
4/13/10	

1	

Java RMI 101

CS 475

1 Java RMI 101

Java RMI 101 2

Java RMI

 Features
  Integrated with Java language + libraries

•  Security, write once run anywhere,
multithreaded

•  Object orientation
  Can pass “behavior”

•  Mobile code
•  Not possible in CORBA, traditional RPC systems

  Distributed Garbage Collection
  Remoteness of objects intentionally not

transparent

4/13/10	

2	

Java RMI 101 3

A remote object and its remote
interface

interface	

remote	

m1	

m2	

m3	

m4	

m5	

m6	

Data	

implementation	

remote	

object	

{	

 of methods	

Java RMI 101 4

Remote Interfaces, Objects, and
Methods

 Objects become remote by implementing a
remote interface
  A remote interface extends the interface

java.rmi.Remote
  Each method of the interface declares

java.rmi.RemoteException in its throws clause
in addition to any application-specific clauses

4/13/10	

3	

Java RMI 101 5

Creating distributed applications using RMI
1.  Define the remote interfaces
2.  Implement the remote objects and server
3.  Implement the client
4.  Compile the remote interface, server, and client

(javac)
5.  Generate the stub and skeleton using rmic

  Not necessary in Java 5 (and later)
6.  Start the RMI registry
7.  Start the server
8.  Run the client

An Example: Echo service

 We will build a remote server that echoes
any text sent to it by a client after
converting the text to uppercase
  We’ve seen this example before

 We will need to create the following files:
  Echo.java (interface)
  EchoServer.java (server program)
  EchoImpl.java (implementation of remote

object providing echo service)
  EchoClient.java (client program)

6 Java RMI 101

4/13/10	

4	

The Interface code

import java.rmi.*;
public interface Echo extends Remote {
 String EchoMessage(String strMsg)

throws RemoteException;
}

7 Java RMI 101

The Remote Object
import java.rmi.*;
import java.rmi.server.UnicastRemoteObject;
import java.io.*;

public class EchoImpl extends UnicastRemoteObject implements
Echo {
 public EchoImpl() throws RemoteException { super(); };

 public String EchoMessage(String Msg) throws RemoteException {
 String capitalizedMsg;

 System.out.println("Server: EchoMessage() invoked...");
 System.out.println("Server: Message > " + Msg);

 capitalizedMsg = Msg.toUpperCase();
 return(capitalizedMsg);
 }
} 8 Java RMI 101

4/13/10	

5	

Remote Object explained

 The class EchoImpl implements the remote
interface Echo and provides a remote
object

 It extends another class known as
UnicastRemoteObject which implements a
remote access protocol

 All the methods for EchoImpl must throw a
remote exception

9 Java RMI 101

EchoServer code
import java.rmi.*;

public class EchoServer{
 public static void main(String argv[]) {
 try {
 System.setSecurityManager(new RMISecurityManager());

 System.out.println("Server: Registering Echo Service");
 EchoImpl remote = new EchoImpl();
 Naming.rebind("EchoService", remote);
 System.out.println("Server: Ready...");

 }
 catch (Exception e) {

 System.out.println("Server: Failed to register Echo Service: " + e);
 }

 }
}

10 Java RMI 101

4/13/10	

6	

EchoServer explained

 Installs a new security manager for the
RMI service

 Creates an object of class EchoImpl (the
remote object)

 Registers the object called “EchoService”
with the RMI Naming Service

11 Java RMI 101

Java RMI 101 12

The Naming class of Java RMIregistry
void rebind (String name, Remote obj) 	

This method is used by a server to register the identifier of a remote
object by name.	

void bind (String name, Remote obj) 	

This method can alternatively be used by a server to register a remote
object by name, but if the name is already bound to a remote object
reference an exception is thrown.	

void unbind (String name, Remote obj) 	

This method removes a binding.	

Remote lookup(String name) 	

This method is used by clients to look up a remote object by name. A
remote object reference is returned.	

String [] list() 	

This method returns an array of Strings containing the names bound in
the registry.	

4/13/10	

7	

EchoClient code
import java.rmi.*;
import java.rmi.server.*;
public class EchoClient
{
 public static void main(String argv[]) {
 //code for processing command line argument
 String strMsg = argv[0];

 System.setSecurityManager(new RMISecurityManager());

 // Get a remote reference to the RMIExampleImpl class
 String strName = "rmi://localhost/EchoService";
 System.out.println("Client: Looking up " + strName + "...");

 Echo RemEcho = null;
 try {

 RemEcho = (Echo)Naming.lookup(strName);
 } catch (Exception e) {
 System.out.println("Client: Exception thrown looking up " + strName);
 System.exit(1);
 } 13 Java RMI 101

EchoClient cont’d

 // Send a messge to the remote object

 try {
 String modifiedMsg = RemEcho.EchoMessage(strMsg);

 System.out.println("From Server: "+ modifiedMsg);
 }
 catch (Exception e) {

 System.out.println("Client: Exception thrown calling EchoMessage().");
 System.exit(1);
 }

 }

}

14 Java RMI 101

4/13/10	

8	

EchoClient explained

  Create and install the security manager
  Use the Naming.lookup method to obtain a

reference to the remote object
  Invoke the remote method on the remote

object

15 Java RMI 101

RMI with Java 5

  J2SE 5.0 (and later) support dynamic generation
of stub classes at runtime, that is, no need to use
rmic

  Compile the interface, Server, and Client
  Start the rmiregistry

 > rmiregistry &
  Start the server
 > java EchoServer
  Start the client

 > java EchoClient “This is a test”

16 Java RMI 101

4/13/10	

9	

Java RMI 101 17

Advanced Techniques

 Security Manager
 Parameter Passing
 Passing behavior

  See Java RMI tutorial track example
 Callbacks
 Activation

Parameter Passing

  Arguments to and return values from remote methods can be
of any type including local objects, remote objects or
primitive data types
  Local objects must be serializable, i.e. must implement the

interface java.io.serializable
•  All primitive objects and most Java core classes are

serializable
•  Examples of objects that are not serializable: threads, file

descriptors, etc., i.e. objects that encapsulate information
that only makes sense within a single address space

  Remote objects are passed by reference
  Local objects are passed by value, using

serialization

Java RMI 101 18

4/13/10	

10	

Security Manager

 The Java security model requires code to be
granted specific permissions to be allowed to
perform certain operations

 In Java 1.2 (and later), if you install a security
manager, you need to specify a policy file
(typically as a command line argument)

 For example:
 java –Djava.security.policy=filename EchoServer

Java RMI 101 19

Sample Policy

 The following policy allows downloaded code,
from any code base, to do two things:
  Connect to or accept connections on unprivileged

ports (ports greater than 1024) on any host
  Connect to port 80 (the port for HTTP)

grant {
permission java.net.SocketPermission ”*:1024-65535",

"connect,accept";
Permission java.net.SocketPermission "*:80", "connect";
 };

Java RMI 101 20

4/13/10	

11	

Java RMI 101 21

Classes supporting Java RMI

RemoteServer	

UnicastRemoteObject	

<servant class>	

Activatable	

RemoteObject 	

Java RMI 101 22

Readings

 Coulouris – Chapter 5 or Liu -- Chapters 7,
8

 WWW (see links on class web page)
  Java RMI tutorial on web

