Peer-to-Peer Information Retrieval Using Self-Organizing Semantic Overlay Networks

Chunqiang Tang, Zhichen Xu, and Sandhya Dwarkadas
SIGCOMM 2003
Presented by Keith Tayloe

Peer-to-Peer Information Retrieval
- Distributed Hash Table (DHT)
 - CAN, Chord, Pastry, Tapestry, etc.
 - Scalable, fault tolerant, self-organizing
 - Only support exact key match
 - \(K_d = \text{hash} \left(\text{"books on computer networks"} \right) \)
 - \(K_s = \text{hash} \left(\text{"computer network"} \right) \)
- Extend DHTs with content-based search
- Full-text search, music/image retrieval
- Build large-scale search engines using P2P technology

Focus and Approach in pSearch
- Efficiency
 - Search a small number of nodes
 - Transmit a small amount of data
- Efficacy
 - Search results comparable to centralized information retrieval (IR) systems
 - Extend classical IR algorithms to work in DHTs, both efficiently and effectively

Outline
- Key idea in pSearch
- Background
 - Information Retrieval (IR)
 - Content-Addressable Network (CAN)
- Our P2P IR algorithm
- Experimental results
- Open issues and ongoing work
- Conclusions
Outline

- Key idea in pSearch
- Background
 - Information Retrieval (IR)
 - Content-Addressable Network (CAN)
- Our P2P IR algorithm
- Experimental results
- Open issues and ongoing work
- Conclusions
Background

- Statistical IR algorithms
 - Vector Space Model (VSM) [Salton et al.]
 - Latent Semantic Indexing (LSI) [Deerwester et al.]
- Distributed Hash Table (DHT)
 - Content-Addressable Network (CAN) [Ratnasamy et al.]

Background: Vector Space Model

Example query = *baking*

$q^{(1)} = (1 \ 0 \ 0 \ 0 \ 0 \ 0)^T$

- Search for relevant documents is carried out by computing the cosines of the angles θ_j between the query vector $q^{(1)}$ and the document vectors a_j
- Results: only nonzero cosines are $\cos \theta_i = 0.5774$ and $\cos \theta_4 = 0.4082$
Background: Latent Semantic Indexing

- **documents**
- **semantic vectors**
- **SVD:** singular value decomposition
 - Reduce dimensionality
 - Suppress noise
 - Discover word semantics
 - Car <-> Automobile

Background: Content-Addressable Network

- Partition Cartesian space into zones
- Each zone is assigned to a computer
- Neighboring zones are routing neighbors
- An object key is a point in the space
- Object lookup is done through routing

Outline

- Key idea in pSearch
- Background
 - Information Retrieval (IR)
 - Content-Addressable Network (CAN)
- Our P2P IR algorithm
- Experimental results
- Open issues and ongoing work
- Conclusions

pLSI Basic Idea

- Use a CAN to organize nodes into an overlay
- Use semantic vectors generated by LSI as object key to store doc indices in the CAN
 - Index locality: indices stored close in the overlay are also close in semantics
- Two types of operations
 - Publish document indices
 - Process queries
pLSI Illustration

Major Challenges
- Dimensionality mismatch between CAN and LSI
 - Large search space
- The curse of dimensionality
 - Inefficient searching
- Uneven distribution of document indices
 - Inefficient routing and unbalanced load

pLSI Enhancements
- Further reduce nodes visited during a search
 - Multi-plane (Rolling-index)
 - Content-directed search
- Balance index distribution
 - Content-aware node bootstrapping

Multi-plane (rolling index)
- 4-d semantic vectors
Multi-plane (rolling index)

- 4-d semantic vectors
- 2-d CAN

21

Multi-plane (rolling index)

- 4-d semantic vectors
- 2-d CAN

22

Multi-plane (rolling index)

- 4-d semantic vectors
- 2-d CAN

23

Multi-plane (rolling index)

- 4-d semantic vectors
- 2-d CAN

24
Multi-plane (rolling index)
- 4-d semantic vectors
- 2-d CAN

Content-directed Search
- Search the node whose zone contains the query semantic vector. (query center node)

Content-directed Search
- Search direct (1-hop) neighbors of query center

Content-directed Search
- How about 2-hop neighbors of query center?
Content-directed Search

- Search direct (1-hop) neighbors; Selectively search some 2-hop neighbors
 - Focusing on "promising" regions suggested by samples

Content-Aware Node Bootstrapping

- pSearch randomly picks the semantic vector of an existing document for node bootstrapping

Outline

- Key idea in pSearch
- Background
 - Information Retrieval (IR)
 - Content-Addressable Network (CAN)
- Our P2P IR algorithm
- Experimental results
- Open issues and ongoing work
- Conclusions

Experiment Setup

- pSearch Prototype
 - Cornell’s SMART system implements VSM
 - We extended it with implementations of LSI, CAN, and our pLSI algorithms
- Corpus: Text Retrieval Conference (TREC)
 - 528,543 documents from various sources
 - total size about 2GB
 - 100 queries, topic 351-450
Evaluation Metrics

- Efficiency: nodes visited and data transmitted during a search
- Efficacy: compare search results
 - pLSI vs. LSI
 - pLSI vs. best known IR algorithms

pLSI vs. LSI

\[
\text{Accuracy} = \frac{|A \cap B|}{|A|} \times 100\%
\]

- Retrieve top 15 documents
- A: documents retrieved by LSI
- B: documents retrieved by pLSI

Performance w.r.t. System Size

- \text{Accuracy} = 90\%
- Search < 0.2\% nodes
- Transmit 72KB data

Performance & System Size

- Relaxing Quit Bound improves accuracy slowly with No. of nodes visited.
- Suggest results can be returned w/o waiting for query to reach final bound
Performance & Replication

- Accuracy of Content can approach 90% @ .2% of nodes
- With replication and query heuristics can achieve 91.7% @ 19 nodes or 98% at 45 nodes.

Open Issues & Ongoing Work

- Larger corpora, other docs or queries
- Efficient variants of LSI/SVD: 1 hour->1min
- Evolution of global statistics
- Incorporate other IR techniques
 - Relevance feedback, Google's PageRank, Music and image retrieval
- Compare with other alternatives
 - pVSM [Tang et al., HotNets-I]

Conclusion

- We map semantic space generated by modern IR algorithms atop overlay networks to enable efficient P2P search
 - pLSI is good at clustering documents
 - Index locality: indices stored close in the overlay network are also close in semantics
- We introduced techniques to
 - Further reduce visited nodes: content-directed search & rolling index
 - Balance index distribution: content-aware node bootstrapping