Summarizing Measured Data - Means, Variability, Distributions

Major Properties of Numerical Data

a Central Tendency: arithmetic mean, geometric mean, harmonic mean, median, mode.
\square Variability: range, inter-quartile range, variance, standard deviation, coefficient of variation, mean absolute deviation
\square Distribution: type of distribution

Why mean values?

Desire to reduce performance to a single number
> Makes comparisons easy - Mine Apple is faster than your Cray!
> People like a measure of "typical" performance

- Leads to all sorts of crazy ways for summarizing data
> $X=f(10$ parts $A, 25$ parts $B, 13$ parts $C, \ldots)$
$>X$ then represents "typical" performance?!

The Problem

\square Performance is multidimensional
> CPU time
> I/O time
> Network time
> Interactions of various components
> Etc, etc

The Problem

\square Systems are often specialized
> Performs great on application type X
> Performs lousy on anything else
\square Potentially a wide range of execution times on one system using different benchmark programs

The Problem

\square Nevertheless, people still want a single number answer!

- How to (correctly) summarize a wide range of measurements with a single value?

Index of Central Tendency

\square Tries to capture "center" of a distribution of values

- Use this "center" to summarize overall behavior
\square Not recommended for real information, but
> You will be pressured to provide mean values
o Understand how to choose the best type for the circumstance
- Be able to detect bad results from others

Indices of Central Tendency

\square Sample mean
> Common "average"
\square Sample median
$>\frac{1}{2}$ of the values are above, $\frac{1}{2}$ below
\square Mode
> Most common

Indices of Central Tendency

-"Sample" implies that
> Values are measured from a random process on discrete random variable X
\square Value computed is only an approximation of true mean value of underlying process

- True mean value cannot actually be known
> Would require infinite number of measurements

Sample mean

- Expected value of $X=E[X]$
> "First moment" of X
> $x_{i}=$ values measured
$>p_{i}=\operatorname{Pr}\left(X=x_{i}\right)=\operatorname{Pr}\left(\right.$ we measure $\left.x_{i}\right)$

$$
E[X]=\sum_{i=1}^{n} x_{i} p_{i}
$$

Sample mean

\square Without additional information, assume
> $p_{i}=$ constant $=1 / n$
> $n=$ number of measurements
Arithmetic mean
> Common "average"

$$
\bar{x}=\frac{1}{n} \sum_{i=1}^{n} x_{i}
$$

Potential Problem with Means

- Sample mean gives equal weight to all measurements
- Outliers can have a large influence on the computed mean value
- Distorts our intuition about the central tendency of the measured values

Potential Problem with Means

Median

\square Index of central tendency with
$>\frac{1}{2}$ of the values larger, $\frac{1}{2}$ smaller
\square Sort n measurements
\square If n is odd
> Median = middle value
> Else, median = mean of two middle values

- Reduces skewing effect of outliers on the value of the index

Example

\square Measured values: $10,20,15,18,16$
\rightarrow Mean $=15.8$
> Median $=16$

- Obtain one more measurement: 200
> Mean $=46.5$
> Median $=\frac{1}{2}(16+18)=17$
Median give more intuitive sense of central tendency

Potential Problem with Means

Mode

\square Value that occurs most often

- May not exist
\square May not be unique
> E.g. "bi-modal" distribution
- Two values occur with same frequency

Mean, Median, or Mode?

- Mean
> If the sum of all values is meaningful
> Incorporates all available information
\square Median
> Intuitive sense of central tendency with outliers
, What is "typical" of a set of values?
\square Mode
> When data can be grouped into distinct types, categories (categorical data)

Mean, Median, or Mode?

- Size of messages sent on a network
\square Number of cache hits
- Execution time
- MFLOPS, MIPS
- Bandwidth
\square Speedup
\square Cos \dagger

Yet Even More Means!

- Arithmetic
- Harmonic?

Geometric?
Which one should be used when?

8

Arithmetic mean

$$
\overline{x_{A}}=\frac{1}{n} \sum_{i=1}^{n} x_{i}
$$

Harmonic mean

$$
\overline{x_{H}}=\frac{n}{\sum_{i=1}^{n} \frac{1}{x_{i}}}
$$

Geometric mean

$$
\begin{aligned}
\overline{x_{G}} & =\sqrt[n]{x_{1} x_{2} \cdots x_{i} \cdots x_{n}} \\
& =\left(\prod_{i=1}^{n} x_{i}\right)^{1 / n}
\end{aligned}
$$

Which mean to use?

- Mean value must still conform to characteristics of a good performance metric
- Linear
- Reliable
- Repeatable
- Easy to use
- Consistent
- Independent
\square Best measure of performance still is execution time

What makes a good mean?

- Time-based mean (e.g. seconds)
> Should be directly proportional to total weighted time
> If time doubles, mean value should double
Rate-based mean (e.g. operations/sec)
> Should be inversely proportional to total weighted time
> If time doubles, mean value should reduce by half
\square Which means satisfy these criteria?

Assumptions

\square Measured execution times of n benchmark programs
> $T_{i}, i=1,2, \ldots, n$
\square Total work performed by each benchmark is constant
> F = \# operations performed
> Relax this assumption later
\square Execution rate $=M_{i}=F / T_{i}$

Arithmetic mean for times

- Produces a mean value that is directly proportional to total time
\rightarrow Correct mean to

$$
\overline{T_{A}}=\frac{1}{n} \sum_{i=1}^{n} T_{i}
$$

summarize execution
time

Arithmetic mean for rates

- Produces a mean value that is proportional to sum of inverse of times
- But we want inversely proportional to sum of times

$$
\begin{aligned}
\overline{M_{A}} & =\frac{1}{n} \sum_{i=1}^{n} M_{i} \\
& =\sum_{i=1}^{n} \frac{F / T_{i}}{n} \\
& =\frac{F}{n} \sum_{i=1}^{n} \frac{1}{T_{i}}
\end{aligned}
$$

Arithmetic mean for rates

- Produces a mean value that is proportional to sum of inverse of times
- But we want inversely proportional to sum of times
\rightarrow Arithmetic mean is not appropriate for summarizing rates

Harmonic mean for times

- Not directly
proportional to sum of times

$$
\overline{T_{H}}=\frac{n}{\sum_{i=1}^{n} \frac{1}{T_{i}}}
$$

Harmonic mean for times

a Not directly proportional to sum of times
\rightarrow Harmonic mean is not appropriate for summarizing times

Harmonic mean for rates

\square Produces
(total number of ops)
\div (sum execution times)
\square Inversely proportional to total execution time
\rightarrow Harmonic mean is appropriate to summarize rates

$$
\begin{aligned}
\overline{M_{H}} & =\frac{n}{\sum_{i=1}^{n} \frac{1}{M_{i}}} \\
& =\frac{n}{\sum_{i=1}^{n} \frac{T_{i}}{F}} \\
& =\frac{F n}{\sum_{i=1}^{n} T_{i}}
\end{aligned}
$$

Harmonic mean for rates

Sec	$\begin{gathered} 10^{9} \\ \text { FLOPs } \end{gathered}$	MFLOPS	
321	130	405	$\begin{aligned} \overline{M_{H}} & =\frac{5}{\left(\frac{1}{405}+\frac{1}{367}+\frac{1}{405}+\frac{1}{419}+\frac{1}{388}\right)} \\ & =396 \\ \overline{M_{H}} & =\frac{844 \times 10^{9}}{2124}=396 \end{aligned}$
436	160	367	
284	115	405	
601	252	419	
482	187	388	

Geometric mean

- Claim: Correct mean for averaging normalized values
> Used to compute SPECmark
-Claim: Good when averaging measurements with wide range of values
Maintains consistent relationships when comparing normalized values
> Independent of basis used to normalize

Geometric mean with times

	System 1	System 2	System 3
	417	244	134
	83	70	70
	66	153	135
	39,449	33,527	66,000
Geo mean	772	368	369
Rank	587	503	499

Geometric mean normalized to System 1			
	System 1	System 2	System 3
	1.0	0.59	0.32
	1.0	0.84	0.85
	1.0	2.32	2.05
	1.0	0.85	1.67
Geo mean	1.0	0.48	0.45
Rank	1.0	0.86	0.84

Geometric mean normalized to System 2

	System 1	System 2	System 3
	1.71	1.0	0.55
	1.19	1.0	1.0
	0.43	1.0	0.88
	1.18	1.0	1.97
	2.10	1.0	1.0
Geo mean	1.17	1.0	0.99
Rank	3	2	1

Total execution times

	System 1	System 2	System 3
	417	244	134
	83	70	70
	66	153	135
	39,449	33,527	66,000
Total	772	368	369
Arith mean	40,787	34,362	66,798
Rank	8157	6872	13,342

What's going on here?!

	System 1	System 2	System 3
Geo mean wrt 1	1.0	0.86	0.84
Rank	3	2	1
Geo mean wrt 2	1.17	1.0	0.99
Rank	3	2	1
			13,342
Arith mean	8157	6872	3
Rank	2	1	

Geometric mean for times

a Not directly proportional to sum of times

$$
\overline{T_{G}}=\left(\prod_{i=1}^{n} T_{i}\right)^{1 / n}
$$

Geometric mean for times

- Not directly proportional to sum of times
\rightarrow Geometric mean is not appropriate for summarizing times

Geometric mean for rates

- Not inversely proportional to sum of times

$$
\begin{aligned}
\overline{T_{G}} & =\left(\prod_{i=1}^{n} M_{i}\right)^{1 / n} \\
& =\left(\prod_{i=1}^{n} \frac{F}{T_{i}}\right)^{1 / n}
\end{aligned}
$$

Geometric mean for rates

- Not inversely proportional to sum of times
\rightarrow Geometric mean is not appropriate for summarizing rates

Geometric mean

\square Does provide consistent rankings
> Independent of basis for normalization

- But can be consistently wrong!
\square Value can be computed
> But has no physical meaning

Other uses of Geometric Mean

- Used when the product of the observations is of interest.
- Important when multiplicative effects are at play:
> Cache hit ratios at several levels of cache
> Percentage performance improvements between successive versions.
> Performance improvements across protocol layers.

Example of Geometric Mean

	Performance Improvement			
Test Number	Operating System	Middleware	Application	Avg. Performance Improvement per Layer
1	1.18	1.23	1.10	1.17
2	1.25	1.19	1.25	1.23
3	1.20	1.12	1.20	1.17
4	1.21	1.18	1.12	1.17
5	1.30	1.23	1.15	1.23
6	1.24	1.17	1.21	1.21
7	1.22	1.18	1.14	1.18
8	1.29	1.19	1.13	1.20
9	1.30	1.21	1.15	1.22
10	1.22	1.15	1.18	1.18
Averag	ge Performance	Improvemen	t per Layer	1.20

Summary of Means

\square Avoid means if possible
> Loses information
\square Arithmetic
> When sum of raw values has physical meaning
> Use for summarizing times (not rates)

- Harmonic
> Use for summarizing rates (not times)
\square Geometric mean
> Not useful when time is best measure of perf
> Useful when multiplicative effects are in play

Normalization

\square Averaging normalized values doesn' \dagger make sense mathematically
> Gives a number
> But the number has no physical meaning
\square First compute the mean
> Then normalize

Weighted means

$$
\begin{array}{ll}
\sum_{i=1}^{n} w_{i}=1 & \begin{array}{l}
\text { Standard definition of } \\
\text { mean assumes all } \\
\text { measurements are } \\
\text { equally important }
\end{array} \\
\bar{x}_{A}=\sum_{i=1}^{n} w_{i} x_{i} & \begin{array}{l}
\text { Instead, choose } \\
\text { weights to represent } \\
\text { relative importance of } \\
\text { measurement } i
\end{array} \\
\bar{x}_{H}=\frac{1}{\sum_{i=1}^{n} \frac{w_{i}}{x_{i}}} &
\end{array}
$$

Summarizing Variability

Quantifying variability

- Means hide information about variability - How "spread out" are the values?
- How much spread relative to the mean?
\square What is the shape of the distribution of values?

Quantifying variability

\square Indices of dispersion
> Range
> Variance or standard deviation
> 10- and 90-percentiles
> Semi-interquartile range
> Mean absolute deviation

Histograms

\square Similar mean values

- Widely different distributions
- How to capture this variability in one number?

Index of Dispersion

- Quantifies how "spread out" measurements are
\square Range
$>$ (max value) - (min value)
\square Maximum distance from the mean
$>$ Max of $\mid x_{i}$-mean \mid
\square Neither efficiently incorporates all available information

Sample Variance

- Second moment of random variable X
$s^{2}=\frac{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}}{n-1}$
$=\frac{n \sum_{i=1}^{n} x_{i}^{2}-\left(\sum_{i=1}^{n} x_{i}\right)^{2}}{n(n-1)}$

Second form good for calculating "on-thefly"
> One pass through data
$\square(n-1)$ degrees of freedom

Sample Variance

-Gives "units-squared"

- Hard to compare to mean
\square Use standard deviation, s
$>s=$ square root of variance
> Units = same as mean

Coefficient of Variation (COV)

- Dimensionless
- Compares relative size of variation to mean
COV $=\frac{s}{\bar{x}}$ value
- Not meaningful for distributions with negative or zero mean

Quantiles (quartiles, percentiles) and midhinge

- Quartiles: split the data into quarters.
- First quartile (Q1): value of Xi such that 25% of the observations are smaller than Xi .
> Second quartile (Q2): value of Xi such that 50% of the observations are smaller than Xi.
> Third quartile (Q3): value of Xi such that 75% of the observations are smaller than Xi .
\square Percentiles: split the data into hundredths.
\square Midhinge:

$$
\text { Midhinge }=\frac{Q_{3}+Q_{1}}{2}
$$

Example of Percentile

| 1.05 |
| ---: | ---: |
| 1.06 |
| 1.09 |
| 1.19 |
| 1.21 |
| 1.28 |
| 1.34 |
| 1.34 |
| 1.77 |
| 1.80 |
| 1.83 |
| 2.15 |
| 2.21 |
| 2.27 |
| 2.61 |
| 2.67 |
| 2.77 |
| 2.83 |
| 3.51 |
| 3.77 |
| 5.76 |
| 5.78 |
| 32.07 |
| 144.91 |

\section*{| 80 -percentile | 3.613002 |
| :--- | :--- |}

1.06
.19
.21
1.28
1.34

In Excel:
p-th percentile=PERCENTILE $(<$ array $>$,p $)$ ($0 \leq \mathrm{p} \leq 1$)

Interquartile Range

- Interquartile Range: $Q_{3}-Q_{1}$
> not affected by extreme values.
\square Semi-Interquartile Range (SIQR)

$$
S I Q R=\left(Q_{3}-Q_{1}\right) / 2
$$

\square If the distribution is highly skewed, SIQR is preferred to the standard deviation for the same reason that median is preferred to mean

Coefficient of Skewness

\square Coefficient of skewness: $\frac{1}{n s^{3}} \sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{3}$

	$(\mathrm{X}-\mathrm{Xi})^{\wedge} 3$
1.05	-606.1
1.06	-602.9
1.09	-596.1
1.19	-575.2
1.21	-571.8
1.28	-557.9
1.34	-546.4
1.34	-544.8
1.77	-464.5
1.80	-458.1
1.83	-453.1
2.15	-398.9
2.21	-388.8
2.27	-379.0
2.61	-328.5
2.67	-320.5
2.77	-306.6
2.83	-298.7
3.51	-215.9
3.77	-189.6
5.76	-52.9
5.78	-52.1
32.07	11476.6
144.91	2482007.1

Mean Absolute Deviation

- Mean absolute deviation: $\frac{1}{n} \sum_{i=1}^{n}\left|X_{i}-\bar{X}\right|$

	abs(Xi-Xbar)
1.05	8.46
1.06	8.45
1.09	8.42
1.19	8.32
1.21	8.30
1.28	8.23
1.34	8.18
1.34	8.17
1.77	7.74
1.80	7.71
1.83	7.68
2.15	7.36
2.21	7.30
2.27	7.24
2.61	6.90
2.67	6.84
2.77	6.74
2.83	6.68
3.51	6.00
3.77	5.74
5.76	3.75
5.78	3.73
32.07	22.56
144.91	135.39
	315.90

Average	9.51
Mean absolute deviation	13.16

Shapes of Distributions

Right-skewed distribution

Symmetric distribution

mode median

Left-skewed distribution

Selecting the index of dispersion

Numerical data
> If the distribution is bounded, use the range
> For unbounded distributions that are unimodal and symmetric, use C.O.V.
> O/w use percentiles or SIQR

Box-and-Whisker Plot

Graphical representation of data through a five-number summary.

I/OTime (msec)
8.04
9.96
5.68
6.95
8.81
10.84
4.26
4.82
8.33
7.58
7.24
7.46
8.84
5.73
6.77
7.11
8.15
5.39
6.42
7.81
12.74
6.08

Five-number Summary	
Minimum	4.26
First Quartile	6.08
Median	7.35
Third Quartile	8.33
Maximum	12.74

Determining Distributions

Determining the Distributions of a Data Set

\square A measured data set can be summarized by stating its average and variability

- If we can say something about the distribution of the data, that would provide all the information about the data
> Distribution information is required if the summarized mean and variability have to be used in simulations or analytical models
\square To determine the distribution of a data set, we compare the data set to a theoretical distribution
> Heuristic techniques (Graphical/Visual): Histograms, Q-Q plots
> Statistical goodness-of-fit tests: Chi-square test, Kolmogrov-Smirnov test
- Will discuss this topic in detail later this semester

Comparing Data Sets

- Problem: given two data sets D1 and D2 determine if the data points come from the same distribution.
- Simple approach: draw a histogram for each data set and visually compare them.
- To study relationships between two variables use a scatter plot.
- To compare two distributions use a quantilequantile (Q-Q) plot.

Histogram

- Divide the range (max value - min value) into equalsized cells or bins.
- Count the number of data points that fall in each cell.
\square Plot on the y-axis the relative frequency, i.e., number of point in each cell divided by the total number of points and the cells on the x-axis.
- Cell size is critical!
> Sturge's rule of thumb
Given n data points, number of bins $k=\left\lfloor 1+\log _{2} n\right\rfloor$

Histogram

Data
-3.0
0.8
1.2
1.5
2.0
2.3
2.4
3.3
3.5
4.0
4.5
5.5

Bin	Frequency	Relative Frequency
$<=0$	1	8.3%
$0<x<=1$	1	8.3%
$1<x<=2$	3	25.0%
$2<x<=3$	2	16.7%
$3<x<=4$	3	25.0%
$4<x<=5$	1	8.3%
>5	1	8.3%

In Excel:
Tools -> Data Analysis -> Histogram

Histogram

Scatter Plot

-Plot a data set against each other to visualize potential relationships between the data sets.

- Example: CPU time vs. I/O Time
-In Excel: XY (Scatter) Chart Type.

Plots Based on Quantiles

- Consider an ordered data set with n values x_{1}, \ldots, x_{n}.
\square If $p=(i-0.5) / n$ for $i \leq n$, then the p quantile $Q(p)$ of the data set is defined as $Q(p)=Q([i-0.5] / n)=x_{i}$
$\square Q(p)$ for other values of p is computed by linear interpolation.
\square A quantile plot is a plot of $\mathrm{Q}(p)$ vs. p.

Quantile-Quantile (Q-Q plots)

\square Used to compare distributions.
\square "Equal shape" is equivalent to "linearly related quantile functions."
$\square A$ Q-Q plot is a plot of the type $\left(Q_{1}(p), Q_{2}(p)\right.$) where $Q_{1}(p)$ is the quantile function of data set 1 and $Q_{2}(p)$ is the quantile function of data set 2 . The values of p are $(i-0.5) / n$ where n is the size of the smaller data set.

Q-QPlot Example

i	$p=(i-0.5) / n$	Data 1	Data 2
1	0.033	0.2861	0.5640
2	0.100	0.3056	0.8657
3	0.167	0.5315	0.9120
4	0.233	0.5465	1.0539
5	0.300	0.5584	1.1729
6	0.367	0.7613	1.2753
7	0.433	0.8251	1.3033
8	0.500	0.9014	1.3102
9	0.567	0.9740	1.6678
10	0.633	1.0436	1.7126
11	0.700	1.1250	1.9289
12	0.767	1.1437	1.9495
13	0.833	1.4778	2.1845
14	0.900	1.8377	2.3623
15	0.967	2.1074	2.6104

A Q-Q plot that is reasonably linear indicates that the two data sets have distributions with similar shapes.

Theoretical Q-Q Plot

- Compare one empirical data set with a theoretical distribution.
$\square \operatorname{Plot}\left(x_{i}, \mathrm{Q}_{2}([i-0.5] / n)\right)$ where x_{i} is the [$i-0.5] / n$ quantile of a theoretical distribution $\left(\mathrm{F}^{-1}([i-0.5] / n)\right.$) and $\mathrm{Q}_{2}([i-$ $0.5] / n$) is the i-th ordered data point.
\square If the Q-Q plot is reasonably linear the data set is distributed as the theoretical distribution.

Examples of CDFs and Their Inverse

Functions

Exponential

$$
F(x)=1-e^{-x / a}
$$

$$
-a \operatorname{Ln}(1-u)
$$

Pareto

$$
F(x)=1-x^{-a}
$$

$$
\frac{1}{(1-u)^{1 / a}}
$$

Geometric

$$
F(x)=1-(1-p)^{x} \quad\left\lceil\frac{\operatorname{Ln}(u)}{\operatorname{Ln}(1-p)}\right\rceil
$$

Example of a Quantile-Quantile

 Plot- One thousand values are suspected of coming from an exponential distribution (see histogram in the next slide). The quantile-quantile plot is pretty much linear, which confirms the conjecture.

Data for Quantile-Quantile Plot

$\mathbf{q i}$	$\mathbf{y i}$	$\mathbf{x i}$
0.100	0.22	0.21
0.200	0.49	0.45
0.300	0.74	0.71
0.400	1.03	1.02
0.500	1.41	1.39
0.600	1.84	1.83
0.700	2.49	2.41
0.800	3.26	3.22
0.900	4.31	4.61
0.930	4.98	5.32
0.950	5.49	5.99
0.970	6.53	7.01
0.980	7.84	7.82
0.985	8.12	8.40
0.990	8.82	9.21
1.000	17.91	18.42

What if the Inverse of the CDF Cannot be Found?

- Use approximations or use statistical tables
> Quantile tables have been computed and published for many important distributions
\square For example, approximation for $N(0,1)$:

$$
x_{i}=4.91\left[q_{i}^{0.14}-\left(1-q_{i}\right)^{0.14}\right]
$$

\square For $N(\mu, \sigma)$ the x_{i} values are scaled as $\mu+\sigma x_{i}$ before plotting.

