
1

1

Inter-process Communication

CS 571

2

Interprocess Communication (IPC)

❒ Mechanism for processes to communicate and to
synchronize their actions.

❒ Message system – processes communicate with
each other without resorting to shared variables.

❒ IPC facility provides two operations:
❍ send(message) – message size fixed or variable
❍ receive(message)

❒ If P and Q wish to communicate, they need to:
❍ establish a communication link between them
❍ exchange messages via send/receive

❒ Implementation of communication link
❍ physical (e.g., shared memory, hardware bus)
❍ logical (e.g., logical properties)

2

3

IPC Examples

❒ Within a single computer
❍ Pipes, Named Pipes (FIFO)
❍ Message Queues

❒ Distributed systems
❍ TCP/IP sockets
❍ Remote Procedure Calls (RPC)
❍ Remote Method Invocation (RMI)
❍ Message-passing Libraries for parallel

computing, e.g. MPI, PVM
❍ Message-oriented Middleware

4

Direct Communication

❒ Processes must name each other explicitly:
❍ send (P, message) – send a message to process P
❍ receive(Q, message) – receive a message from process Q

❒ Only makes sense on a single computer unless
distributed operating system that implements a
global process name space is being used

❒ Properties of communication link
❍ Links are established automatically.
❍ A link is associated with exactly one pair of

communicating processes.
❍ The link may be unidirectional, but is usually bi-

directional.

3

5

Indirect Communication

❒ Messages are directed and received from
mailboxes (also referred to as ports).

❍ Each mailbox has a unique id/address
❒ Primitives are defined as:

send(A, message) – send a message to
mailbox A
receive(A, message) – receive a message
from mailbox A

❍ The mailbox address A can be local or remote
❒ Operations

❍ create a new mailbox
❍ send and receive messages through mailbox
❍ destroy a mailbox

6

Issues in IPC

❒ Synchronous vs Asynchronous IPC
❒ Buffered vs unbuffered IPC
❒ Reliable vs unreliable (best effort)
❒ Ordered vs unordered
❒ Streams vs messages

4

7

Synchronization

❒ Message passing may be either blocking or
non-blocking.

❒ Blocking is considered synchronous
❒ Non-blocking is considered asynchronous
❒ send and receive primitives may be either

blocking or non-blocking.

8

Synchronization

❒ Synchronous receive
❍ Receiving process blocks until message is copied into

user-level buffer
❒ Asynchronous receive

❍ Receiving process issues a receive operation (specifying a
buffer) and then carries on with other tasks

❍ It either polls the OS to find out if the receive has
completed or gets an interrupt when the receive has
completed

❍ Threads allow you to program an asynchronous receive in
a synchronous way

• Issue a synchronous receive with one thread while carrying
out other tasks with other threads

5

9

Synchronization cont’d

❒ OS view vs Programming Languages view of
synchronous communication

❒ OS view
❍ synchronous send ⇒ sender blocks until message has

been copied from application buffers to kernel buffer
❍ Asynchronous send ⇒ sender continues processing after

notifying OS of the buffer in which the message is
stored; have to be careful to not overwrite buffer until
it is safe to do so

❒ PL view:
❍ synchronous send ⇒ sender blocks until message has

been received by the receiver
❍ asynchronous send ⇒ sender carries on with other tasks

after sending message (OS view of synchronous
communication is asynchronous from the PL viewpoint)

10

Buffering

❒ Queue of messages attached to the link;
implemented in one of three ways.
1. Zero capacity – 0 messages

Sender must wait for receiver (rendezvous).
2.Bounded capacity – finite length of n messages

or N bytes. Sender must wait if link full.

6

11

Reliable and Ordered communication

❒ IPC within a computer is always reliable but
messages sent across a network can get
“lost”
❍ Reliable communication, e.g. TCP
❍ Unreliable or best effort communication, e.g

UDP
❒ Ordered communication

❍ TCP messages always delivered in order
❍ UDP messages may not be delivered in same

order as they were sent

12

Streams vs messages

❒ Streams
❍ A “stream” of data is exchanged between

sender and receiver
• No message boundaries

❍ Examples: “pipes” in UNIX, TCP streams
❒ Messages

❍ Sender & receiver see the same set of distinct
messages

❍ Examples: “message queues” in UNIX, UDP
messages/datagrams

7

13

Client-Server Communication

❒ Sockets
❒ Remote Procedure Calls
❒ Remote Method Invocation (Java)

14

Sockets

❒ A socket is defined as an endpoint for
communication.

❒ Concatenation of IP address and port
❒ The socket 161.25.19.8:1625 refers to

port 1625 on host 161.25.19.8
❒ Communication consists between a pair of

sockets.

8

15

Sockets and ports

message

agreed portany port socketsocket

Internet address = 138.37.88.249Internet address = 138.37.94.248

other ports
client server

16

Higher-level IPC mechanisms

❒ Sockets API ≡ send & recv calls ≡ I/O
❒ Remote Procedure Calls (RPC)

❍ Goal: to provide a procedural interface for
distributed (i.e., remote) services

❍ To make distributed nature of service
transparent to the programmer

❒ Remote Method Invocation (RMI)
❍ RPC + Object Orientation
❍ Allows objects living in one process to invoke

methods of an object living in another process

9

17

Request-reply communication

Request

ServerClient

doOperation

(wait)

(continuation)

Reply
message

getRequest

execute
method

message
select object

sendReply

18

Middleware layers

Applications, services

Middleware
layers

request-reply protocol

marshalling and external data representation

UDP and TCP

RMI and RPC

10

19

Group Communication

❒ Client-server communication is one-to-one
❒ Many applications are group-oriented and

require one-to-many or many-to-many
communication
❍ Pay per view on internet, distributed games,

distributed conferencing
❒ Multicast communication

❍ IP Multicast
❍ Socket API supports multicast (over UDP)

❒ Issues: ordering, reliability

	Inter-process Communication
	Interprocess Communication (IPC)
	IPC Examples
	Direct Communication
	Indirect Communication
	Issues in IPC
	Synchronization
	Synchronization
	Synchronization cont’d
	Buffering
	Reliable and Ordered communication
	Streams vs messages
	Client-Server Communication
	Sockets
	Sockets and ports
	Higher-level IPC mechanisms
	Request-reply communication
	Middleware layers
	Group Communication

