Online
Training of
Robots and
Multirobot
Teams

Sean Luke

=5
Department of
Computer Science

George Mason University

3 ZL_J‘7O

»
v
e

—~

Re i
o g

4

About Me

¢ Associate Professor
Department of Computer Science
George Mason University

¢ Interests
Multiagent Systems
Machine Learning
Multirobotics
Stochastic Optimization and Evolutionary Computation
Simulation

e Software (and Hardware)
ECJ Evolutionary Computation Toolkit
MASON Multiagent Simulation Toolkit
RoboPatriots and FlockBots Robot Architectures

My Current Multiagent Systems Problem

Topics in This Talk

e RoboCup

e Multiagent and Multi-robot Systems

e Pheromone-based Robotics: An Example of Emergent Behavior
e HiTAB: Single-Agent and Single-Robot Training

¢ Unlearning: Dealing with noise in single-agent training

e Behavioral Bootstrapping: training a flat (leaderless) swarm

e M-HITAB: Hierarchical Multiagent and Multi-Robot Training

RoboCup 2012 Mexico City

RoboCup 2012

George Mason University

RoboCup 2012 GMU: Pink Osaka: Blue

A Multiagent System (or MAS)

e Agent: an autonomous entity which iteratively manipulates its
environment in response to feedback received from the environment.

e Multiagent System: a system of ... you know ... multiple agents.
e Agent interaction
® Emergence

¢ Distributed Systems Problem: given multiple processors and
resources under your control, solve a given task.

e Multiagent Systems Problem: given multiple agents with major
constraints on communication or mutual knowledge, solve a given
task.

Why Develop / Simulate MAS?

e Science: MAS models can help us make predictions
and test hypotheses when it would be impossible,
immoral, or unrealistic to perform real-world tests.

¢ Biology, Physics, Social Sciences

e GGoal: accurate replication of existing phenomena

e Engineering: MAS methods help us test new techniques or inventions.
e Games, Animation, Networked Agents, Multirobotics

e Goal: optimization or demonstration of new methods

Multiagent Systems (for Engineering)

e Agent or Robot Teams
Small Numbers,
Often Heterogeneous
Lots of Communication/Interaction
Global Communication

e Agent or Robot Swarms
Large Numbers

e Modular Robots
A Robot Consists of Modules (the “Agents”)
Moderate Numbers, Usually Homogeneous
Communication via Internal Network
Is this really a multiagent system?

Multiagent
Systems
Are Very
Complex

- »
A
wy®e 77,
- '. e
- b T
+ A% p Tmman’,
"eeugnta
" “‘ 1 e
L AT - L4
'. Wy ay e et
Pora pae i, v}
ex it repeal o+
F e .- wy gt &
- v - all géa™

v They yren, N

s,,’
-
g
oS

“"“.“
-
A4

L 4
. 4
N
L4

»
o a

P & an®
** o’ ‘l“\‘
» l“" R g .

* "-,2

et adansern
gt aiie
»h
v 0 \l.‘

Y e? 4P aa et ™
Py |
4
LY Yl
$ =
Py

L3
“

& 4
d

+
A0S
>y

‘e

4
-

*,
e habbh,vy

.« Seea
e ey ave
4.

'Y

LY
* o
e

U iign
::"N*:“‘
tody Dt
RN

&~
4
?"-0’

row .

o

F |
1 R
- ® . " ". \“:;‘; t.\" ! ’t v "f’:.

The Multiagent Systems Design Space is Big

e Factors in the complexity of a Multiagent Systems Design:
e Number of Agents
e Complexity of Agent Behavior and Capability
¢ Heterogeneity of Agents
e Degree of Agent Interaction
e Communication Complexity
¢ Designing Robust and Cost-Effective Designs

¢ This becomes very complicated very quickly

Tradeoffs (in Multirobotics)

e Agent or Robot Teams
Small Numbers (often 2 or 3!)

e Agent or Robot Swarms
Homogeneous
Little Communication/Interaction
Local Communication
Very Simple Behaviors

e The more agents,
the simpler they get!

Emergent Behavior

e Simple Micro-Level Behaviors ° °
¢
A J
e Complex Emergent Macrophenomena ° d .
Qe ')
X
e Can you Predict the Macrophenomena », $ o° .
given the Micro-level Behaviors? R " ‘¢ .’
&~ » A “\.b »
® 2 ::‘(b o %o
) i L A J ‘.‘-‘ e
e Complexity Theorists Love Emergence L Fo 4, . o
2 é
1 d ‘. o
e Multiagent / Multirobot Designers
Hate Emergence °

Can you predict this?

Example: Ant Pheromone Foraging

e Most ant pheromone literature uses a
single pheromone
(Biologically plausible, but bad algorithms)

e We use multiple pheromones
2 in this example: Food and Nest

e Each ant follows one pheromone but
updates another.

e Each ant is in a state, which determines
which pheromones it follows / updates.

Example: Ant Pheromone Foraging

e States: Follow Pheromone: Update Pheromone:
Looking for Food Food Nest
Looking for Nest ~ Nest Food

e Following: s’ = argmax U, (s")
An ant is in state s’ s"'eS”

Go to square s” with highest pheromone Up(s”)

" Hpdating: Up(s') = R(s") +y max Up(s")
An ant is in state s’ s'eS
Update Up(s’)]]]
Reward R(s’) is received only if at nest / food (8 L (SA) '}S)

AL
e Form of multi-utility value iteration (SS")—f s ™)
NIRAC
(Sll) (SII) (SII)

Example: Ant Pheromone Foraging

Example: Ant Pheromone Foraging With Beacons

* The Flockbots

e Small (15cm diameter)
differential drive robots
capable of deploying, moving,
and removing cans

e Cans contain Sensor Motes
which act as movable
pheromon

th Beacons

Example: Ant Pheromone Foraging Wi

Example: Ant Pheromone Foraging With Beacons

Agent Learning and Training

e Machine Learning

Given a sample of data drawn from an environment, construct a model
which explains the environment.

¢ Agent Training
An agent is using machine learning, but there is a trainer present who
observes the agent build and use its model, and suggests corrections.

¢ L earning from Demonstration
A robot learns to do a task after being given sample data by a human.
This is training only if the human iteratively updates the sample data to
provide corrections or suggestions. It is also very expesive.

e Our Research

1. Develop methods to do training of nontrivial single agent behaviors.
2. Develop methods to do training of nontrivial multiagent behaviors.

Single and Multi-Agent Training with Few Samples

¢ Single-Agent Training Challenge
The Curse of Dimensionality. The size of the training / learning space

can be very large for complex behaviors, but the number of samples is
very small.

e Multi-Agent Training Challenge
The Multiagent Inverse Problem. Training multiple agents presents a

difficult inverse problem which gets worse and worse with more agents,
more interactions, and more complex behaviors.

Current Learning from Demonstration Systems

e Learning Paths or Trajectories
Large numbers of samples
Machine learning is easy

¢ Learning Behaviors or Plans
Small numbers of samples
Machine learning is very difficult

¢ \We want to learn sophisticated behaviors based on a very small
number of samples.

HITAB (Single-Agent Training)

e Goal
Train complex, stateful behaviors from a very small number of samples

In real time on simulated agents or robots.

e Difficulty
Curse of dimensionality. Robot behaviors can be complex, but we
only have to train on a small number of samples.

e Solution: Behavioral Decomposition
Manually break complex behaviors into simpler behaviors. Learn the
simpler behaviors. Then learn their composition into the complex

behaviors.

This projects the complex behaviors’ joint space into smaller, simpler
spaces that are much easier to learn with few samples.

HITAB Single-Agent Model

e Hierarchical Finite-State Automata (HFA) as Moore Machines
e Each Behavior is a State
¢ Recursive Behaviors may themselves be other automata
¢ Transitions from State to State based on environment Features
e Parameterizable “Go to X” rather than “Go to the Ball”

e Each timestep

¢ Transition function is queried based on current environment features,
possibly resulting in a new current state

e Current state’s behavior is pulsed one iteration

Moore Machines

e A Moore Machine is a
Finite-State Automaton with:

¢ A set of states
corresponding to behaviors

Go
Forward
Grab the
Bottle

Moore Machines

e A Moore Machine is a
Finite-State Automaton with:

¢ A set of states
corresponding to behaviors

¢ A special START state
(there are no end states)

Go
Forward
Grab the
Bottle

Moore Machines

e A Moore Machine is a
Finite-State Automaton with:

¢ A set of states
corresponding to behaviors

¢ A special START state
(there are no end states)

e A set of directed edges
¢ All edges leaving a state

are called its transition
function

Go
Forward

If the
Way is Clear

Iflam
At the Wall

Ifl am
Near the Bottle

Grab the
Bottle

Ifl am
Near the Bottle

Moore Machines

e A Moore Machine is a
Finite-State Automaton with:

¢ A set of states
corresponding to behaviors

¢ A special START state
(there are no end states)

e A set of directed edges
¢ All edges leaving a state
are called its transition

function

¢ No self-edges (they are
implied and mean “else”)

ELSE

Go
Forward

If the
Way is Clear

Iflam
At the Wall

Ifl am
Near the Bottle

Grab the
Bottle

Ifl am
Near the Bottle

ELSE

@
Home Base

GoTo (A)

X(A) > 0.7

X(A) <0.3

Z(A) <0.2

0.3 <X(A) <0.7

Z(A)<0.2
X(A)<0.3
Always
Harvest

If No Food is
Below Me and
If I am Not Full\

If Food is GoTo

:;gzg Below Me and (Nearest
| Am Not Full Food)
If I AI Full If | Am Not Full

If | Am Full

X(A) > 0.7

Deposit

Unload If Am Near
Food the Station

W

If | Am Empty

If | Am Empty

’+

GoTo
(Station)

If | Am Not Empty

Forage

Deposit

@,
Home Base

If Done

If Done

o

Always

‘

Training a HITAB Automaton

e For each state s, we learn the transition function 7(s,f)
for edges leaving s.

e Gather Data. When the user transitions to a new state/behavior, log:
[old behavior, current feature vector, new behavior |

e Build T(s,f) = s’ for each state s GoTo (A)
X(A) > 0.7

Gather all samples [s, f, s’] starting with s
Reduce to just f = s’

X(A) <0.3

Z(A)<0.2 Z(A)<0.2
T~ -~

0.3 =X(A)=<0.7 0.3=X(A)<0.7

e Delete all unused states, add to library \j(A)<o.2 Y07
X(A) <0.3 =5

This is just a classification task

Statefulness Is Important

Turn Right Go Forward Turn Left ,

i i Gone Gone
’ Far . Far ,

Left e e e— Right

Left(Color)

e A Policy ni(f)—a
Is not a sufficiently

Left(Color,
() FarRight(Color)

rich representation ForwardsL FarLeft(Color), >\ 4™
No(Color)
to learn many / / A
robot behaviors. ; .4cdion Right(Color) " . s Colon)
Right(Color) FarLeft(Color) FarRi
. ght(Color)
e \We learn a finite

transition function No(Color)
T(S,f) S Right(Color)

state machine Y S N
ForwardsR{Fam’ght(co,or)’—ﬂ Right :

Demonstration...

('} . »
- R - . é b :_‘ o
°- 2
[&
2
@
- ® e e
¢ «
* 2
»
§ g% & :_.Q.\)
& @ >'<rhirdPIac<-> » .;. [¥
¢ ¢
‘0 h J
.
’ by A* [
A 1 OI’LO o
2
o “e , »
h
® Q * - A
-9 9 -9 Y 2 2
(L1
A J h Co
4
¢ ° -

Unlearning: Training Despite Noise (IJCAI 2013)

e Situation: Training
When the agent performs its learned behavior incorrectly, the trainer
corrects the behavior.

¢ Problem
How do we use the corrective information to update the model?

e Complication
We have a very small number of samples. (Samples are precious).

¢ |In typical machine learning (with many samples), we’d just add the
corrective samples to our sample set and re-learn the model.

¢ |n unlearning, we use the corrective samples to detect and remove
noisy sample data.

Unlearning

e We have:

S Original sample set (with some noisy samples)
M Oiriginal learned model from S
C Set of corrective samples

e We produce:

S’ Revised sample set (identifying/removing some noisy samples)
M’ Revised learned model from S’

e Approach
|dentify the samples B € S which caused M to misclassify C
Determine which samples in N € B are likely to be noise
Remove N from S, producing S’

|dentifying Noise in Samples

¢ |dentifying B requires algorithms customized for your particular
model algorithm
C4.5, K-NN, SVMs

e A sample in b€EB caused M to misclassify c€C for two reasons:

1. bisnoisy or
2. The sample space in S is too sparse, so b was inappropriately
made responsible too large a region.

¢ Based on the model M and the algorithm which produced b, we
determine if it’s probably #1 or #2

e How many other samples are misclassifying c? [if many, it’s likely #2]

e How far is b from c? [if far, it’s likely #2]

Typical Results

Dataset U+C U+C+E Metric Non-Metric

Iris
Glass
Wine

Iris
Glass
Wine

Iris
Glass
Wine

Iris
Glass
Wine

Iris
Glass
Wine

Noise =1/5

Noise = 1/20

Noise = 1/100

0.9553
0.6921
0.9533

0.9537
0.7008
0.9615

0.9459
0.6701
0.9332

0.9427
0.6711
0.9340

0.9102
0.3346
0.9329

0.9131 0.9307 0.9255
0.6707 0.6810 0.6822
0.9370 0.9464 0.9442

0.9409 0.9468 0.9492
0.6734 0.6895 0.6980
0.9524 0.9607 0.9594

0.8705 0.8915 0.8877
0.6379 0.6577 0.6572
0.8321 0.8638 0.8636

0.9135 0.9213 0.9226
0.6330 0.6520 0.6529
0.8591 0.8811 0.8846

0.3886 0.4280 0.9070
0.3311 0.3163 0.3393
0.3906 0.3991 0.9350

U+C U+C+E Metric Non-Metric

1-NN
0.9553 0.8002 0.8901 0.8601

0.6921 0.6441 0.6816 0.6705
0.9533 0.7998 0.9506 0.8722

3-NN
0.9537 0.8887 0.9361 0.9295

0.7008 0.6615 0.6927 0.6971
0.9615 0.8895 0.9511 0.9472

Decision Tree (Unpruned)

0.9459 0.8029 0.8497 0.8535
0.6701 0.6355 0.6544 0.6514
0.9332 0.7375 0.8103 0.7956

Decision Tree (Pruned)

0.9427 0.8761 0.9081 0.9094
0.6711 0.6274 0.6460 0.6426
0.9340 0.8185 0.8749 0.8715

Support Vector Machine

0.9102 0.7389 0.8649 0.8705
0.3346 0.3329 0.3313 0.3284
0.9329 0.6400 0.8828 0.8861

U+C U+C+E Metric Non-Metric

0.9553 0.7519 0.9461 0.8490
0.6921 0.5653 0.6887 0.6421
0.9533 0.7566 0.9520 0.8488

0.9537 0.8539 0.9370 0.9331
0.7008 0.6193 0.6866 0.6828
0.9615 0.8548 0.9462 0.9408

0.9459 0.8014 0.8765 0.8616
0.6701 0.6306 0.6591 0.6492
0.9332 0.7206 0.8365 0.8079

0.9427 0.8799 0.9250 0.9213
0.6711 0.6301 0.6501 0.6496
0.9340 0.8093 0.8892 0.8844

0.9102 0.7374 0.8695 0.8668
0.3346 0.3249 0.3259 0.3350
0.9329 0.6544 0.8834 0.8867

RoboCup 2012

e Use HITAB to train a humanoid robot team

at the competition

e Learn 17 Finite-State Automata

[slel=le)
PATRIOTS

Fgdzd laaes
. 8
o

Standard Behaviors

(Default Sample)

One-Shot Continuous
Behaviors Motions

(No Default Sample) ~ (No Default Sample)

Main

SearchForBall

NOTE: Stop used to be
"Reset", which in the hard- Stop
coded code does a Stop, Done
then resets the vision
system. We think we don't
need all that.
Fail
“—@‘*‘Ba"
Done
Fail
AlignToGoal
Done
Fail —
Done
KickBall
Done
Aim for Kick

Step Right

Ball to Left Ball to Right

Wait for
Camera

Step

Forward 44 Ball Ahead

NOTE: in 2012 diagrams there's a "stand still".
What is the point of this?

Aim for Kick with Counter

Reset
Counter

NOTE: Stop is not necessary but we're

including it for safety's sake

Ball Visible
and Counter >0

Align for Kick 2

Aim for Kick . Fail or

NOTE: the ’)
Ball Ahead and combination of Allgn for Kick 2 used
Ball distance <=N | Ball ahead and e Align for Kick.

We added this optional
additional FSA to
handle the situation
where the ball was far
away but still visible

ball distance will
be a challenging
feature to train

Servo on Ball

Ball Gone
or Ball Ahead

Wait for
Camera

Ball to Lert Turn Right

_wl
Ball to Right

NOTE: "Ball Gone" is at higher level.

We need to make sure that "Ball Gone"
and "Ball Ahead" are handled by doing nothing,
perhaps just staying at WaitForCamera.
NOTE: all this is SO similar to
MoveToBall/ApproachBall it's a shame
we can't merge them

Servo on Ball With Counter
NOTE: Rotate is one-shot rotation of 90 degrees

Servo on Ball [Ball Gone Calibrate
Counter < X

Increment

Counter

', Ball Visible
and Counter >0

Search for Ball

Walk Search
Distance

Note: returning to Servo
resets the counter

Servo on Goal

Goal Gone
or Goal Ahead

Goal to Lett Turn Right

Goal to Right

Wait for
NOTE: "Goal Gone" is at higher level. Camera
We need to make sure that "Goal Gone"
and "Goal Ahead" are handled by doing nothing,
perhaps just staying at WaitForCamera.

Servo on Goal With Counter

Reset Servo on Goal
Counter

Counter < X

Goal Visible
and Counter >0

T

o) ()

Counter > X

Increment
Counter

Counter > X

Align To Goal

Increment
Counter

Servo on Goal Fail
With Counter

Goal Ahead

Counter < X

£
53
°0
o
]
33

Servo on Goal With Pivot

Try to Kick
Ball to Right
Ball to Left
(xPos > 0) (xPos <=0)

Ball Not
Visible

Ball Not
Visible

NOTE: Kick Right 2 and Kick Left 2 are
wrapper macros for Kick Right
and Kick Left, or alternatively are just
separately saved-out kick-right

and kick-left states @
Kick Ball

Ball Not
NOTE: Try to Kick 2 is Visible

a wrapper macro and Done,
for Try to Kick

NOTE: In the 2012 Diagrams
it's "Stop". I think
it's supposed to
be "Step Forward"

Move to Ball

Ball Ahead

Ball to Right

Ball to Left

Move to Ball With Counter

Reset Move to Ball |— Ball Gone —> @
Counter

Counter < X Counter > X

Increment
Counter

, Ball Visible
and Counter >0

Approach Ball

Move to Ball .
e ()

DistToBall <
CloseEnough

Simple “Flat” Swarms with HiTAB

e Homogenous Case: Every agent uses the same behavior.
This is not just parallel: the agents interact.

e Heterogeneous Case: Agents belong to disjoint classes. Only agents
in the same class use the same behavior.

¢ |f the interesting behaviors require interaction, how do you train agents
simultaneously?

e Example: to passing behaviors, you must teach two robots at the same
time how to coordinate passing and receiving.

Behavioral Bootstrapping

e |f you have multiple agents that must be trained simultaneously

e ... and you only have one trainer ... ?

e Homogeneous Case
1. Set all agents to empty behaviors (doing nothing)

2. Select an Agent and train a slightly better behavior in the context of
the agents’ existing behaviors

3. Distribute this behavior to all the agents

4. Goto 1

Behavioral Bootstrapping

e Heterogeneous Case (2-agent example)
1. Set both agents to empty behaviors (doing nothing)

2. Select Agent A and train a slightly better behavior in the context of
Agent B’s existing behavior

3. Select Agent B and train a slightly better behavior in the context of
Agent A’s existing behavior

4. Goto 1

Behavioral Bootstrapping: Keepaway Soccer

e Three Keepers, Two Takers
The Keepers have control of the ball
The Takers are trying to take the ball

The Takers are hard-coded
We are training the Keepers (Homogeneous)

¢ Passing Requires coordination between
a passer and a receiver

Player 1 decides to pass As Player 1 passes, it also Player 2 stops trying to Get Open
to Player 2 yells to Player 2 and prepares to Receive

Behavioral Bootstrapping: Keepaway Soccer

HitabTeam 0:0 DefenderTeam

Behavioral Bootstrapping: Keepaway Soccer

e Results

e University of Texas, Austin Hard-Coded Team
5.6 Seconds On Average (before takers take the ball)

e George Mason University Bootstrapped Team
7/ Seconds on Average
9 Seconds on Average if using “yelling”

Multiagent Training

¢ Techniques for Multiagent Training are nearly always optimizers.
e Multiagent Reinforcement Learning, Stochastic Optimization

e Supervised Learning is extremely rare for multiagent training. Yet
training is a supervised task!

e User Modeling The team learns about one another

¢ Training (or Demonstration) The team learns to do a task set by you

The MAS Inverse Problem

e Emergence Given the micro-behaviors, we can’t guess the
emergent macro-phenomenon without simulation.

e The MAS Inverse Problem Given a desired emergent macro-
phenomenon, we can’t guess the micro-behaviors at all.

e How this Affects Training:

¢ The trainer can tell the agents “in situation X, the macro-phenomenon
should be Y” (when it’s dark, storm the castle)

¢ To learn, an agent needs to know “in situation X, my micro-behavior
should be Z” (when it’s dark, stay to the left of Bob)

e We can’t easily compute the micro-behaviors to achieve the
desired macro-phenomena

Optimization Solves Inverse Problems

¢ Training With an Optimizer:
e Create a new candidate solution consisting of micro-behaviors.
¢ Test in the simulator to observe the resulting macro-phenomenon.
¢ Assess the error in the macro-phenomenon.

¢ Repeat.

Optimization Solves Inverse Problems

e Supervised Learning Doesn’t Work
Multiagent Systems Inverse Problem. The separation between the
micro-behaviors and macro-level phenomenon is too large

e Stochastic Optimization
e Simulated Annealing, Hill-Climbing, etc.: test one solution at a time

e Evolutionary Computation: test many solutions at a time
(very good for multiagent systems

¢ Reinforcement Learning
e Q-Learning, Policy Search

e BUT: optimization requires many trials to gather samples. In robotics, a
trial is very expensive.

Multi-Agent HITAB: Training Hierarchies of Swarms

e Goal
Train complex, stateful behaviors from a very small number of samples
In real time in arbitrarily large swarms of agents.

e Difficulties
1. Curse of dimensionality. [like single-agent]
2. The Multiagent Inverse Problem.

e Solution: Swarm Decomposition
Manually break the joint multiagent behaviors into simpler behaviors for
smaller sub-swarms.

Train the simpler behaviors on small swarms, then train composed
behaviors on larger swarms.

HITAB Multi-Agent Model

e Decompose the swarm into a hierarchy of subswarms.
e “Regular” (real) agents are leaf nodes.

e Controller (“boss”) agents are nonleaf nodes.

¢ Train controller agents as usual!

* Basic Behaviors

Top-level behaviors of underlings. /8\ /8\

* Features
= = o=

Statistics about underlings.] o]

Simple Multiagent Example //8\\

Simple Multi-Agent Example

1. Wander
: Fowards |
Front Nt Front
Clear prontLeft FrontRight ~ Clear
Blocked Blocked
" Right | et

Left(Color) Right(Color)

3. Various Cover FSAs

3A. ForwardsL 3B. ForwardsR

3D. BackwardsR

3C. BackwardsL

LEGEND
Unconditional Transition

(Start } >

4. Servo(Color)

Left(Color)

Left(Color,
() FarRight(Color)

FarLeft(Color),

Left(Color) H’ght(co’o’Aeft(cmor)
Right(Color) FarLeft(Color) f;‘y/:myht(Color)
FarRight(Color), """ ;
NelGolor) > P
Right(Color)

5. Scatter(Color)

Left(Color)

Left(Color)

FarRight(Color)

FarLeft(Color),

BackwardsL No(cw_) L?‘t o
Left(Color) Fig ht(Color)Aeﬂ(Color)
Right(Color) FarLeft(Color) FarRight(Color)
FarRight(Color), """ /
BackwardsR No(Color) ~..Fight :
Fight(Color

ConditionalTransition

Condition(Parameter)——| Macro(Parameter)

6. Attack(Color)

7. RunAway(Color)

Scatter(Color) Bgiz; d—>
Rear/

Clear
8. Patrol
Disperse(T) See(l)—»| Attack()
Done Done
Attack(H)
("Go Home")
\
9. CollectivePatrol
Someone
i —>
Disperse(T) Sees(l) Attack(l)
All are Done Someone is Done
Attack(H)
("Go Home")
10. CollectivePatrolAndDefer
Someone
' - it~ RunAway®) |
@—* CollectivePatrol In Last N —»| RunAway(B)
\ Seconds
No One Saw(B)
In Last N Seconds
L J
COLORS T Team Color

! Intruder Color
H Home Base Color
B Boss Color

Larger Multi-Agent Model

e Box Collecting
Boxes require 5, 25, or 125
agents to retrieve

e We’ve trained up to 625 agents

0080838

003
8 O

eeeeeeee

Collaborators A At et

LRSS AT ¥
4.9 Y -
* a0 P P
. PRGN R oA TP Tl SRR)
HiTab LEAAL Ty el N

Daniele Nardi

Vittorio Ziparo
University of Rome, La Sapienza

Students

Ant Pheromones
Brian Hrolenok
Liviu Panait
Gabriel Balan

XYL X
Ry, woea®
> habb, vy

L}

. ¥

Katherine Russell Y :’.’

» Pt

p L A

Single-Agent HiTab :f' 3

. yre

Katherine Russell H Ko

Khaled Talukder -E P

Ahmed ElMolla ¢
»

Kevin Andrea

Multi-Agent HiTaB, Unlearning,
Behavioral Bootstrapping

Keith Sullivan
Bill Squires

@ ONR

Office of Naval Research

»»
4 o
*"’v!‘o:‘

