
1

TCP, UDP revisited

Concurrent & Distributed
Software Systems

Network Programming
with sockets
z Need to understand how TCP and UDP

work in order to design “good”
application-level protocols
ycritical for designing protocols that will be

scalable
xHTTP 1.0 does not scale well

ywhen to use UDP instead of TCP
yneed to understand TCP while debugging as

well as performance debugging

2

TCP
z Connection establishment
z Flow control
z Congestion control
z Connection termination

TCP Connection
Establishment
z Three way handshake

client server
socket, bind, listen
accept (blocks)

socket
connect

active
open SYN J

SYN K, ack J+1

ack K+1

(blocks)

accept returns

connect
returns

passive
open

3

TCP Connection
termination
z Four segments needed for terminating

connection

client server
close

(active close)
(passive close)
read returns 0

FIN M

ack M+1
FIN N

close

ack N+1

TCP Connection Management

TCP client
lifecycle

TCP server
lifecycle

4

Observations
z If only purpose of connection is to send a one-

segment request and get a one-segment reply
there are 8 segments of overhead
yUDP only two packets but no reliability

z TIME_WAIT state needed
y for reliable connection termination
x suppose last ACK lost

y to allow duplicate segments to expire in the network
xprevent new incarnations of connection that is in

TIME_WAIT state)

TCP Flow Control &
Congestion Control
z TCP uses sliding window/selective

retransmit protocol for flow control
z Congestion control
ycongestion window has additive

increase/multiplicative decrease
y“slow start” algorithm

5

TCP Sliding Window

TCP

Sending
application

Receiving
application

TCP

Last byte
acked

Last byte
sent

Last byte
written

Last byte
received

Last byte
read

Next byte
expected

Receiver: Advertised Window = MaxRcvBuffer - (LastByteRcvd - LastByteRead)

Sender: Effective Window = Advertised Window - (LastByteSent - LastByteAcked)

TCP congestion control
z TCP maintains a new state variable for each

connection called Congestion Window

MaxWindow = MIN(Congestion Window, Advertised Window)

Effective Window = MaxWindow - (LastByteSent - LastByteAcked)

6

TCP Slowstart

z exponential increase (per RTT)
in window size (not so slow!)

z loss event: timeout (Tahoe
TCP) and/or three duplicate
ACKs (Reno TCP)

initialize: Congwin = 1
for (each segment ACKed)

Congwin++
until (loss event OR

CongWin > threshold)

Slowstart algorithm
Host A

one segment

RT
T

Host B

time

two segments

four segments

IP Datagrams and
Fragmentation
z Maximum IPv4 datagram is 65535 bytes
z network MTU (maximum transmission

unit) dictated by hardware
yEthernet 1500 bytes

z smallest MTU on path between two hosts
is path MTU
z IP fragments datagram if it exceeds link

MTU; reassembly done at final destination

7

TCP MSS
z Minimum buffer reassembly size
yIPv4: 576 bytes; IPv6: 1500 bytes

z TCP MSS (maximum segment size)
announced during connection
establishment
z MSS usually set to MTU - sizes of IP &

TCP headers to avoid fragmentation

TCP Output
Application

TCP

IP

output queue
datalink

Application buffer (any size)

Socket send buffer

User level

Kernel
write

MSS sized TCP segments
MSS usually <= MTU - 40 (IPv4)

MTU sized IPv4 packets

8

UDP Output
Application

UDP

IP

output queue
datalink

Application buffer (any size)

Socket send buffer

User level

Kernel
write

UDP Datagram

MTU sized IPv4 packets

HTTP 1.0 revisited

z Separate connection for every document
transferred
y large overhead
yweb servers have to maintain state for every

connection in TIME_WAIT state
xcan be large for busy web servers

z Slow start
y if HTTP headers longer than MSS, client TCP needs to

send two segments
y client has to wait for first segment to be acked before

it sends second segment

9

HTTP 1.0 revisited cont’d
z Slow start (cont’d)
yOn server side, initial congestion window = 2,

so server can send 2 segments but has to
wait for ack before sending any other
segments
yFor files larger than two segments, slow start

adds one RTT to total transaction time

UDP: User Datagram Protocol
[RFC 768]
z “no frills,” “bare bones”

Internet transport protocol
z “best effort” service, UDP

segments may be:
y lost
y delivered out of order to

app
z connectionless:
y no handshaking between

UDP sender, receiver
y each UDP segment

handled independently of
others

Why is there a UDP?
z no connection

establishment (which
can add delay)

z simple: no connection
state at sender, receiver

z small segment header
z no congestion control:

UDP can blast away as
fast as desired

10

When to use UDP instead
of TCP
z UDP must be used if the application uses

multicasting or broadcasting
z UDP can be used for simple request-reply

applications but error recovery must be
built into the application
z UDP should not be used for bulk data

transfer (e.g., file transfer)

