 2 stops trying to Get Open
and prepares to Receive

Keepers

Takers

Ball



Behavioral Bootstrapping: Keepaway Soccer



Behavioral Bootstrapping: Keepaway Soccer

• Results

• University of Texas, Austin Hard-Coded Team
5.6 Seconds On Average  (before takers take the ball)

• George Mason University Bootstrapped Team
7 Seconds on Average
9 Seconds on Average if using “yelling”



Multiagent Training

• Techniques for Multiagent Training are nearly always optimizers.

• Multiagent Reinforcement Learning, Stochastic Optimization

• Supervised Learning is extremely rare for multiagent training.  Yet 
training is a supervised task!

• User Modeling" The team learns about one another

• Training" (or Demonstration) The team learns to do a task set by you



The MAS Inverse Problem

• Emergence! ! Given the micro-behaviors, we can’t guess the 
emergent macro-phenomenon without simulation.

• The MAS Inverse Problem!! Given a desired emergent macro-
phenomenon, we can’t guess the micro-behaviors at all.

• How this Affects Training:

• The trainer can tell the agents “in situation X, the macro-phenomenon 
should be Y”  (when it’s dark, storm the castle)

• To learn, an agent needs to know “in situation X, my micro-behavior 
should be Z”  (when it’s dark, stay to the left of Bob)

• We can’t easily compute the micro-behaviors to achieve the 
desired macro-phenomena



Optimization Solves Inverse Problems

• Training With an Optimizer:

• Create a new candidate solution consisting of micro-behaviors.

• Test in the simulator to observe the resulting macro-phenomenon.

• Assess the error in the macro-phenomenon.

• Repeat.



Optimization Solves Inverse Problems

• Supervised Learning Doesn’t Work
Multiagent Systems Inverse Problem.  The separation between the 
micro-behaviors and macro-level phenomenon is too large

• Stochastic Optimization

• Simulated Annealing, Hill-Climbing, etc.: test one solution at a time

• Evolutionary Computation: test many solutions at a time
(very good for multiagent systems

• Reinforcement Learning

• Q-Learning, Policy Search

• BUT:  optimization requires many trials to gather samples.  In robotics, a 
trial is very expensive.



Multi-Agent HiTAB: Training Hierarchies of Swarms

• Goal
Train complex, stateful behaviors from a very small number of samples 
in real time in arbitrarily large swarms of agents.

• Difficulties
1. Curse of dimensionality.  [like single-agent]
2. The Multiagent Inverse Problem.

• Solution: Swarm Decomposition
Manually break the joint multiagent behaviors into simpler behaviors for 
smaller sub-swarms.

Train the simpler behaviors on small swarms, then train composed 
behaviors on larger swarms.
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Save the World

HiTAB Multi-Agent Model

• Decompose the swarm into a hierarchy of subswarms.

• “Regular” (real) agents are leaf nodes.

• Controller (“boss”) agents are nonleaf nodes.

• Train controller agents as usual!

• Basic Behaviors
Top-level behaviors of underlings. 

• Features
Statistics about underlings.



Simple Multiagent Example
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Figure 3: Decomposed hierarchical finite-state automaton learned in the demonstration. See discussion in the
text on each subfigure. Most behaviors form a hierarchy within an individual robot, but CollectivePatrol and
CollectivePatrolAndDefer form a separate hierarchy within the team controlling agent. Though the transition
condition descriptions here are categorical sounding, most are in fact derived from continuous values: for
example, Left(Color) is trained based on X coordinates of the color blob in the field of view.

ward into simple, easily trained behaviors with small numbers
of features and states, simple (indeed often trivial) and easily
trained transition functions, and features and states which
may vary from behavior to behavior.

5. SIMULATION EXPERIMENTS

After conducting the robot demonstration above, we pro-
ceeded to conduct simulation experiments to quantify the
benefit of controller agents, particularly as the hierarchy grew
from a single controller to multiple levels of controllers. We
applied our multiagent homogeneous hierarchies to a simu-
lated box foraging problem: agents hunt for boxes, then pull
them to a known deposit location. The boxes are randomly
distributed throughout the environment, and after collection
at the deposit, the box disappears and a new box is placed
randomly in the environment. The environment consists
of various circular “boxes” of different sizes, which likewise
require different numbers of agents (5, 25, 125) to pull them.
We performed experiments involving swarms of indepen-

dent agents, groups of agents under a single layer of controllers
(called Level 1 controllers), and groups of agents under mul-
tiple layers of controllers (Level 1, Level 2, and so on). To
perform these experiments required training three kinds of
behaviors. First, we trained behaviors for each basic agent,
then we trained behaviors for Level 1 controllers (designed
to control basic agents), and finally we trained behaviors for
Level N≥2 controllers (designed to control other controllers).

This set of behaviors was sufficient to scale to any number
of levels. We now describe the basic behaviors and features,
and trained decompositions.

Basic Agent Behavior Decomposition. We decomposed
and trained a basic agent’s behavior hierarchy as follows:

• Agents’ basic features wereDistanceTo(X), DirectionTo(X),
ICanSeeABox, IAmAttachedToABox, and Done. The first
two features were parameterizable to either visible boxes
or to the deposit location. The last feature was true when
the done flag had been raised. Boxes could only be seen if
they were within 10 units.

• Agents’ basic behaviors were Forward, RotateLeft, Rota-
teRight, GrabBox, ReleaseBox, ReleaseBoxAndFinish, and
Done. Both ReleaseBox and Done would raise the done
flag and (as normal) immediately transfer to the start
state. ReleaseBoxAndFinish would as well, except that it
would also raise a finished flag in the agent which could
be detected by controllers as a feature. Boxes could only
be grabbed if they were sufficiently close (5 units).

• Using Forward, RotateLeft, and RotateRight, we trained
Wander, which wandered randomly.

• Using Forward, RotateLeft, and RotateRight, plus the Dis-
tanceTo(X) and DirectionTo(X) features, we trained the
behavior Goto(X), which servoed to a given target.

Simple Multi-Agent Example



Larger Multi-Agent Model
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• Box Collecting
Boxes require 5, 25, or 125
agents to retrieve

• We’ve trained up to 625 agents
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