Workload Characterization

CS 700

1

Objective

- To observe the key characteristics of a workload, and develop a workload model that can be used to test multiple alternatives
 - > Both analytical models and simulations require a workload model
- □ Example: modeling a web server
 - > Inter-arrival process, service demands
 - Need information about distributions, not just summary statistics
 - Classes of requests

Fitting Distributions to Data

- ☐ First step: hypothesizing what family of distributions, e.g. Poisson, normal, is appropriate without worrying yet about the specific parameters for the distribution
 - > Have to consider the shape of the distribution

3

Heuristics for hypothesizing a distribution

- Summary statistics can provide some information
 - > Coefficient of variation (CV)
 - CV = 1 for exponential distribution, CV > 1 for hyperexponential, CV < 1 for hypo-exponential, erlang
 - But CV not useful for all distributions, e.g., $N(0,\sigma^2)$
 - > For discrete distributions, Lexis ratio τ = σ^2/μ has the same role that CV does for continuous distributions
 - τ = 1 for Poisson, τ < 1 for binomial, τ > 1 for negative binomial

Heuristics cont'd

Histograms

- Break up the data into k disjoint adjacent intervals of the same width and compute the proportion of data points that lie in each interval
 - Sturge's rule of thumb $k = \lfloor 1 + \log_2 n \rfloor$ Given n data points
- Visually compare the shape of the histogram to that of known distributions

5

Estimation of Parameters

- □ After hypothesizing a distribution, next step is to specify their parameters so that we can have a completely specified distribution
- Several techniques have been developed
 - Method of moments, Maximum likelihood estimators, Least-squares estimators

Method of moments

- Compute the first k moments of the sample data
- Equate the first few population moments with the corresponding sample moments to obtain as many equations as there are unknown parameters
 - Solve these equations simultaneously to obtain the required estimates
 - Example

7

Maximum Likelihood Estimation

Suppose we have hypothesized a discrete distribution for our data that has one unknown parameter θ . Let $p_{\theta}(x)$ denote the pmf for this distribution. If we have observed the data $X_1, X_2, ..., X_n$, we define the likelihood function $L(\theta)$ as follows: $L(\theta) = p_{\theta}(X_1)p_{\theta}(X_2)....p_{\theta}(X_n)$

The MLE of θ is defined to be the value of θ that maximizes $L(\theta)$

For continuous distributions, $L(\theta)$ is defined analogously

MLE for exponential distribution

$$p(\beta) = 1/\beta e^{-x/\beta}$$

$$L(\beta) = (1/\beta e^{-X_1/\beta})(1/\beta e^{-X_2/\beta})....(1/\beta e^{-X_n/\beta})$$

$$= \beta^{-n} \exp(-\frac{1}{\beta} \sum_{i=1}^{n} X_i)$$

Taking logs on both sides, we have

$$\ln L(\beta) = -n \ln \beta - \frac{1}{\beta} \sum_{i=1}^{n} X_i$$

It can be shown through standard differential calculus by setting the derivative to 0 and solving for β that the value of β that maximizes $L(\beta)$ is given by

$$\beta = (\sum_{i=1}^{n} X_i)/n = \overline{X}(n)$$

9

<u>Determining how representative the</u> <u>fitted distributions are</u>

- Both heuristic procedures and statistical techniques can be used for this
- Heuristics (Graphical/Visual techniques)
 - Density/Histogram Overplots and Frequency Comparisons
 - > Q-Q plots
 - > Probability plots (P-P plots)
 - > Distribution Function Difference Plots

Statistical techniques

- □ Goodness-of-fit tests
 - > Chi-square tests
 - > Kolmogorov-Smirnov (KS) tests
 - > Anderson-Darling (AD) tests
 - > Poisson-process test

11

Chi-square tests

- ☐ First divide the entire range of the fitted distribution into k adjacent intervals
- $lue{}$ Tally the number of data points in each interval o_i
- $lue{}$ Compute the expected proportion of data points in each interval e_{ik}
- Compute $D = \sum_{i=1}^{k} \frac{(o_i e_i)^2}{e_i}$
 - D has a chi-square distribution with k-1 degrees of freedom
 - > If the computed D less than $\chi^2(1-\alpha,k-1)$ then the observations come from the specified distribution
- □ Example

Chi-square tests cont'd

- Cell sizes should be chosen so that the expected probabilities e; are all equal
- ☐ If the parameters of the hypothesized distribution are estimated from the sample then the degrees of freedom for the chi-square statistic should be reduced to k-r-1, where r is the number of estimated parameters
- ☐ For continuous distributions and for small sample sizes, the chi-square test is an approximation

13

Other tests

- Kolmogorov-Smirnov
 - > Based on the observation that the difference between the observed CDF $F_o(x)$ and the expected CDF $F_e(x)$ should be small
- Anderson-Darling
 - More powerful in detecting differences in the tails of distributions

Fitting distributions to data in practice

- Use distribution-fitting software!
 - > ExpertFit software from Averill Law
 - > BestFit software
 - Download software and try it out on random data that you generate or data in exercises
 - · See links on class web site

15

Clustering

- Many workloads consist of multiple classes of customers/requests
- Clustering is a technique used for classifying requests into multiple groups where members of one group are as "similar" as possible
 - Intragroup variance should be as small as possible whereas intergroup variance should be as large as possible
 - > Non-hierarchical clustering: start with k clusters, move members around until intragroup variance is minimized
 - Hierarchical clustering: agglomerative and divisive
- ☐ Intro today, more details next week

Minimum spanning tree method

- Agglomerative hierarchical clustering technique
- Algorithm
 - 1. Start with k = n clusters
 - Find the centroid of the ith cluster. The centroid has parameter values equal to the average of all points in the cluster
 - 3. Compute the intercluster distance matrix (distance between centroids)
 - 4. Find the smallest nonzero element of the distance matrix. Merge the two clusters with the smallest distance and any other clusters with the same distance
 - Repeat steps 2 to 4 until all components are in the same cluster

17

Minimum spanning tree method cont'd

- Results of the clustering process can be represented as a spanning tree (a dendrogram) where each branch of the tree represents a cluster and is drawn at a height where the cluster merges with the neighboring cluster
- Given any maximum allowable intracluster distance, by drawing a horizontal line at the specified height we can obtain the desired clusters

Example

Consider a workload with five components and two parameters

Program	CPU time	Disk I/O	
Α	2	4	
В	3	5	
С	1	6	
D	4	3	
Е	5	2	

19

Example cont'd

First iteration:

	Α	В	С	D	E
Α	0	20.5	5 ^{0.5}	5 ^{0.5}	130.5
В		0	5 ^{0.5}	5 ^{0.5}	130.5
С			0	18 ^{0.5}	320.5
D				0	20.5
E					0

Minimum inter-cluster distance is between A and B, and D and E. The two pairs are merged

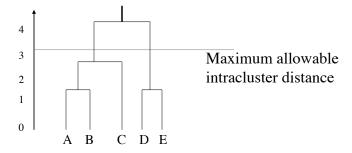
Example cont'd

- Second iteration:
 - > Centroid of AB is {(2+3)/2),(4+5/2)}, I.e. {2.5,4.5}. Similarly for DE it is {4.5,2.5}

		AB	С	DE
	AB	0	4.5 ^{0.5}	8 ^{0.5}
	С		0	24.5 ^{0.5}
> Merge AB and C	DE			0

Example cont'd

 $lue{}$ Third iteration: merge ABC and DE to get a single cluster ABCDE



Additional Reading

- ☐ Articles on workload characterization by Calzorossa and Feitelson
 - > On class web site
- More detailed discussion on clustering algorithms next week