Performance Modeling - Single Queues

CS 700

Acknowledgement

These slides are based on presentations created and copyrighted by Prof. Daniel Menasce (GMU)

Purpose of Models

- Provide a way to derive performance metrics from model parameters.
- Examples of performance metrics:
> Response time
> Throughput
> Availability
\square Types of parameters:
> Workload intensity (e.g., arrival rates)
> Service demands.

Type of Models

\square Simulation: mimic flow of transactions through a system.
> Distribution-driven
> Trace-driven
\square Analytic: set of formulas or computational algorithms.
> Exact
> Approximate

- Hybrid

When to Use?

Use Exact Analytic Models Whenever Possible.
\square Use Approximate Analytic Models:
> For first-cut analysis
> If validated by simulation
> To reduce combinations of input parameters to simulation models.
\square Use Simulation:
> If there is no tractable analytic model.

Single Queue

$$
\mathrm{T}=\mathrm{W}+\mathrm{S}
$$

Background: Stochastic Processes

- A stochastic process is a family of random variables $\{X(t) \mid t \in T\}$, defined on a given probability space, indexed by the parameter t, where t varies over the index set T
> The values assumed by the random variable $X(t)$ are called states
- If state space is discrete, then the stochastic process is a discrete-state process, often referred to as a chain, otherwise it is a continuous-state process
> If the index set is discrete, the process is called a discrete parameter process, otherwise it is a continuous parameter process

Stochastic processes cont'd

- Consider a single-server queue. We can identify several stochastic processes
> N_{k} - number of customers in the system at the time of departure of the kth customer.
- $\left\{N_{k} \mid k=1,2, \ldots\right\}$ is a discrete parameter, discrete-state process
> $X(t)$ - number of customers in the system at time \dagger
- $\{X(t) \mid 0<t<\infty\}$ is a continuous parameter, discrete state process
> W_{k} - time the kth customer has to wait to receive service
- $\left\{W_{k} \mid k=1,2, \ldots\right\}$ is a discrete parameter, continuous state process
> $Y(t)$ - cumulative service requirement of all jobs in the system at time \dagger
- $\{Y(t) \mid 0<t<\infty\}$ is a continuous parameter, continuous state process

Stochastic processes - some types

- Markov process/chain -- if the future states of a process are independent of the past and depend only on the current state, the process is called a Markov process
- Birth-death processes -- discrete state Markov processes in which transitions are restricted to neighboring states only
\square Poisson process -- if the inter-arrival times at a queue are IID (independent and identically distributed) and exponentially distributed, the arrival process is called a Poisson process
> This is because the number of arrivals over a given interval of time will have a Poisson distribution

Example of An Analytic Model: M/G/1 Queue

\square Single server.
\square Arrival process is Poisson (inter-arrival times are exponentially distributed).
\square Service time is arbitrarily distributed.

$$
T=E[S]+\frac{\lambda E\left[S^{2}\right]}{2(1-\rho)}=E[S]+\frac{\rho E[S]\left(1+C_{s}^{2}\right)}{2(1-\rho)}
$$

Where

$$
\rho=\lambda E[S]<1
$$

Little's Law

The average number of customers in a "black box" is equal to the average time spent in the box multiplied by the throughput of the box.

$$
\mathrm{N}=\mathrm{R} \times \mathrm{X}
$$

Little's Law Example I

- An NFS server was monitored during 30 min and the number of I/O operations performed during this period was found to be 32,400 . The average number of active requests $\left(N_{\text {req }}\right)$ was 9.
- What was the average response time per NFS request at the server?

Little's Law Example I

- An NFS server was monitored during 30 min and the number of I/O operations performed during this period was found to be 32,400 . The average number of active requests $\left(N_{\text {req }}\right)$ was 9.
- What was the average response time per NFS request at the server?

$$
\begin{gathered}
\text { "black box" }=N F S \text { server } \\
X_{\text {server }}=32,400 / 1,800=18 \text { requests } / \mathrm{sec} \\
R_{\text {req }}=N_{\text {req }} / X_{\text {server }}=9 / 18=0.5 \mathrm{sec}
\end{gathered}
$$

Little's Law Example II

- A large portal service offers free email service. The number of registered users is two million and 30% of them send send mail through the portal during the peak hour. Each mail takes 5.0 sec on average to be processed and delivered to the destination mailbox. During the busy period, each user sends 3.5 mail messages on average. The log file indicates that the average size of an e-mail message is 7,120 bytes.
- What should be the capacity of the spool for outgoing mails during the peak period?

Little's Law Example II

- A large portal service offers free email service. The number of registered users is two million and 30% of them send send mail through the portal during the peak hour. Each mail takes 5.0 sec on average to be processed and delivered to the destination mailbox. During the busy period, each user sends 3.5 mail messages on average. The log file indicates that the average size of an e-mail message is 7,120 bytes.
- What should be the capacity of the spool for outgoing mails during the peak period?

AvgNumberOfMails $=$ Throughput \times Response Time

$$
=(2,000,000 \times 0.30 \times 3.5 \times 5.0) / 3,600=
$$

$2,916.7$ mails

AvgSpoolFile $=2,916.7 \times 7,120$ bytes $=19.8$ MBytes

Little's Law Example III

- A Web-based brokerage company runs a three-tiered site. The site is used by 1.1 million customers. During the peak hour, 20,000 users are logged in simultaneously. The ecommerce site processes 3.6 million business functions per hour in a peak-load hour.
- What is the average response time of an e-commerce function during the peak hour?

Little's Law Example III

- A Web-based brokerage company runs a three-tiered site. The site is used by 1.1 million customers. During the peak hour, 20,000 users are logged in simultaneously. The e-commerce site processes 3.6 million business functions per hour on a peak-load hour.
- What is the average response time of an e-commerce function during the peak hour?

Black box = E-commerce site
AverageResponseTime = AvgNumberOfUsers / SiteThroughput
$=20,000 /(3,600,000 / 3,600)=$ 20 sec

Using Little's Law in the M/G/1 Queue

$$
E\left[N_{q}\right]=\frac{\rho^{2}\left(1+C_{s}^{2}\right)}{2(1-\rho)}
$$

Exercise

\square Plot the response time for $M / G / 1$ as a function of ρ for $M / M / 1, M / D / 1$, and distributions with coefficient of variation equal to _ and 2. Assume that $E[S]=0.2$. Vary λ accordingly.
\square What conclusions do you take from looking at the graphs?

M/G/1,M/M/1, and M/D/1

$\mathrm{M} / \mathrm{G} / 1: \quad W=\frac{\rho E[S]\left(1+C_{S}^{2}\right)}{2(1-\rho)}$
M/D/1: $\quad W=\frac{\rho E[S]}{2(1-\rho)}$
$\mathrm{M} / \mathrm{M} / 1: \quad W=\frac{\rho E[S]}{(1-\rho)}$

G/G/1 Queue

An Approximation for G/G/1

$$
W \approx \frac{C_{a}^{2}+\rho^{2} C_{s}^{2}}{1+\rho^{2} C_{s}^{2}} \times \frac{\rho\left(1+C_{s}^{2}\right)}{2(1-\rho) / E[S]}
$$

C_{a}^{2} : coefficient of variation of the interarrival time.

Approximation is exact for $\mathrm{M} / \mathrm{G} / 1$, good for $\mathrm{G} / \mathrm{M} / 1$, and fair for $\mathrm{G} / \mathrm{G} / 1$.
The approximation improves as ρ increases.

G/G/c Queue

An Approximation for G/G/c

$$
W \approx \frac{C(\rho, c)}{c(1-\rho) / E[S]} \times \frac{C_{a}^{2}+C_{s}^{2}}{2}
$$

where $C(\rho, c)=\frac{(c \rho)^{c} / c!}{(1-\rho) \sum_{n=0}^{c-1} \frac{(c \rho)^{n}}{n!}+\frac{(c \rho)^{c}}{c!}}$ is Erlang's C formula.
Approximation is exact for M/M/c.
The error increases with C_{a} and C_{s}.

The M/M/c Queue

$$
W=\frac{C(\rho, c)}{c(1-\rho) / E[S]}
$$

where $C(\rho, c)=\frac{(c \rho)^{c} / c!}{(1-\rho) \sum_{n=0}^{c-1} \frac{(c \rho)^{n}}{n!}+\frac{(c \rho)^{c}}{c!}}$ is Erlang's C formula.

Performance Modeling - Queuing Networks

CS 700

A Computer System as a Network of Queues

computer system

Service Demand $\left(D_{i}\right)$

Service Demand Example

Database transactions use two disks. The service times at each of the disks for each I/O carried out by a single transaction are

	Service Time (msec)	
1/0	Disk 1	Disk 2
1	12	12
2	20	15
3	15	14
4	18	-
	65	41

Queuing Basic Concepts

Total time spent by a request during the $j^{\text {th }}$ visit to a resource i :
$>$ Service time (S_{i}^{j}): period of time a request is receiving service from resource i, such as CPU or disk.
> Waiting time $\left(W_{i}^{j}\right)$: the time spent by a request waiting access to resource i

Queuing Time

Queuing time at the CPU $=\mathrm{w} 1+\mathrm{w} 2+\mathrm{w} 3$
Queuing time at the disk $=\mathrm{w} 4+\mathrm{w} 5$

Service time

Service Demand

Service demand at the CPU $=\mathrm{s} 1+\mathrm{s} 2+\mathrm{s} 3$
Service demand at the disk $=\mathrm{s} 4+\mathrm{s} 5$

Basic Queuing Concepts

Service Demand $\left(D_{i}\right)$ is the sum of all service times for a request at resource i

$$
D_{\text {scpu }}=S_{\text {scpu }}^{1}+S_{\text {scpu }}^{2}
$$

Queuing Time $\left(Q_{i}\right)$ is the sum of all waiting times for a request at resource i

$$
Q_{\text {scpu }}=W_{\text {scpu }}^{1}+W_{\text {scpu }}^{2}
$$

Residence Time

Residence time at the CPU $=\mathrm{w} 1+\mathrm{s} 1+\mathrm{w} 2+\mathrm{s} 2+\mathrm{w} 3+\mathrm{s} 3$
Residence time at the disk $=\mathrm{w} 4+\mathrm{s} 4+\mathrm{w} 5+\mathrm{s} 5$

Response Time

Response time $=$ Residence time at the CPU + Residence time at the disk

Waiting time
Service time

Basic Queuing Concepts

Residence Time (R_{i}^{\prime}) at resource i is the sum of service demand plus queuing time.

$$
R_{i}^{\prime}=Q_{i}+D_{i}
$$

Response time $\left(R_{r}\right)$ of a request r is the sum of that request's residence time at all resources.

$$
R_{\text {server }}=R_{c p u}^{\prime}+R_{\text {disk }}^{\prime}
$$

Notation

V_{i} : average number of visits to queue i by a request:
S_{i} : average service time of a request at queue i per visit to the resource;
λ_{i} average arrival rate of requests to queue i
D_{i} service demand of a request at queue i,

$$
D_{i}=V_{i} \times S_{i}
$$

More Notation

N_{i} average number of requests at queue i, waiting or receiving service from the resource
X_{i} average throughput of queue i, i.e. average number of requests that complete from queue i per unit of time
X_{0} : average system throughput, defined as the number of requests that complete per unit of time.

Basic Performance Laws

Utilization Law

The utilization $\left(U_{i}\right)$ of resource i is the fraction of time that the resource is busy.

$$
U_{i}=X_{i} * S_{i}=\lambda_{i} * S_{i}
$$

Utilization Law: example

- A network segment transmits 1,000 packets/sec. Each packet has an average transmission time equal to 0.15 msec .
\square What is the utilization of the LAN segment?

Utilization Law: example

- A network segment transmits 1,000 packets/sec. Each packet has an average transmission time equal to 0.15 msec .
\square What is the utilization of the LAN segment?

$$
U_{\text {LAN }}=X_{\text {LAN }} * S_{\text {LAN }}=1,000 * 0.00015=0.15=15 \%
$$

Basic Performance Results

Forced Flow Law

By definition of the average number of visits V_{i}, each completing request has to pass V_{i} times, on the average, by queue i. So, if X_{0} requests complete per unit of time, $V_{i}{ }^{*} X_{0}$ requests will visit queue i.

$$
x_{i}=v_{i}{ }^{*} x_{0}
$$

Forced Flow Law: example I

- Database transactions perform an average of $4.5 \mathrm{I} / \mathrm{O}$ operations on the database server. During a one-hour monitoring period, 7,200 transactions were executed.
- What is the average throughput of the disk?
- If each I/O takes 20 msec on the average, what is the disk utilization?

Forced Flow Law: example I

- Database transactions perform an average of $4.5 \mathrm{I} / \mathrm{O}$ operations on the database server. During a one-hour monitoring period, 7,200 transactions were executed.
- What is the average throughput of the disk?
- If each I/O takes 20 msec on the average, what is the disk utilization?

$$
\begin{gathered}
X_{\text {server }}=7,200 / 3,600=2 \mathrm{tps} \\
X_{\text {disk }}=V_{\text {disk }}^{*} X_{\text {server }}=4.5 * 2=9 \mathrm{tps} \\
U_{\text {disk }}=X_{\text {disk }} * S_{\text {disk }}=9 * 0.02=0.18=18 \%
\end{gathered}
$$

Basic Performance Results

Service Demand Law

The service demand D_{i} is related to the system throughput and utilization by the following:

$$
D_{i}=V_{i}^{*} S_{i}=\left(X_{i} / X_{o}\right)\left(U_{i} / X_{i}\right)=U_{i} / X_{o}
$$

Service Demand Law: example

- A Web server was monitored for 10 minutes. It was observed that the CPU was 90% busy during the monitoring period. The number of HTTP requests counted in the log was 30,000.
- What is the CPU service demand of an HTTP request?

Service Demand Law: example

- A Web server was monitored for 10 minutes. It was observed that the CPU was 90% busy during the monitoring period. The number of HTTP requests counted in the log was 30,000.
- What is the CPU service demand of an HTTP request?

$$
\begin{gathered}
U_{c p u}=90 \% \\
X_{\text {server }}=30,000 /\left(10^{\star} 60\right)=50 \text { requests } / \mathrm{sec} \\
D_{\text {cpu }}=V_{\text {cpu }}^{*} S_{\text {cpu }}=U_{\text {cpu }} / X_{\text {server }}=0.90 / 50=0.018 \\
\text { sec }
\end{gathered}
$$

An Open Queuing Model Example

Open QN Models

\square The number of requests in the system is not bounded.
\square Input parameters: arrival rate of requests and service demands.

- Output metrics: response time, queue lengths, and utilizations.

Open QN Models
 Computing Residence Times

Service demand at resource i

$$
R_{i}^{\prime}=\frac{D_{i}^{*}}{1-\underbrace{\lambda D_{i}}}
$$

Derivation of Residence Time

$R_{i}=S_{i}+S_{i} \bar{n}_{i}^{A}$
$\bar{n}_{i}^{A}=\bar{n}_{i}$ for open systems
$\bar{n}_{i}=X_{i} R_{i}$ from Little's Law
$R_{i}=S_{i}+S X_{i} R_{i}=S_{i}+U_{i} R_{i}$
$\Rightarrow R_{i}=\frac{S_{i}}{1-U_{i}}$
multiplying both sides by V_{i} :
$R_{i}^{\prime}=\frac{D_{i}}{1-U_{i}}$

Open Model Equations

$$
\begin{aligned}
U_{i} & & \lambda \times D_{i} \\
R_{i}^{\prime} & = & \frac{D_{i}}{1-U_{i}} \\
U_{i} & <1 & \text { for all } \mathrm{i}
\end{aligned}
$$

Bound on Throughput

Give an expression for the maximum throughput of a computer system as a function of the service demands $\quad D_{1, \ldots,}, D_{. K}$ (Hint: the utilization cannot exceed 100\%)

Equations for Open Multiple Class QN

 Models$$
\begin{aligned}
U_{i, r} & =\lambda \times D_{i, r} \\
U_{i} & =\sum_{r=1}^{R} U_{i, r} \\
R_{i, r}^{\prime} & =\frac{D_{i, r}}{1-U_{i}} \\
R_{O, r} & =\sum_{i=1}^{K} R_{i, r}^{\prime}
\end{aligned}
$$

A Closed Queuing Model Example

Closed QN Models

\square The number of requests in the system is constant: a completing request is immediately replaced by a new request.

- Input parameters: number of requests in the system and service demands.
\square Output metrics: throughput, response time, queue lengths, and utilizations.
\square Solution technique: Mean Value Analysis (MVA)

Closed QN Model MVA Equations

Residence Time Equation:

> my total waiting time at resource i

my total service time
avg. number of requests at resource i found upon my arrival

Closed QN Model: MVA Equations

Residence Time Equation:

$$
R_{i}^{\prime}(n)=D_{i} \times\left[1+\bar{n}_{i}(n-1)\right]
$$

Closed QN Model: MVA Equations

Throughput Equation. Using Little's Law: throughput

$$
n=X_{o}(n) \times R_{o}(n)
$$

total response time

$$
R_{o}(n)=\sum_{i=1}^{K} R_{i}^{\prime}(n)
$$

Closed QN Model: MVA Equations

Throughput Equation:

$$
X_{o}(n)=\frac{n}{R_{o}(n)}=\frac{n}{\sum_{i=1}^{K} R_{i}^{\prime}(n)}
$$

Closed QN Model: MVA Equations

Queue Length Equations. Applying Little's Law and the Forced Flow Law to the resource i.

$$
\bar{n}_{i}(n)=X_{o}(n) \times R_{i}^{\prime}(n)
$$

MVA Equations

$$
\begin{gathered}
R_{i}^{\prime}(n)=D_{i} \times\left[1+\bar{n}_{i}(n-1)\right] \\
X_{o}(n)=\frac{n}{\sum_{i=1}^{K} R_{i}^{\prime}(n)} \\
\bar{n}_{i}(n)=X_{o}(n) \times R_{i}^{\prime}(n)
\end{gathered}
$$

63

Solving the Model

$$
\begin{gathered}
R_{c p u}^{\prime}(1)=D_{c p u} \times\left[1+\bar{n}_{c p u}(0)\right]=D_{c p u} \\
R_{d i s k}^{\prime}(1)=D_{d i s k} \times\left[1+\bar{n}_{d i s k}(0)\right]=D_{d i s k} \\
X_{o}(1)=\frac{1}{R_{o}(1)}=\frac{1}{R_{c p u}^{\prime}(1)+R_{d i s k}^{\prime}(1)} \\
\bar{n}_{c p u}(1)=X_{o}(1) \times R_{c p u}^{\prime}(1) \\
\bar{n}_{d i s k}(1)=X_{o}(1) \times R_{d i s k}^{\prime}(1)
\end{gathered}
$$

Solving the Model

$$
\begin{gathered}
R_{c p u}^{\prime}(2)=D_{c p u} \times\left[1+\bar{n}_{c p u}(1)\right] \\
R_{d i s k}^{\prime}(2)=D_{d i s k} \times\left[1+\bar{n}_{d i s k}(1)\right] \\
X_{o}(2)=\frac{2}{R_{o}(2)}=\frac{2}{R_{c p u}^{\prime}(2)+R_{d i s k}^{\prime}(2)} \\
\bar{n}_{c p u}(2)=X_{o}(2) \times R_{c p u}^{\prime}(2) \\
\bar{n}_{d i s k}(2)=X_{o}(2) \times R_{d i s k}^{\prime}(2)
\end{gathered}
$$

Closed QN Example

An online transaction processing system has one CPU and one disk. Transactions use an average of 18 msec of CPU time and do 3.5 I/Os on average. Each I/O takes 8 msec on average.

1. Compute the service demands at the CPU and disk.
2. Compute the maximum throughput.
3. Plot the system response time and the throughput as function of the number of concurrent requests in execution.
4. What would you do to improve the maximum throughput by 30% ?

Open QN Example

An online transaction processing system has one CPU and one disk. Transactions use an average of 18 msec of CPU time and do 3.5 I/Os on average. Each I/O takes 8 msec on average.

1. Compute the service demands at the CPU and disk.
2. Compute the maximum throughput.
3. Plot the system response time as function of the arrival rate of requests.

Closed QN Example

An online transaction processing system has one CPU and one disk. Transactions use an average of 18 msec of CPU time and do 3.5 I/Os on average. Each I/O takes 8 msec on average.

1. Compute the service demands at the CPU and disk.
2. Compute the maximum throughput.
3. Plot the system response time and the throughput as function of the number of concurrent requests in execution.
4. What would you do to improve the maximum throughput by 30% ?

Additional Reading

- Two columns from "Programming Pearls" by Jon Bentley on "Back of the envelope" calculations
> See links on class web site

