

Topics

- Use of Statistics
- □ Sources of errors
- □ Accuracy, precision, resolution
- □ A mathematical model of errors
- Confidence intervals
 - > For means
 - For variances
 - > For proportions
- How many measurements are needed for desired error?

Error	Measured value	Probability
-E	<i>x</i> -E	<u>1</u> 2
+E	<i>x</i> + E	<u>1</u> 2

Error 1	Error 2	Measured value	Probability	
-E	-Е	<i>x</i> - 2E	1 <u>4</u>	
-E	+E	x	$\frac{1}{4}$	
+E	-E	×	1 4	
+E	+E	<i>x</i> + 2E	<u>1</u> 4	

	Sample siz	e=	15	_	1.7%	of populatio	n
	Sample 1	Sample 2	Sample 3				
	0.0739	0.0202	0.2918				
	0.1407						
	0.1257						
	0.0432						
	0.1784						
	0.4106						
	0.1514						
	0.4542						
	0.0485						
	0.1705						
	0.3335						
	0.1772						
	0.0242						
	0.2183 0.0274			E[sample]	Dopulation	Error	
Sample	0.0274	0.4079	0.1142	E[sample]	Population	EIIU	1
Average	0.1718	0.2467	0.3744	0.2643	0.2083	26.9%	
Sample Variance	0.0180	0.0534	0.1204	0.0639	0.0440	45.3%	
Efficiency							
(average)	18%	18%	80%				
Efficiency (variance)	59%	21%	173%				
(variance)	59%	21%	173%				

	Sample siz	:e =	87		10%	of pop	ulatio	n
	Sample 1	Sample 2	Sample 3					
	0.5725	0.3864	0.4627					
	0.0701	0.0488	0.2317					
	0.2165							
	0.6581							
	0.0440							
	0.1777							
	0.2380	0.1923	0.6581					
	-	-						
	0.0102						_	
	0.0102 0.4325				Population	% Rel. E	Error	
Sample Average		0.0445	0.2959	0.2206	Population 0.2083		Error 5.9%	
Average Sample	0.4325 0.2239	0.0445 0.2203	0.2959	0.2206	0.2083		5.9%	
Average Sample Variance	0.4325 0.2239	0.0445	0.2959		0.2083			
Average Sample	0.4325 0.2239	0.0445 0.2203 0.0484057	0.2959 0.2178 0.0440444	0.2206	0.2083		5.9%	

<u>Confidence Interval - large (n>30) samples</u>

• 100 $(1-\alpha)$ % confidence interval for the population mean:

$$(\overline{x} - z_{1-\alpha/2} \frac{S}{\sqrt{n}}, \overline{x} + z_{1-\alpha/2} \frac{S}{\sqrt{n}})$$

 \overline{x} : sample mean s: sample standard deviation n: sample size $z_{1-\alpha/2}$: (1- $\alpha/2$)-quantile of a unit normal variate (N(0,1)).

	0.4325	0.0445	0.2959		Population	
Sample						
Average	0.2239	0.2203	0.2178	0.2206	0.2083	
Sample						
Variance	0.0452688	0.0484057	0.0440444	0.0459	0.0440	
Efficiency						
(average)	7.5%	5.7%	4.5%			
Efficiency						
(variance)	2.9%	10.0%	0.1%		In Exc	el:
95%					1/ into	ruol = CONFIDENCE(1, 0, 05, o, p)
interval					72 IIIte	rval = CONFIDENCE(1-0.95,s,n)
lower	0.1792	0.1740	0.1737			
95%						
interval						I
upper	0.2686	0.2665	0.2619	0.0894	*	α
Mean in					\sim	
interval	YES	YES	YES			
99%					\backslash	
interval					· · ·	\backslash
lower	0.1651	0.1595	0.1598		l I	
99% interval					4	_ interval size
upper	0.0000	0.0040	0.2757		·	/
Mean in	0.2826	0.2810	0.2757	0.1175		
interval	YES	YES	YES		/	
90%	159	IEO	TEO			Note that the higher the
interval						aanfidanaa layal
lower	0.1864	0.1815	0.1807			confidence level
90%	0.1004	0.1615	0.1807		∣ ∡	the larger the interval
interval					-	the larger the interval
upper	0.2614	0.2591	0.2548	0.0750		
Mean in	0.2014	0.2001	0.2340	0.0750	I	
interval	YES	YES	YES			
	163	163	169			31

35

<u>Confidence Interval (small samples, normally</u> <u>distributed population)</u>

• 100 $(1-\alpha)$ % confidence interval for the population mean:

$$(\overline{x} - t_{[1-\alpha/2;n-1]}\frac{S}{\sqrt{n}}, \overline{x} + t_{[1-\alpha/2;n-1]}\frac{S}{\sqrt{n}})$$

 \overline{x} : sample mean

s: sample standard deviation

n: sample size

 $t_{[1-\alpha/2;n-1]}$: critical value of the *t* distribution with *n*-1 degrees of freedom for an area of $\alpha/2$ for the upper tail.

How many measurements?

$$n = \left(\frac{z_{1-\alpha/2}s}{\overline{x}e}\right)^2 = \left(\frac{1.895(2.14)}{0.035(7.94)}\right) = 212.9$$

213 measurements

 \rightarrow 90% chance true mean is within ± 3.5% interval

Number of measurements for proportions

$$(1-e)\overline{p} = \overline{p} - z_{1-\alpha/2} \sqrt{\frac{\overline{p}(1-\overline{p})}{n}}$$

$$e\overline{p} = z_{1-\alpha/2} \sqrt{\frac{\overline{p}(1-\overline{p})}{n}}$$

$$n = \frac{z_{1-\alpha/2}^2 \overline{p}(1-\overline{p})}{(e\overline{p})^2}$$

If the underlying distribution of the data being measured is not normal, then the data must be *normalized*

- Find the arithmetic mean of four or more randomly selected measurements
- > Find confidence intervals for the means of these average values
 - We can no longer obtain a confidence interval for the individual values
 - Variance for the aggregated events tends to be smaller than the variance of the individual events

