Chapter Four

Arithmetic

- Where we've been:
 - Performance (seconds, cycles, instructions)
 - Abstractions:
 Instruction Set Architecture
 Assembly Language and Machine Language

- What's up ahead:
 - Implementing the Architecture
Numbers

- Bits are just bits (no inherent meaning)
 — conventions define relationship between bits and numbers
- Binary numbers (base 2)
 0000 0001 0010 0011 0100 0101 0110 0111 1000 1001...
 decimal: $0...2^{n-1}$
- Of course it gets more complicated:
 numbers are finite (overflow)
 fractions and real numbers
 negative numbers
 e.g., no MIPS subi instruction; addi can add a negative number
- How do we represent negative numbers?
 i.e., which bit patterns will represent which numbers?

Possible Representations

- Sign Magnitude: One's Complement Two's Complement
 000 = +0 000 = +0 000 = +0
 001 = +1 001 = +1 001 = +1
 010 = +2 010 = +2 010 = +2
 011 = +3 011 = +3 011 = +3
 100 = -0 100 = -3 100 = -4
 101 = -1 101 = -2 101 = -3
 110 = -2 110 = -1 110 = -2
 111 = -3 111 = -0 111 = -1

- Issues: balance, number of zeros, ease of operations
- Which one is best? Why?
32 bit signed numbers:

- $0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000_{two} = 0_{ten}$
- $0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0001_{two} = +1_{ten}$
- $0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0010_{two} = +2_{ten}$

- $1111\ 1111\ 1111\ 1111\ 1111\ 1111\ 1111\ 1110_{two} = +2,147,483,646_{ten}$
- $1111\ 1111\ 1111\ 1111\ 1111\ 1111\ 1111\ 1111_{two} = +2,147,483,647_{ten}$
- $1000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000_{two} = -2,147,483,648_{ten}$
- $1000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0001_{two} = -2,147,483,647_{ten}$
- $1000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0010_{two} = -2,147,483,646_{ten}$
- $1111\ 1111\ 1111\ 1111\ 1111\ 1111\ 1111\ 1101_{two} = -3_{ten}$
- $1111\ 1111\ 1111\ 1111\ 1111\ 1111\ 1111\ 1110_{two} = -2_{ten}$
- $1111\ 1111\ 1111\ 1111\ 1111\ 1111\ 1111\ 1111_{two} = -1_{ten}$

Negating a two's complement number: invert all bits and add 1
- remember: “negate” and “invert” are quite different!

Converting n bit numbers into numbers with more than n bits:
- MIPS 16 bit immediate gets converted to 32 bits for arithmetic
 - copy the most significant bit (the sign bit) into the other bits
 - $0010 \rightarrow 0000\ 0010$
 - $1010 \rightarrow 1111\ 1010$
- “sign extension” (lbu vs. lb)
Addition & Subtraction

• Just like in grade school (carry/borrow 1s)
 \[
 \begin{array}{c}
 0111 \\
 + 0110 \\
 \hline
 0110
 \end{array}
 \begin{array}{c}
 0111 \\
 - 0110 \\
 - 0101
 \end{array}
 \]

• Two’s complement operations easy
 – subtraction using addition of negative numbers
 \[
 \begin{array}{c}
 0111 \\
 + 1010
 \end{array}
 \]

• Overflow (result too large for finite computer word):
 – e.g., adding two n-bit numbers does not yield an n-bit number
 \[
 \begin{array}{c}
 0111 \\
 + 0001
 \hline
 1000
 \end{array}
 \]
 note that overflow term is somewhat misleading,
 it does not mean a carry “overflowed”

Detecting Overflow

• No overflow when adding a positive and a negative number
• No overflow when signs are the same for subtraction
• Overflow occurs when the value affects the sign:
 – overflow when adding two positives yields a negative
 – or, adding two negatives gives a positive
 – or, subtract a negative from a positive and get a negative
 – or, subtract a positive from a negative and get a positive
• Consider the operations A + B, and A – B
 – Can overflow occur if B is 0 ?
 – Can overflow occur if A is 0 ?
Effects of Overflow

• An exception (interrupt) occurs
 – Control jumps to predefined address for exception
 – Interrupted address is saved for possible resumption
• Details based on software system / language
 – example: flight control vs. homework assignment
• Don’t always want to detect overflow
 — new MIPS instructions: addu, addiu, subu

 note: addiu still sign-extends!
 note: sltu, sltiu for unsigned comparisons

Review: Boolean Algebra & Gates

• Problem: Consider a logic function with three inputs: A, B, and C.

 Output D is true if at least one input is true
 Output E is true if exactly two inputs are true
 Output F is true only if all three inputs are true

• Show the truth table for these three functions.

• Show the Boolean equations for these three functions.

• Show an implementation consisting of inverters, AND, and OR gates.
Let’s build an ALU to support the andi and ori instructions – we’ll just build a 1 bit ALU, and use 32 of them.

Possible Implementation (sum-of-products):

An ALU (arithmetic logic unit)

Selects one of the inputs to be the output, based on a control input.

Review: The Multiplexor

note: we call this a 2-input mux even though it has 3 inputs!

Lets build our ALU using a MUX:
Different Implementations

- Not easy to decide the “best” way to build something
 - Don’t want too many inputs to a single gate
 - Don’t want to have to go through too many gates
 - For our purposes, ease of comprehension is important
- Let’s look at a 1-bit ALU for addition:

\[
\begin{align*}
 c_{\text{out}} &= a \cdot b + a \cdot c_{\text{in}} + b \cdot c_{\text{in}} \\
 \text{sum} &= a \oplus b \oplus c_{\text{in}}
\end{align*}
\]

- How could we build a 1-bit ALU for add, and, and or?
- How could we build a 32-bit ALU?
What about subtraction \((a - b)\) ?

- Two’s complement approach: just negate \(b\) and add.
- How do we negate?

- A very clever solution:

![Diagram showing subtraction circuit]

<table>
<thead>
<tr>
<th>Operation</th>
<th>CarryIn</th>
<th>CarryOut</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Tailoring the ALU to the MIPS

- Need to support the set-on-less-than instruction (slt)
 - remember: slt is an arithmetic instruction
 - produces a 1 if \(rs < rt\) and 0 otherwise
 - use subtraction: \((a-b) < 0\) implies \(a < b\)
- Need to support test for equality (beq $t5, $t6, $t7)
 - use subtraction: \((a-b) = 0\) implies \(a = b\)
Supporting slt

![Diagrams showing the operations and flow of data through ALUs and binary comparators for supporting slt.]
Test for equality

- Notice control lines:
 000 = and
 001 = or
 010 = add
 110 = subtract
 111 = slt

*Note: zero is a 1 when the result is zero!

Conclusion

- We can build an ALU to support the MIPS instruction set
 - key idea: use multiplexor to select the output we want
 - we can efficiently perform subtraction using two’s complement
 - we can replicate a 1-bit ALU to produce a 32-bit ALU
- Important points about hardware
 - all of the gates are always working
 - the speed of a gate is affected by the number of inputs to the gate
 - the speed of a circuit is affected by the number of gates in series
 (on the “critical path” or the “deepest level of logic”)
- Our primary focus: comprehension, however,
 - Clever changes to organization can improve performance
 (similar to using better algorithms in software)
 - we’ll look at two examples for addition and multiplication