Chapter 8

A Typical collection of I/O devices

Processor

Cache

Interrupts

Memory–I/O bus

Main memory

I/O controller

I/O controller

I/O controller

Disk

Disk

Graphics output

Network
Interfacing Processors and Peripherals

- I/O Design affected by many factors (expandability, resilience)
- Performance:
 - access latency
 - throughput
 - connection between devices and the system
 - the memory hierarchy
 - the operating system
- A variety of different users (e.g., banks, supercomputers, engineers)

I/O Devices

- Very diverse devices
 - behavior (i.e., input vs. output)
 - partner (who is at the other end?)
 - data rate

<table>
<thead>
<tr>
<th>Device</th>
<th>Behavior</th>
<th>Partner</th>
<th>Data rate (KB/sec)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Keyboard</td>
<td>input</td>
<td>human</td>
<td>0.01</td>
</tr>
<tr>
<td>Mouse</td>
<td>input</td>
<td>human</td>
<td>0.02</td>
</tr>
<tr>
<td>Voice input</td>
<td>input</td>
<td>human</td>
<td>0.02</td>
</tr>
<tr>
<td>Scanner</td>
<td>input</td>
<td>human</td>
<td>400.00</td>
</tr>
<tr>
<td>Voice output</td>
<td>output</td>
<td>human</td>
<td>0.60</td>
</tr>
<tr>
<td>Line printer</td>
<td>output</td>
<td>human</td>
<td>1.00</td>
</tr>
<tr>
<td>Laser printer</td>
<td>output</td>
<td>human</td>
<td>200.00</td>
</tr>
<tr>
<td>Graphics display</td>
<td>output</td>
<td>human</td>
<td>60,000.00</td>
</tr>
<tr>
<td>Modem</td>
<td>input or output</td>
<td>machine</td>
<td>2.00-8.00</td>
</tr>
<tr>
<td>Network/LAN</td>
<td>input or output</td>
<td>machine</td>
<td>500.00-6000.00</td>
</tr>
<tr>
<td>Floppy disk</td>
<td>storage</td>
<td>machine</td>
<td>100.00</td>
</tr>
<tr>
<td>Optical disk</td>
<td>storage</td>
<td>machine</td>
<td>1000.00</td>
</tr>
<tr>
<td>Magnetic tape</td>
<td>storage</td>
<td>machine</td>
<td>2000.00</td>
</tr>
<tr>
<td>Magnetic disk</td>
<td>storage</td>
<td>machine</td>
<td>2000.00-10,000.00</td>
</tr>
</tbody>
</table>
I/O Example: Disk Drives

To access data:
— seek: position head over the proper track (8 to 20 ms. avg.)
— rotational latency: wait for desired sector (.5 / RPM)
— transfer: grab the data (one or more sectors) 2 to 15 MB/sec

Buses

• Buses connect I/O devices to processors and memory
• A bus is a shared communication link which uses one set of wires to connect multiple systems
• Advantages
 – Shared link, therefore cost effective
• Disadvantage
 – Shared link can become a communication bottleneck
• Each bus has a set of data lines and a set of control lines
Using a Bus for Input/Output

- Each bus transaction has two parts
 - Sending the address
 - Receiving/Sending the data
- Input transaction
 - Inputs data from a device to memory
- Output transaction
 - Outputting data from memory to a device

The three steps of an output transaction
An input transaction

Types of buses
Types of buses

• Processor-Memory bus
 – Short
 – High-speed
 – Matched to the memory system
• I/O buses
 – Lengthy
 – Can have many different devices attached to them
 – Wide range of data transfer speeds
• Backplane buses
 – Can have processor, memory, I/O devices coexisting on a single bus
 – Balance demands of processor-memory communication with demands of device memory communication

Synchronous and Asynchronous Buses

• Synchronous
 – Driven by a clock
 – Clock input to control lines
 – Protocol for communication is relative to this clock
 – Example: processor-memory communication
 • Processor sends address and read command in first clock cycle
 • Memory sends data on fifth clock cycle
 • **Protocol is predetermined and driven by the clock**
 – Disadvantage
 • Every device on bus must be able to run at same clock rate
 • Synchronous buses have to be short to avoid clock skew
Synchronous & Asynchronous Buses

- Asynchronous Buses
 - Not clocked
 - Can be lengthened
 - Use a handshaking protocol
- Synchronous buses typically faster than asynchronous

Handshaking Protocol for an Asynchronous Bus

1. When memory sees ReadReq line, it reads the address from the Data bus and raises ACK to indicate it has been seen
2. I/O device sees ACK and releases ReadReq and Data lines
3. Memory sees ReadReq is low and drops the ACK signal
4. This step starts when memory has the data ready. It places data on the Data line and raises DataRdy
5. I/O device sees DataRdy, reads the data, and then raises ACK
6. The memory sees ACK, and drops DataRdy and releases the data lines
7. I/O device sees DataRdy go low and drops the ACK line
Finite State Machine for implementing the control for the handshaking protocol

Obtaining Access to the Bus

- How is the bus reserved by one of the devices that wants to use it to communicate?
- Single Bus Master: the CPU
 - Advantage: simple
 - Disadvantage: processor involved in every bus transaction
- Multiple bus masters
- Need Bus Arbitration:
 - daisy chain arbitration (not very fair)
 - centralized arbitration (requires an arbiter), e.g., PCI
 - self selection, e.g., NuBus used in Macintosh
 - collision detection, e.g., Ethernet
A bus transaction with a single master (the processor)

Daisy-chain Bus Arbitration
Organization of the I/O system in the Apple Macintosh 7200 (PCI backplane, SCSI for slower devices)