
Inheritance

CS 310

Inheritance

• In object-oriented languages, classes can be
organized into a hierarchical structure based
on the concept of inheritance

• Inheritance: property that instances of a
child class (subclass) can access both the
data and behavior (methods) associated with
the parent class (superclass)

Examples

• Car is a subclass of Vehicle
• Florist is a subclass of Shopkeeper
• EditorWindow is a subclass of Window
• Window is a subclass of GraphicalObject
Inheritance should be used when two classes

exhibit an “is-a” relationship

Advantages of Inheritance

• Software Reusability
• Code Sharing
• Rapid Prototyping
• Software Components
• Polymorphism & Frameworks

Forms of Inheritance

• Specialization
– A car is a vehicle

• Extension
– An Extended Queue is a Queue with extra

features

• Construction (Implementation Inheritance)
– A Polynomial is implemented in terms of an

Extended Queue

Forms of Inheritance cont’d

• Specification
– inheritance used for abstract classes
– Abstract class Shape has subclasses Rectangle

and Circle

• Other forms: Limitation, Generalization,
Variation do not meet “is a” relationship

• Multiple Inheritance

Inheritance in C++: Terminology

• A client is a program or module that uses a
class

• In addition to public and private members a
class can have protected members

• protected members are hidden from clients
of a class but are available to
– its own member functions (and friends)
– member functions (and friends) of a derived

class

Inheritance in C++: Terminology

• Membership categories
– public members can be used by anyone
– private members can be used only by member

functions and friends of the class
– protected members can be used only by

member functions and friends of both the class
and any derived class

Kinds of Inheritance in C++
• Public inheritance: public and protected members

of base class remain public and protected
members of derived class

• Protected inheritance: public and protected
members of base class are protected members of
the derived class

• Private inheritance: public and protected
members of base class are private members of
derived class

• Remember: Private members of base class cannot
be accessed by derived classes

Inheritance in C++

class derived_class: kind base_class {
}

where kind is either public, protected, or private

Inheritance in C++
• Derived classes

class derived_class_name: base_class_name {
};

class derived_class_name: public base_class_name {
 };

keyword public makes methods of base class available
to clients of new class

default: if keyword public is left out, private inheritance

When to use a specific kind of
inheritance

• Public: extension, specialization,
specification

• Private: construction (implementation
inheritance)

class sphereClass
{
public:
// constructors
 sphereClass();
 sphereClass(double Initial Radius);

// sphere operations
 void SetRadius (double NewRadius);
 double Radius () const;
 double Diameter () const;
 double Circumference () const;
 double Area () const;
 double Volume () const;
 double DisplayStatistics () const;

private:
 double TheRadius; // the sphere's radius
};

• We can define a new class ballClass which inherits
all the members of sphereClass except for the
constructors and destructors.

• sphereClass is called the base class and
ballClass is the derived class.

We can also
• add a new data member(name for the ball)
• add new member functions to manipulate the name
and radius
• revise the DisplayStatistics routine to show the
ball's name in addition to the sphere's statistics

const int MAX_STRING = 15;
class ballClass: public sphereClass
{
public:
// constructors
 ballClass();
 ballClass(double Initial Radius, const char InitialName[]);

// additional operations
 void GetName (char CurrentName[]) const;
 // get name of ball
 void SetName (char NewName[]) const;
 // alter name of existing ball
 void ResetBall (double NewRadius, const char NewName[]);
 // alters radius and name of existing ball
 double DisplayStatistics () const;
 // displays statistics of a ball

private:
 char TheName[MAX_STRING+1]; // the ball's name
};

• Can add as many new members to a derived
class as you like
• Cannot revise an ancestor's private data
members and should not reuse their names
• But you can redefine other ancestor
members.

• ballClass has two data members:
• TheRadius (inherited) and
• TheName

• Since TheRadius of sphereClass is private, it
can only be referenced within ballClass by using
sphereClass's public member functions:
SetRadius and Radius
• What does the implementation for the new
members look like?

ballClass::ballClass () : sphereClass()
 { SetName(""); } // default constructor

ballClass::ballClass(double Initial Radius,
 const char InitialName[])
 : sphereClass(InitialRadius)
 { SetName(InitialName);}

void ballClass::GetName (char CurrentName[]) const
 { strcpy(CurrentName, TheName);} // get name of ball

void ballClass::SetName (char NewName[]) const
 { strcpy(NewName, TheName);} // alter name of existing

 // ball

void ballClass::ResetBall (double NewRadius,
 const char NewName[])
 { SetRadius(NewRadius);
 SetName(NewName); } // alters radius and name of

 // existing ball

double ballClass::DisplayStatistics () const
 {
 cout << "Statistics for a " << TheName << ":";
 sphereClass::DisplayStatistics();
 } // displays statistics of a ball

• The constructors (destructor) for ballClass invoke the
corresponding constructors (destructor) of sphereClass

• Constructor initializer list used to call the base class
constructor
derived_class_name::derived_class_name(arglist)
: base_class_name(arglist2) { }

• Can use the member functions that BallClass inherits from
sphereClass; e.g. see ResetBall

• Objects of a derived class can invoke the public members of
the base class:

• Example: ballClass Ball(5.0, "Volleyball");

• This means Ball.Diameter() returns Ball's diameter
(10.0) using the member function Diameter that is inherited
from sphereClass

• If Sphere is an instance of sphereClass and Ball is an instance of
ballClass, then

• Sphere.DisplayStatistics will invoke Displaystatistics from
sphereClass

• Ball.DisplayStatistics will invoke Displaystatistics from
ballClass

The compiler will do static binding of these functions, i.e.
determine which is which at compilation time.

Implementation Inheritance

• Used when one class can be implemented in
terms of an existing class

• Example: polynomial class can be
implemented in terms of an extended queue

• However, a polynomial is not a queue!

class Polynomial: private Extended_queue {

// Use private inheritance.

public:
 void read();

 void print() const;

 void equals_sum(Polynomial p, Polynomial q);

 void equals_product(Polynomial p, Polynomial q);

 double evaluate(int value) const;

 int degree() const;

private:
 void mult_term(Polynomial p, Term t);

};

Abstract classes

class Shape {
public:

virtual void rotate(int) = 0;
virtual void draw() = 0;
virtual double Area() = 0;

};
Shape s; //error

Abstract classes

• Can only be used as an interface and base
for other classes
class Circle: public Shape {
public:
 void rotate(int) { };

 void draw() ;
 double Area() { return (PI*radius*radius); }

private radius;
}

Abstract classes

• Important use is to provide an interface
without exposing any implementation
details

• Used in implementing frameworks for
specific application classes

