
1

Distributed Software Systems 1

Client-Server Applications

Prof. Sanjeev Setia
Distributed Software Systems
CS 707

Distributed Software Systems 2

Client Server Systems



2

Distributed Software Systems 3

Client/Server Application

Distributed Software Systems 4

Overview

z Common communication patterns in distributed 
applications
y Client-Server
y Group (Multicast)
y Function-shipping/Applets

zClient: process that requests service
zServer: process that provides service
z Client usually blocks until server responds



3

Distributed Software Systems 5

Overview cont’d

zClient usually invoked by end users when they 
require service 

zServer usually waits for incoming requests
z Server can have many clients making 

concurrent requests
zServer usually a program with special privileges

Distributed Software Systems 6

Client and Server Functions

zClients
y interacts with users through a user interface
y performs application functions
y interacts with client middleware using middleware 

API
y receives response and displays it if needed

zServers
y implement services
y invoked by server middleware
y provide error-recovery and failure-handling services



4

Distributed Software Systems 7

Middleware

Distributed Software Systems 8

Middleware

zDefinitions
y Middleware is a set of common business-unaware 

services that enable applications and end-users to 
interact with each other across a network

y distributed system services that have standard 
programming interfaces and protocols … services “sit 
in the middle” above OS and network software and 
below industry-specific applications

y the “/” in client/server applications
y software nobody wants to pay for



5

Distributed Software Systems 9

Examples

zftp, email
zWeb browsers
z Database drivers and gateways
z OSF’s DCE (Distributed Computing 

Environment)
z OMG’s CORBA (Common Object Request Broker 

Architecture)

Distributed Software Systems 10

Functional View of Middleware

zInformation exchange services
z Application-specific services
y specialized services, e.g. transactional services and 

replication services for distributed databases, 
groupware services for collaborative applications, 
specialized services for multimedia applications

y business-unaware

z Management and support services
y needed for locating distributed resources and 

administering resources across the network



6

Distributed Software Systems 11

Commercial Middleware

z Middleware components that provide only one service
y HTTP for retrieving remote documents, SUNRPC for RPC, etc.

z Middleware environments that combine many services 
y Integrates RPC, security, directory, time and file services
y DCE, CORBA, Microsoft DCOM, .NET, Java

z Compound middleware environments that combine 
many middleware environments into a single framework, 
e.g. transaction management + RPC/RMI

Distributed Software Systems 12

Application Software Architectures

z Many applications can be considered to be 
made up of three software components or 
logical tiers
y user interface
y processing layer
y data layer

z Client/server architectures
y single-physical tiered, two-physical tiered
y multi-tiered



7

Distributed Software Systems 13

“Gartner Group” Configurations

Distributed Software Systems 14

Distributed Data

Example: Distributed Database



8

Distributed Software Systems 15

Remote Data

Example: Network File Systems

Distributed Software Systems 16

Distributed Programs

Example: World Wide Web



9

Distributed Software Systems 17

Distributed Presentation

Example: X Windows

Distributed Software Systems 18

Remote Presentation

Example: telnet



10

Distributed Software Systems 19

Three-tier architectures

Distributed Software Systems 20

Motivation for multi-tier architectures 

zFrees clients from dependencies on the exact 
implementation of the database

zIt allows “business logic” to be concentrated in 
one place
y Software updates are restricted to middle layer

zPerformance improvements possible by batching 
requests from many clients to the database

zDatabase and business logic tiers could be 
implemented by multiple servers for scalability



11

Distributed Software Systems 21

Fat vs thin clients

zThin client = network computer
y Typically no local storage

zFat client = typical desktop PC, workstation
zMotivation for thin clients: hidden costs of 

system administration and support
y Network computers a move towards centralized

system admin but local processing at client
y Java (mobile code) an enabling technology

zDegrees of “thinness”, e.g. PDAs 

Distributed Software Systems 22

Issues in Client design

z Must know or find out the location of the server
z Which protocol to use: reliable or unreliable?
z Blocking (synchronous) request or non-blocking 

(asynchronous)



12

Distributed Software Systems 23

Issues in Server Design

z Connection-oriented or connection-less servers
y TCP or UDP?

z Concurrent or iterative servers: handle multiple 
requests concurrently or one after the other?

z Stateful or stateless servers
z Multi-protocol, multi-service servers

Distributed Software Systems 24

Connection-less vs connection-
oriented servers

z protocol used determines level of reliability
z TCP provides reliable-data delivery
y verifies that data arrives at other end, retransmits 

segments that don’t
y checks that data is not corrupted along the way
y makes sure data arrives in order
y eliminates duplicate packets
y provides flow control to make sure sender does not 

send data faster than receiver can consume it
y informs both client and server if underlying network 

becomes inoperable



13

Distributed Software Systems 25

Connection-less servers

z UDP unreliable – best effort delivery
z UDP relies on application to take whatever 

actions are necessary for reliability
z UDP used if
y application protocol designed to handle reliability 

and delivery errors in an application-specific manner, 
e.g. audio and video on the internet

y overhead of TCP connections too much for 
application

y multicast

Distributed Software Systems 26

Stateful vs stateless servers

z State ≡ Information that server maintains about the 
status of ongoing interactions with clients

z Stateful servers
y state information can help server in performing request faster
y state information needs to be preserved across (or 

reconstructed after) crashes

z Stateless servers
y quicker and more reliable recovery after crashes
y smaller memory requirements

z Stateless servers: application protocol should have 
idempotent operations



14

Distributed Software Systems 27

Concurrency in servers

z Concurrency needed if several clients and 
service is expensive

z Operating system support
y Multiple processes
y Threads
y Asynchronous I/O, e.g. using select() system call

z Process/thread preallocation for improving 
performance

z Delayed process/thread allocation


