
Sean Luke
���

Department of
Computer Science

George Mason University

Online
Training of

Robots and
Multirobot

Teams

About Me

• Associate Professor
Department of Computer Science
George Mason University

• Interests
Multiagent Systems
Machine Learning
Multirobotics
Stochastic Optimization and Evolutionary Computation
Simulation

• Software (and Hardware)
ECJ Evolutionary Computation Toolkit
MASON Multiagent Simulation Toolkit
RoboPatriots and FlockBots Robot Architectures

My Current Multiagent Systems Problem

• RoboCup

• Multiagent and Multi-robot Systems

• Pheromone-based Robotics: An Example of Emergent Behavior

• HiTAB: Single-Agent and Single-Robot Training

• Unlearning: Dealing with noise in single-agent training

• Behavioral Bootstrapping: training a flat (leaderless) swarm

• M-HiTAB: Hierarchical Multiagent and Multi-Robot Training

Topics in This Talk

RoboCup 2012 Mexico City

RoboCup 2012 George Mason University

RoboCup 2012 GMU: Pink Osaka: Blue

A Multiagent System (or MAS)

• Agent: an autonomous entity which iteratively manipulates its
environment in response to feedback received from the environment.

• Multiagent System: a system of ... you know ... multiple agents.

• Agent interaction

• Emergence

• Distributed Systems Problem: given multiple processors and
resources under your control, solve a given task.

• Multiagent Systems Problem: given multiple agents with major
constraints on communication or mutual knowledge, solve a given
task.

Why Develop / Simulate MAS?

• Science: MAS models can help us make predictions
and test hypotheses when it would be impossible,
immoral, or unrealistic to perform real-world tests.

• Biology, Physics, Social Sciences

• Goal: accurate replication of existing phenomena

• Engineering: MAS methods help us test new techniques or inventions.

• Games, Animation, Networked Agents, Multirobotics

• Goal: optimization or demonstration of new methods

Multiagent Systems (for Engineering)

• Agent or Robot Teams
Small Numbers,
Often Heterogeneous
Lots of Communication/Interaction
Global Communication

• Agent or Robot Swarms
Large Numbers

• Modular Robots
A Robot Consists of Modules (the “Agents”)
Moderate Numbers, Usually Homogeneous
Communication via Internal Network
Is this really a multiagent system?

Multiagent
Systems
Are Very

Complex

The Multiagent Systems Design Space is Big

• Factors in the complexity of a Multiagent Systems Design:

• Number of Agents

• Complexity of Agent Behavior and Capability

• Heterogeneity of Agents

• Degree of Agent Interaction

• Communication Complexity

• Designing Robust and Cost-Effective Designs

• This becomes very complicated very quickly

Tradeoffs (in Multirobotics)

• Agent or Robot Teams
Small Numbers (often 2 or 3!)

• Agent or Robot Swarms
Homogeneous
Little Communication/Interaction
Local Communication
Very Simple Behaviors

• The more agents,
the simpler they get!

Emergent Behavior

• Simple Micro-Level Behaviors

• Complex Emergent Macrophenomena

• Can you Predict the Macrophenomena
given the Micro-level Behaviors?

• Complexity Theorists Love Emergence

• Multiagent / Multirobot Designers
Hate Emergence

Can you predict this?

Example: Ant Pheromone Foraging

• Most ant pheromone literature uses a
single pheromone
(Biologically plausible, but bad algorithms)

• We use multiple pheromones
2 in this example: Food and Nest

• Each ant follows one pheromone but
updates another.

• Each ant is in a state, which determines
which pheromones it follows / updates.

Example: Ant Pheromone Foraging

• States:! ! ! ! Follow Pheromone:! ! Update Pheromone:
Looking for Food! Food! ! ! ! ! ! Nest
Looking for Nest!! Nest! ! ! ! ! ! Food

• Following:
An ant is in state s’
Go to square s’’ with highest pheromone Up(s’’)

• Updating:
An ant is in state s’
Update Up(s’)
Reward R(s’) is received only if at nest / food

• Form of multi-utility value iteration

Example: Ant Pheromone Foraging

Example: Ant Pheromone Foraging With Beacons

• The Flockbots

• Small (15cm diameter)
differential drive robots
capable of deploying, moving,
and removing cans

• Cans contain Sensor Motes
which act as movable
pheromone beacons

Example: Ant Pheromone Foraging With Beacons

Example: Ant Pheromone Foraging With Beacons

Agent Learning and Training

• Machine Learning
Given a sample of data drawn from an environment, construct a model
which explains the environment.

• Agent Training
An agent is using machine learning, but there is a trainer present who
observes the agent build and use its model, and suggests corrections.

• Learning from Demonstration
A robot learns to do a task after being given sample data by a human.
This is training only if the human iteratively updates the sample data to
provide corrections or suggestions. It is also very expesive.

• Our Research
1. Develop methods to do training of nontrivial single agent behaviors.
2. Develop methods to do training of nontrivial multiagent behaviors.

Single and Multi-Agent Training with Few Samples

• Single-Agent Training Challenge
The Curse of Dimensionality. The size of the training / learning space
can be very large for complex behaviors, but the number of samples is
very small.

• Multi-Agent Training Challenge
The Multiagent Inverse Problem. Training multiple agents presents a
difficult inverse problem which gets worse and worse with more agents,
more interactions, and more complex behaviors.

Current Learning from Demonstration Systems

• Learning Paths or Trajectories
Large numbers of samples
Machine learning is easy

• Learning Behaviors or Plans
Small numbers of samples
Machine learning is very difficult

• We want to learn sophisticated behaviors based on a very small
number of samples.

HiTAB! ! ! ! ! ! ! ! ! (Single-Agent Training)

• Goal
Train complex, stateful behaviors from a very small number of samples
in real time on simulated agents or robots.

• Difficulty
Curse of dimensionality. Robot behaviors can be complex, but we
only have to train on a small number of samples.

• Solution: Behavioral Decomposition
Manually break complex behaviors into simpler behaviors. Learn the
simpler behaviors. Then learn their composition into the complex
behaviors.

This projects the complex behaviors’ joint space into smaller, simpler
spaces that are much easier to learn with few samples.

HiTAB Single-Agent Model

• Hierarchical Finite-State Automata (HFA) as Moore Machines

• Each Behavior is a State

• Recursive" " Behaviors may themselves be other automata

• Transitions from State to State based on environment Features

• Parameterizable!! “Go to X” rather than “Go to the Ball”

• Each timestep

• Transition function is queried based on current environment features,
possibly resulting in a new current state

• Current state’s behavior is pulsed one iteration

Moore Machines

• A Moore Machine is a
Finite-State Automaton with:

• A set of states
corresponding to behaviors

Go
Forward

Turn Left

Grab the
Bottle

Moore Machines

• A Moore Machine is a
Finite-State Automaton with:

• A set of states
corresponding to behaviors

• A special START state
(there are no end states)

Go
Forward

Turn Left

Grab the
Bottle

START

Moore Machines

• A Moore Machine is a
Finite-State Automaton with:

• A set of states
corresponding to behaviors

• A special START state
(there are no end states)

• A set of directed edges

• All edges leaving a state
are called its transition
function

Go
Forward

Turn Left

Grab the
Bottle

START

Else

If I am
Near the Bottle

If I am
 At the Wall

If I am
Near the Bottle

If the
Way is Clear

Moore Machines

• A Moore Machine is a
Finite-State Automaton with:

• A set of states
corresponding to behaviors

• A special START state
(there are no end states)

• A set of directed edges

• All edges leaving a state
are called its transition
function

• No self-edges (they are
implied and mean “else”)

Go
Forward

Turn Left

Grab the
Bottle

START

Else

If I am
Near the Bottle

If I am
 At the Wall

If I am
Near the Bottle

If the
Way is Clear

ELSE

ELSE

ELSE

Rotate
Left

Rotate
Right

Forward

X(A) < 0.3

0.3 ≤ X(A) ≤ 0.7

AlwaysStart

0.3 ≤ X(A) ≤ 0.7

X(A) > 0.7

X(A) < 0.3

GoTo (A)

Done

Z(A) < 0.2 X(A) > 0.7

Z(A) < 0.2Z(A) < 0.2

Load
Food

GoTo
(Nearest

Food)

Done If I Am Full Start

If No Food is
Below Me and
If I am Not Full

If Food is
Below Me and
I Am Not Full

If I Am Not FullIf I Am Full

Harvest

HarvestDeposit

Start

If Done

If Done

Forage

Always

Unload
Food

GoTo
(Station)

Done If I Am Empty Start

If I Am Empty If I Am Not Empty

If I Am Near
the Station

Deposit

Training a HiTAB Automaton

• For each state s, we learn the transition function T(s,f)
for edges leaving s.

• Gather Data. When the user transitions to a new state/behavior, log:
[old behavior, current feature vector, new behavior"]

• Build T(s,f) ⇒ s’ for each state s

Gather all samples [s, f, s’] starting with s
Reduce to just f ⇒ s’

This is just a classification task

• Delete all unused states, add to library

Rotate
Left

Rotate
Right

Forward

X(A) < 0.3

0.3 ≤ X(A) ≤ 0.7

AlwaysStart

0.3 ≤ X(A) ≤ 0.7

X(A) > 0.7

X(A) < 0.3

GoTo (A)

Done

Z(A) < 0.2 X(A) > 0.7

Z(A) < 0.2Z(A) < 0.2

Far
Left Left Right Far

Right
Gone,
Was
Right

Go Forward Turn LeftTurn Right

Gone,
Was
Left

1. Wander

ForwardsL

ForwardsR

Left

Right

Start
Servo(Color) Stop, Signal Done

Forwards

Start

3A. ForwardsL

Start

Forwards

3B. ForwardsR

Start

Backwards

3C. BackwardsL

Start

Backwards

3D. BackwardsR

Start CollectivePatrolStart RunAway(B)

Right

3. Various Cover FSAs

Start

No(Color)

Left(Color)

Wander

Left

Right(Color)

No(Color)

Left(Color)

Right(Color)

FarLeft(Color),

No(Color)

FarRight(Color),

No(Color)

Right(Color)

Left(Color)

FarLeft(Color)

FarRight(Color)

Right(Color)

Left(Color)

FarLeft(Color)

FarRight(Color)

BackwardsL

BackwardsR

Left

Right

Start

Left(Color)

Right(Color)

FarLeft(Color),

No(Color)

FarRight(Color),

No(Color)

Right(Color)

Left(Color)

FarLeft(Color)

FarRight(Color)

Right(Color)

Left(Color)

FarLeft(Color)

FarRight(Color)

Close(Color)

StopStart

Rear

Clear

Rear

Blocked
Scatter(Color)

Disperse(T)Start Attack(I)

Attack(H)

Someone

Sees(I)

Someone is DoneAll are Done

Disperse(T)Start Attack(I)

Attack(H)

See(I)

DoneDone

Someone

Saw(B)

In Last N

Seconds

No One Saw(B)

In Last N Seconds

2. Disperse(Color)

5. Scatter(Color)

4. Servo(Color) 6. Attack(Color)

7. RunAway(Color)

8. Patrol

9. CollectivePatrol

10. CollectivePatrolAndDefer

Right

Start

FrontLeft

Blocked

Fowards

Left

FrontRight

Blocked

Front

Clear

Front

Clear

("Go Home")

("Go Home")

Basic Behavior Macro(Parameter)Start Condition(Parameter)

Unconditional Transition ConditionalTransition
T Team Color

I Intruder Color

H Home Base Color

B Boss Color

LEGEND COLORS

Figure 3: Decomposed hierarchical finite-state automaton learned in the demonstration. See discussion in the
text on each subfigure. Most behaviors form a hierarchy within an individual robot, but CollectivePatrol and
CollectivePatrolAndDefer form a separate hierarchy within the team controlling agent. Though the transition
condition descriptions here are categorical sounding, most are in fact derived from continuous values: for
example, Left(Color) is trained based on X coordinates of the color blob in the field of view.

ward into simple, easily trained behaviors with small numbers
of features and states, simple (indeed often trivial) and easily
trained transition functions, and features and states which
may vary from behavior to behavior.

5. SIMULATION EXPERIMENTS

After conducting the robot demonstration above, we pro-
ceeded to conduct simulation experiments to quantify the
benefit of controller agents, particularly as the hierarchy grew
from a single controller to multiple levels of controllers. We
applied our multiagent homogeneous hierarchies to a simu-
lated box foraging problem: agents hunt for boxes, then pull
them to a known deposit location. The boxes are randomly
distributed throughout the environment, and after collection
at the deposit, the box disappears and a new box is placed
randomly in the environment. The environment consists
of various circular “boxes” of different sizes, which likewise
require different numbers of agents (5, 25, 125) to pull them.
We performed experiments involving swarms of indepen-

dent agents, groups of agents under a single layer of controllers
(called Level 1 controllers), and groups of agents under mul-
tiple layers of controllers (Level 1, Level 2, and so on). To
perform these experiments required training three kinds of
behaviors. First, we trained behaviors for each basic agent,
then we trained behaviors for Level 1 controllers (designed
to control basic agents), and finally we trained behaviors for
Level N≥2 controllers (designed to control other controllers).

This set of behaviors was sufficient to scale to any number
of levels. We now describe the basic behaviors and features,
and trained decompositions.

Basic Agent Behavior Decomposition. We decomposed
and trained a basic agent’s behavior hierarchy as follows:

• Agents’ basic features wereDistanceTo(X), DirectionTo(X),
ICanSeeABox, IAmAttachedToABox, and Done. The first
two features were parameterizable to either visible boxes
or to the deposit location. The last feature was true when
the done flag had been raised. Boxes could only be seen if
they were within 10 units.

• Agents’ basic behaviors were Forward, RotateLeft, Rota-
teRight, GrabBox, ReleaseBox, ReleaseBoxAndFinish, and
Done. Both ReleaseBox and Done would raise the done
flag and (as normal) immediately transfer to the start
state. ReleaseBoxAndFinish would as well, except that it
would also raise a finished flag in the agent which could
be detected by controllers as a feature. Boxes could only
be grabbed if they were sufficiently close (5 units).

• Using Forward, RotateLeft, and RotateRight, we trained
Wander, which wandered randomly.

• Using Forward, RotateLeft, and RotateRight, plus the Dis-
tanceTo(X) and DirectionTo(X) features, we trained the
behavior Goto(X), which servoed to a given target.

Statefulness Is Important

• A Policy #(f)→a
is not a sufficiently
rich representation
to learn many
robot behaviors.

• We learn a finite
state machine
transition function
T(s,f) →s

Demonstration...

Home Base

Elsewhere

Third Place

Unlearning: Training Despite Noise! ! (IJCAI 2013)

• Situation: Training
When the agent performs its learned behavior incorrectly, the trainer
corrects the behavior.

• Problem
How do we use the corrective information to update the model?

• Complication
We have a very small number of samples. (Samples are precious).

• In typical machine learning (with many samples), we’d just add the
corrective samples to our sample set and re-learn the model.

• In unlearning, we use the corrective samples to detect and remove
noisy sample data.

Unlearning

• We have:
S!! Original sample set (with some noisy samples)
M! Original learned model from S
C!! Set of corrective samples

• We produce:
S’! Revised sample set (identifying/removing some noisy samples)
M’! Revised learned model from S’

• Approach
Identify the samples B ⊆ S which caused M to misclassify C
Determine which samples in N ⊆ B are likely to be noise
Remove N from S, producing S’

Identifying Noise in Samples

• Identifying B requires algorithms customized for your particular
model algorithm
C4.5, K-NN, SVMs

• A sample in b∈B caused M to misclassify c∈C for two reasons:

1.!! b is noisy or
2. ! The sample space in S is too sparse, so b was inappropriately
! ! made responsible too large a region.

• Based on the model M and the algorithm which produced b, we
determine if it’s probably #1 or #2

• How many other samples are misclassifying c? [if many, it’s likely #2]

• How far is b from c?! ! ! ! ! ! ! ! ! [if far, it’s likely #2]

Noise = 1 / 5 Noise = 1 / 20 Noise = 1 / 100

Dataset U+C U+C+E Metric Non-Metric U+C U+C+E Metric Non-Metric U+C U+C+E Metric Non-Metric
1-NN

Iris 0.9553 0.9131 0.9307 0.9255 0.9553 0.8002 0.8901 0.8601 0.9553 0.7519 0.9461 0.8490
Glass 0.6921 0.6707 0.6810 0.6822 0.6921 0.6441 0.6816 0.6705 0.6921 0.5653 0.6887 0.6421
Wine 0.9533 0.9370 0.9464 0.9442 0.9533 0.7998 0.9506 0.8722 0.9533 0.7566 0.9520 0.8488

3-NN
Iris 0.9537 0.9409 0.9468 0.9492 0.9537 0.8887 0.9361 0.9295 0.9537 0.8539 0.9370 0.9331

Glass 0.7008 0.6734 0.6895 0.6980 0.7008 0.6615 0.6927 0.6971 0.7008 0.6193 0.6866 0.6828
Wine 0.9615 0.9524 0.9607 0.9594 0.9615 0.8895 0.9511 0.9472 0.9615 0.8548 0.9462 0.9408

Decision Tree (Unpruned)
Iris 0.9459 0.8705 0.8915 0.8877 0.9459 0.8029 0.8497 0.8535 0.9459 0.8014 0.8765 0.8616

Glass 0.6701 0.6379 0.6577 0.6572 0.6701 0.6355 0.6544 0.6514 0.6701 0.6306 0.6591 0.6492
Wine 0.9332 0.8321 0.8638 0.8636 0.9332 0.7375 0.8103 0.7956 0.9332 0.7206 0.8365 0.8079

Decision Tree (Pruned)
Iris 0.9427 0.9135 0.9213 0.9226 0.9427 0.8761 0.9081 0.9094 0.9427 0.8799 0.9250 0.9213

Glass 0.6711 0.6330 0.6520 0.6529 0.6711 0.6274 0.6460 0.6426 0.6711 0.6301 0.6501 0.6496
Wine 0.9340 0.8591 0.8811 0.8846 0.9340 0.8185 0.8749 0.8715 0.9340 0.8093 0.8892 0.8844

Support Vector Machine
Iris 0.9102 0.3886 0.4280 0.9070 0.9102 0.7389 0.8649 0.8705 0.9102 0.7374 0.8695 0.8668

Glass 0.3346 0.3311 0.3163 0.3393 0.3346 0.3329 0.3313 0.3284 0.3346 0.3249 0.3259 0.3350
Wine 0.9329 0.3906 0.3991 0.9350 0.9329 0.6400 0.8828 0.8861 0.9329 0.6544 0.8834 0.8867

Table 1: Results for ω = 100%. Bold numbers indicate statistically significant difference between the naive approach (U+C+E)
and unlearning, while underlined numbers indicate a statistically significant difference between metric and non-metric unlearning.
The column U+C represents a perfect dataset and serves as an upper bound on unlearn performance.

• Data Sparsity. While the Wine, Glass, and Iris data
sets are already fairly small (between 100 and 250 data
points), our learning from demonstration research tends
to use even smaller sets. Thus we experimented with
three data set sizes: the full (ω = 100%) data set, an ω =
50% sized set, and a ω = 25% sized set. For the last two,
the set was reduced by removing random data points.

We were curious as to how sensitive our algorithms are to
their parameters and so performed some informal parameter
tuning. In the non-metric unlearning algorithms, we varied
α from 0 to 1 in steps of 0.1, while in the metric unlearning
algorithm, we varied γ over 0.5, 0.75, and 1.0 while β ranged
from 0 to 1 in steps of 0.1. Additionally, we varied µ from 0
to 5 in steps of 1. In general, γ has little effect on classification
accuracy. However, for unpruned decision trees on the Wine
dataset, increasing γ results in decreased accuracy. Addition-
ally, β appears to have minimal effect, but this is probably
due to the infrequency of the second hypersphere containing
a single point. In the non-metric algorithms, accuracy either
stays constant or increases as α increases from 0 to 1. For
K-NN, setting µ = 2 results in the best performance with no
statistically significant impact as µ increases to 5.

Based on these trends, for metric unlearning, we fixed
γ = 0.5 and β = 0.5 while for non-metric unlearning we set
α = 0.9. For K-Nearest Neighbor, we set µ = 2, and, as men-
tioned earlier, for Support Vector Machines we set τ = 2.
Table 1 shows the results. For each algorithm and dataset, we
compared against simply adding a point (which we call the
“naive” approach) and running our unlearning algorithms. Bold

numbers indicate a statistically significant increases over the
naive approach, while underlined numbers indicate the statisti-
cally higher performance between the metric and non-metric
unlearning algorithms. All statistical tests were at the 95%
confidence level with the appropriate Bonferroni correction.

In general, the unlearning algorithms perform better than the
naive approach, with metric unlearning slightly outperforming
non-metric algorithms. However, in all cases, the unlearning
algorithms failed to completely remove the error points.

Next, we investigated how these trends hold up with smaller
datasets by changing the experimental procedure: at the start
of each iteration, we randomly shuffled the data and then used
the top ω%. Table 2 shows the results for ω = 50% and Table
3 shows the results for ω = 25%.

We see the same trends as before: unlearning performs
better than the naive approach, with metric unlearning per-
forming slightly better than non-metric unlearning. But as the
dataset shrinks, unlearning algorithms start to perform closer
to the naive approach due to the fewer available points and
associated information for our unlearning algorithms.

5 Conclusions
We presented two algorithms to correct errant classifiers as-
suming a paucity of examples. This paucity is common in
learning from demonstration environments. Our approaches
use two heuristics, similarity and strength in numbers, to po-
tentially remove noisy examples and protect correct examples
which have overgeneralized the space. Our algorithms per-
formed well compared to simply adding additional datapoints.

Typical Results

RoboCup 2012

• Use HiTAB to train a humanoid robot team
at the competition

• Learn 17 Finite-State Automata

Stop

SearchForBall

ApproachBall

AlignToGoal

AlignForKicking

KickBall

Start

Done

Done

Fail

Fail

Fail

Done

Done

Done

Main

Standard BehaviorsContinuous
Motions

One-Shot
Behaviors

(No Default Sample)(No Default Sample) (Default Sample)

NOTE: Stop used to be
"Reset", which in the hard-
coded code does a Stop,

then resets the vision
system. We think we don't

need all that.

Start

Servo on Ball RotateBall GoneBall Visible
and Counter > 0

Increment
Counter

Reset
Counter

Counter < X

Counter > XFail

Servo on Ball With Counter

Search for Ball

Servo on Ball

Wait for
Camera

Turn Right

Turn Left

Ball to Left
Ball to Right

Start

Stop

Ball Ahead

Servo on Ball
With Counter Fail

Done Start

Walk Search
Distance

NOTE: Rotate is one-shot rotation of 90 degrees

Calibrate

NOTE: "Ball Gone" is at higher level.
We need to make sure that "Ball Gone"

and "Ball Ahead" are handled by doing nothing,
perhaps just staying at WaitForCamera.

Note: returning to Servo
resets the counter

NOTE: all this is SO similar to
MoveToBall/ApproachBall it's a shame

we can't merge them

Stop

Ball Gone
or Ball Ahead

Wait for
Camera

Turn RightTurn Left

Walk

Ball to Left Ball to Right

Ball Ahead

Start

Start

Move to Ball StopBall GoneBall Visible
and Counter > 0

Increment
Counter

Reset
Counter

Counter < X Counter > X

Fail

Stop

DistToBall <
CloseEnough

Move to Ball
With Counter FailFail

Done Start

Move to Ball

Move to Ball With Counter

Approach Ball

Start

Servo on Goal StopGoal GoneGoal Visible
and Counter > 0

Increment
Counter

Reset
Counter

Counter < X Counter > X

Fail

Stop

Goal Ahead

Servo on Goal
With Counter FailFail

Done Start

Servo on Goal

Servo on Goal With Counter

Align To Goal

NOTE: "Goal Gone" is at higher level.
We need to make sure that "Goal Gone"

and "Goal Ahead" are handled by doing nothing,
perhaps just staying at WaitForCamera.

Wait for
Camera

Turn Right

Turn Left

Goal to Left
Goal to Right

Start

Stop

Goal Gone
or Goal Ahead

St
ar

t

Se
rv

o
on

 G
oa

l
W

ith
 C

ou
nt

er
Bi

g
Pi

vo
t

R
ig

ht

Fail

In
cr

em
en

t
C

ou
nt

er

Counter < X

Counter > X

Fa
il

Se
rv

o
on

 G
oa

l W
ith

 P
iv

ot

Fail

Start

Aim for Kick Ball GoneBall Visible
 and Counter > 0

Increment
Counter

Reset
Counter

Counter < X Counter > X

Fail

Ball Ahead and
Ball distance <= N

Aim for Kick
with Counter FailFail

Done Start

Aim for Kick

Aim for Kick with Counter

Align for Kick 2

Wait for
Camera

Step RightStep Left

Step
Forward

Ball to Left Ball to Right

Ball Ahead

StartNOTE: in 2012 diagrams there's a "stand still".
What is the point of this?

NOTE: the
combination of
Ball ahead and

ball distance will
be a challenging
feature to train

Stop

NOTE: Stop is not necessary but we're
including it for safety's sake

Done

Align for Kick
2 FailFail or

Ball too far

Done Start

Align for Kick

Align for Kick 2 used
to be Align for Kick.

We added this optional
additional FSA to

handle the situation
where the ball was far
away but still visible

Fail

Try to Kick

Kick Ball

NOTE: Kick Right 2 and Kick Left 2 are
wrapper macros for Kick Right

and Kick Left, or alternatively are just
separately saved-out kick-right

and kick-left states

StartBall to Left
(xPos > 0)

Kick Left

Kick Right
2

Ball Visible Kick Right

Ball to Right
(xPos <= 0)

Kick Left 2

Ball Visible

Done

Ball Not
Visible

Ball Not
Visible

Start

Try To Kick

Done

Step
Forward

Ball Visible and Done

Try To Kick 2

Done

Ball Not
Visible

and Done
NOTE: Try to Kick 2 is

a wrapper macro
 for Try to Kick

NOTE: In the 2012 Diagrams
it's "Stop". I think
it's supposed to

be "Step Forward"

Simple “Flat” Swarms with HiTAB

• Homogenous Case: Every agent uses the same behavior.
! This is not just parallel: the agents interact.

• Heterogeneous Case: Agents belong to disjoint classes. Only agents
in the same class use the same behavior.

• If the interesting behaviors require interaction, how do you train agents
simultaneously?

• Example: to passing behaviors, you must teach two robots at the same
time how to coordinate passing and receiving.

Behavioral Bootstrapping

• If you have multiple agents that must be trained simultaneously

• ... and you only have one trainer ... ?

• Homogeneous Case

1. Set all agents to empty behaviors (doing nothing)

2. Select an Agent and train a slightly better behavior in the context of
the agents’ existing behaviors

3. Distribute this behavior to all the agents

4. Go to 1

Behavioral Bootstrapping

• Heterogeneous Case" " (2-agent example)

1. Set both agents to empty behaviors (doing nothing)

2. Select Agent A and train a slightly better behavior in the context of
Agent B’s existing behavior

3. Select Agent B and train a slightly better behavior in the context of
Agent A’s existing behavior

4. Go to 1

Behavioral Bootstrapping: Keepaway Soccer

• Three Keepers, Two Takers
The Keepers have control of the ball
The Takers are trying to take the ball

The Takers are hard-coded
We are training the Keepers (Homogeneous)

• Passing Requires coordination between
a passer and a receiver

Player 1 decides to pass
to Player 2

As Player 1 passes, it also
yells to Player 2

1

2

3

1

2

3

1

2

3

Player 2 stops trying to Get Open
and prepares to Receive

Keepers

Takers

Ball

Behavioral Bootstrapping: Keepaway Soccer

Behavioral Bootstrapping: Keepaway Soccer

• Results

• University of Texas, Austin Hard-Coded Team
5.6 Seconds On Average (before takers take the ball)

• George Mason University Bootstrapped Team
7 Seconds on Average
9 Seconds on Average if using “yelling”

Multiagent Training

• Techniques for Multiagent Training are nearly always optimizers.

• Multiagent Reinforcement Learning, Stochastic Optimization

• Supervised Learning is extremely rare for multiagent training. Yet
training is a supervised task!

• User Modeling" The team learns about one another

• Training" (or Demonstration) The team learns to do a task set by you

The MAS Inverse Problem

• Emergence! ! Given the micro-behaviors, we can’t guess the
emergent macro-phenomenon without simulation.

• The MAS Inverse Problem!! Given a desired emergent macro-
phenomenon, we can’t guess the micro-behaviors at all.

• How this Affects Training:

• The trainer can tell the agents “in situation X, the macro-phenomenon
should be Y” (when it’s dark, storm the castle)

• To learn, an agent needs to know “in situation X, my micro-behavior
should be Z” (when it’s dark, stay to the left of Bob)

• We can’t easily compute the micro-behaviors to achieve the
desired macro-phenomena

Optimization Solves Inverse Problems

• Training With an Optimizer:

• Create a new candidate solution consisting of micro-behaviors.

• Test in the simulator to observe the resulting macro-phenomenon.

• Assess the error in the macro-phenomenon.

• Repeat.

Optimization Solves Inverse Problems

• Supervised Learning Doesn’t Work
Multiagent Systems Inverse Problem. The separation between the
micro-behaviors and macro-level phenomenon is too large

• Stochastic Optimization

• Simulated Annealing, Hill-Climbing, etc.: test one solution at a time

• Evolutionary Computation: test many solutions at a time
(very good for multiagent systems

• Reinforcement Learning

• Q-Learning, Policy Search

• BUT: optimization requires many trials to gather samples. In robotics, a
trial is very expensive.

Multi-Agent HiTAB: Training Hierarchies of Swarms

• Goal
Train complex, stateful behaviors from a very small number of samples
in real time in arbitrarily large swarms of agents.

• Difficulties
1. Curse of dimensionality. [like single-agent]
2. The Multiagent Inverse Problem.

• Solution: Swarm Decomposition
Manually break the joint multiagent behaviors into simpler behaviors for
smaller sub-swarms.

Train the simpler behaviors on small swarms, then train composed
behaviors on larger swarms.

Forage Forage Forage Forage Forage Forage Forage Forage

Get Box 2 Search Search Get Box 3 Get Box 3Get Box 1 Get Box 1 Get Box 2

Forage Forage ForageForage

Get Box 9 Search Search Get Box 3 Get Box 3Get Box 9 Get Box 9 Get Box 9

Get Box 9 Get Box 9 ForageForage

Forage Forage

Save the World

HiTAB Multi-Agent Model

• Decompose the swarm into a hierarchy of subswarms.

• “Regular” (real) agents are leaf nodes.

• Controller (“boss”) agents are nonleaf nodes.

• Train controller agents as usual!

• Basic Behaviors
Top-level behaviors of underlings.

• Features
Statistics about underlings.

Simple Multiagent Example

Forage Forage Forage Forage Forage Forage Forage Forage

Get Box 2 Search Search Get Box 3 Get Box 3Get Box 1 Get Box 1 Get Box 2

Forage Forage ForageForage

Get Box 9 Search Search Get Box 3 Get Box 3Get Box 9 Get Box 9 Get Box 9

Get Box 9 Get Box 9 ForageForage

Forage Forage

Other Bots BossIntruder Home

1. Wander

ForwardsL

ForwardsR

Left

Right

Start
Servo(Color) Stop, Signal Done

Forwards

Start

3A. ForwardsL

Start

Forwards

3B. ForwardsR

Start

Backwards

3C. BackwardsL

Start

Backwards

3D. BackwardsR

Start CollectivePatrolStart RunAway(B)

Right

3. Various Cover FSAs

Start

No(Color)

Left(Color)

Wander

Left

Right(Color)

No(Color)

Left(Color)

Right(Color)

FarLeft(Color),

No(Color)

FarRight(Color),

No(Color)

Right(Color)

Left(Color)

FarLeft(Color)

FarRight(Color)

Right(Color)

Left(Color)

FarLeft(Color)

FarRight(Color)

BackwardsL

BackwardsR

Left

Right

Start

Left(Color)

Right(Color)

FarLeft(Color),

No(Color)

FarRight(Color),

No(Color)

Right(Color)

Left(Color)

FarLeft(Color)

FarRight(Color)

Right(Color)

Left(Color)

FarLeft(Color)

FarRight(Color)

Close(Color)

StopStart

Rear

Clear

Rear

Blocked
Scatter(Color)

Disperse(T)Start Attack(I)

Attack(H)

Someone

Sees(I)

Someone is DoneAll are Done

Disperse(T)Start Attack(I)

Attack(H)

See(I)

DoneDone

Someone

Saw(B)

In Last N

Seconds

No One Saw(B)

In Last N Seconds

2. Disperse(Color)

5. Scatter(Color)

4. Servo(Color) 6. Attack(Color)

7. RunAway(Color)

8. Patrol

9. CollectivePatrol

10. CollectivePatrolAndDefer

Right

Start

FrontLeft

Blocked

Fowards

Left

FrontRight

Blocked

Front

Clear

Front

Clear

("Go Home")

("Go Home")

Basic Behavior Macro(Parameter)Start Condition(Parameter)

Unconditional Transition ConditionalTransition
T Team Color

I Intruder Color

H Home Base Color

B Boss Color

LEGEND COLORS

Figure 3: Decomposed hierarchical finite-state automaton learned in the demonstration. See discussion in the
text on each subfigure. Most behaviors form a hierarchy within an individual robot, but CollectivePatrol and
CollectivePatrolAndDefer form a separate hierarchy within the team controlling agent. Though the transition
condition descriptions here are categorical sounding, most are in fact derived from continuous values: for
example, Left(Color) is trained based on X coordinates of the color blob in the field of view.

ward into simple, easily trained behaviors with small numbers
of features and states, simple (indeed often trivial) and easily
trained transition functions, and features and states which
may vary from behavior to behavior.

5. SIMULATION EXPERIMENTS

After conducting the robot demonstration above, we pro-
ceeded to conduct simulation experiments to quantify the
benefit of controller agents, particularly as the hierarchy grew
from a single controller to multiple levels of controllers. We
applied our multiagent homogeneous hierarchies to a simu-
lated box foraging problem: agents hunt for boxes, then pull
them to a known deposit location. The boxes are randomly
distributed throughout the environment, and after collection
at the deposit, the box disappears and a new box is placed
randomly in the environment. The environment consists
of various circular “boxes” of different sizes, which likewise
require different numbers of agents (5, 25, 125) to pull them.
We performed experiments involving swarms of indepen-

dent agents, groups of agents under a single layer of controllers
(called Level 1 controllers), and groups of agents under mul-
tiple layers of controllers (Level 1, Level 2, and so on). To
perform these experiments required training three kinds of
behaviors. First, we trained behaviors for each basic agent,
then we trained behaviors for Level 1 controllers (designed
to control basic agents), and finally we trained behaviors for
Level N≥2 controllers (designed to control other controllers).

This set of behaviors was sufficient to scale to any number
of levels. We now describe the basic behaviors and features,
and trained decompositions.

Basic Agent Behavior Decomposition. We decomposed
and trained a basic agent’s behavior hierarchy as follows:

• Agents’ basic features wereDistanceTo(X), DirectionTo(X),
ICanSeeABox, IAmAttachedToABox, and Done. The first
two features were parameterizable to either visible boxes
or to the deposit location. The last feature was true when
the done flag had been raised. Boxes could only be seen if
they were within 10 units.

• Agents’ basic behaviors were Forward, RotateLeft, Rota-
teRight, GrabBox, ReleaseBox, ReleaseBoxAndFinish, and
Done. Both ReleaseBox and Done would raise the done
flag and (as normal) immediately transfer to the start
state. ReleaseBoxAndFinish would as well, except that it
would also raise a finished flag in the agent which could
be detected by controllers as a feature. Boxes could only
be grabbed if they were sufficiently close (5 units).

• Using Forward, RotateLeft, and RotateRight, we trained
Wander, which wandered randomly.

• Using Forward, RotateLeft, and RotateRight, plus the Dis-
tanceTo(X) and DirectionTo(X) features, we trained the
behavior Goto(X), which servoed to a given target.

Simple Multi-Agent Example

Larger Multi-Agent Model

Home Base

2

66
6

46

4

4
4

4
6

6

6 4

4
4

Forage Forage Forage Forage Forage Forage Forage Forage

Get Box 2 Search Search Get Box 3 Get Box 3Get Box 1 Get Box 1 Get Box 2

Forage Forage ForageForage

Get Box 9 Search Search Get Box 3 Get Box 3Get Box 9 Get Box 9 Get Box 9

Get Box 9 Get Box 9 ForageForage

Forage Forage

• Box Collecting
Boxes require 5, 25, or 125
agents to retrieve

• We’ve trained up to 625 agents

Collaborators
HiTab
Daniele Nardi
Vittorio Ziparo
University of Rome, La Sapienza

Students
Ant Pheromones
Brian Hrolenok
Liviu Panait
Gabriel Balan
Katherine Russell

Single-Agent HiTab
Katherine Russell
Khaled Talukder
Ahmed ElMolla
Kevin Andrea

Multi-Agent HiTaB, Unlearning,
Behavioral Bootstrapping
Keith Sullivan
Bill Squires

