Computing Confidence Intervals for

 Sample Data
Topics

- Use of Statistics
- Sources of errors
- Accuracy, precision, resolution
- A mathematical model of errors
- Confidence intervals
> For means
- For variances
> For proportions
- How many measurements are needed for desired error?

What are statistics?

- "A branch of mathematics dealing with the collection, analysis, interpretation, and presentation of masses of numerical data."
Merriam-Webster
\rightarrow We are most interested in analysis and interpretation here.
- "Lies, damn lies, and statistics!"

What is a statistic?

- "A quantity that is computed from a sample [of data]."

Merriam-Webster

- An estimate of a population parameter

Why do we need statistics?

- A set of experimental measurements constitute a sample of the underlying process/system being measured
> Use statistical techniques to infer the true value of the metric
- Use statistical techniques to quantify the amount of imprecision due to random experimental errors

Experimental errors

\square Errors \rightarrow noise in measured values

- Systematic errors
> Result of an experimental "mistake"
> Typically produce constant or slowly varying bias
\square Controlled through skill of experimenter - Examples
> Temperature change causes clock drift
> Forget to clear cache before timing run

Experimental errors

- Random errors
> Unpredictable, non-deterministic
> Unbiased \rightarrow equal probability of increasing or decreasing measured value
\square Result of
> Limitations of measuring tool
> Observer reading output of tool
> Random processes within system
\square Typically cannot be controlled
> Use statistical tools to characterize and quantify

Quantization error

- Timer resolution
\rightarrow quantization error
\square Repeated measurements
$X \pm \Delta$
Completely unpredictable

A Model of Errors

Error	Measured value	Probability
-E	$x-\mathrm{E}$	$\frac{1}{2}$
+E	$x+\mathrm{E}$	$\frac{1}{2}$

A Model of Errors

Error 1	Error 2	Measured value	Probability
-E	-E	$x-2 \mathrm{E}$	$\frac{1}{4}$
-E	+E	x	$\frac{1}{4}$
+E	-E	x	$\frac{1}{4}$
+E	+E	$x+2 \mathrm{E}$	$\frac{1}{4}$

A Model of Errors

Probability

Probability of Obtaining a Specific

 Measured Value

Final possible measurements \qquad

A Model of Errors
$\square \operatorname{Pr}\left(X=x_{i}\right)=\operatorname{Pr}\left(\right.$ measure $\left.x_{i}\right)$
$=$ number of paths from real value to x_{i}
$\square \operatorname{Pr}\left(\mathrm{X}=x_{i}\right) \sim$ binomial distribution
\square As number of error sources becomes large
$>n \rightarrow \infty$,
> Binomial \rightarrow Gaussian (Normal)
\square Thus, the bell curve

Frequency of Measuring Specific Values

Accuracy, Precision, Resolution

\square Systematic errors \rightarrow accuracy

- How close mean of measured values is to true value
\square Random errors \rightarrow precision
> Repeatability of measurements
\square Characteristics of tools \rightarrow resolution
> Smallest increment between measured values

Quantifying Accuracy, Precision, Resolution

- Accuracy
> Hard to determine true accuracy
> Relative to a predefined standard - E.g. definition of a "second"
\square Resolution
> Dependent on tools
\square Precision
> Quantify amount of imprecision using statistical tools

Confidence Interval for the Mean

Statistical Inference

population

Why do we need statistics?

- A set of experimental measurements constitute a sample of the underlying process/system being measured
> Use statistical techniques to infer the true value of the metric
- Use statistical techniques to quantify the amount of imprecision due to random experimental errors
> Assumption: random errors normally distributed

Interval Estimate

The interval estimate of the population parameter will have a specified confidence or probability of correctly estimating the population parameter.

Properties of Point Estimators

In statistics, point estimation involves the use of sample data to calculate a single value which is to serve as a "best guess" for an unknown (fixed or random) population parameter.

- Example of point estimator: sample mean.
- Properties:
> Unbiasedness: the expected value of all possible sample statistics (of given size n) is equal to the population parameter.

$$
\begin{aligned}
& E[\bar{X}]=\mu \\
& E\left[s^{2}\right]=\sigma^{2}
\end{aligned}
$$

> Efficiency: precision as estimator of the population parameter.

- Consistency: as the sample size increases the sample statistic becomes a better estimator of the population parameter.

Unbiasedness of the Mean

$$
\begin{gathered}
\bar{X}=\frac{\sum_{i=1}^{n} X_{i}}{n} \\
E[\bar{X}]=\frac{E\left[\sum_{i=1}^{n} X_{i}\right]}{n}=\frac{\sum_{i=1}^{n} E\left[X_{i}\right]}{n}= \\
\frac{\sum_{i=1}^{n} \mu}{n}=\frac{n \mu}{n}=\mu
\end{gathered}
$$

	Sample size=		15	E[sample]	1.7\%	of population	
	Sample 1	Sample 2	Sample 3				
	0.0739	0.0202	0.2918				
	0.1407	0.1089	0.4696				
	0.1257	0.0242	0.8644				
	0.0432	0.4253	0.1494				
	0.1784	0.1584	0.4242				
	0.4106	0.8948	0.0051				
	0.1514	0.0352	1.1706				
	0.4542	0.1752	0.0084				
	0.0485	0.3287	0.0600				
	0.1705	0.1697	0.7820				
	0.3335	0.0920	0.4985				
	0.1772	0.1488	0.0988				
	0.0242	0.2486	0.4896				
	0.2183	0.4627	0.1892				
	0.0274	0.4079	0.1142				
Sample Average	0.1718	0.2467	0.3744	0.2643	0.2083	26.9\%	
Sample Variance	0.0180	0.0534	0.1204	0.0639	0.0440	45.3\%	
Efficiency (average)	18\%	18\%	80\%				
Efficiency (variance)	59\%	21\%	173\%				
							25

	$\begin{aligned} & 0.0102 \\ & 0.4325 \end{aligned}$	$\begin{aligned} & 0.9460 \\ & 0.0445 \end{aligned}$	$\begin{aligned} & 0.0714 \\ & 0.2959 \end{aligned}$		Population	\% Rel. Error
Sample Average	0.2239	0.2203	0.2178	0.2206	0.2083	5.9\%
Sample Variance	0.0452688	0.0484057	0.0440444	0.0459	0.0440	4.3\%
Efficiency (average)	7.5\%	5.7\%	4.5\%			
Efficiency (variance)	2.9\%	10.0\%	0.1\%			

Confidence Interval Estimation of the Mean

\square Known population standard deviation.
\square Unknown population standard deviation:
> Large samples: sample standard deviation is a good estimate for population standard deviation. OK to use normal distribution.
> Small samples and original variable is normally distributed: use t distribution with $n-1$ degrees of freedom.

Central Limit Theorem

- If the observations in a sample are independent and come from the same population that has mean μ and standard deviation σ then the sample mean for large samples has a normal distribution with mean μ and standard deviation σ / \sqrt{n}

$$
\bar{x} \sim N(\mu, \sigma / \sqrt{n})
$$

- The standard deviation of the sample mean is called the standard error.

Confidence Interval - large ($n>30$) samples

- $100(1-\alpha) \%$ confidence interval for the population mean:

$$
\left(\bar{x}-z_{1-\alpha / 2} \frac{S}{\sqrt{n}}, \bar{x}+z_{1-\alpha / 2} \frac{S}{\sqrt{n}}\right)
$$

\bar{x} : sample mean
s : sample standard deviation
n : sample size
$z_{1-\alpha / 2}:(1-\alpha / 2)$-quantile of a unit normal variate ($\mathrm{N}(0,1)$).

Confidence Interval Estimation of the Mean

- Known population standard deviation.
- Unknown population standard deviation:
> Large samples: sample standard deviation is a good estimate for population standard deviation. OK to use normal distribution.
> Small samples and original variable is normally distributed: use t distribution with $n-1$ degrees of freedom.

Student's † distribution

$t(v) \sim \frac{N(0,1)}{\sqrt{\chi^{2}(v) / v}} \quad \begin{aligned} & v: \text { number of degrees of freedom. } \\ & \chi^{2}(v) \begin{array}{l}: \text { chi-square distribution with } \\ v \text { degrees of freedom. Equal to } \\ \text { the sum of squares of } v \text { unit } \\ \text { normal variates. }\end{array}\end{aligned}$

- the pdf of a t-variate is similar to that of a $\mathrm{N}(0,1)$.
- for $v>30$ a t distribution can be approximated by $\mathrm{N}(0,1)$.

Confidence Interval (small samples)

- For samples from a normal distribution $N\left(\mu, \sigma^{2}\right)$, $(\bar{X}-\mu) /(\sigma / \sqrt{n})$ has a $\mathrm{N}(0,1)$ distribution and $(n-1) s^{2} / \sigma^{2}$ has a chi-square distribution with $n-1$ degrees of freedom
\square Thus, $(\bar{X}-\mu) / \sqrt{s^{2} / n}$ has a \dagger distribution with $n-1$ degrees of freedom

Confidence Interval (small samples, normally distributed population)

- $100(1-\alpha) \%$ confidence interval for the population mean:

$$
\left(\bar{x}-t_{[1-\alpha / 2 ; n-1]} \frac{s}{\sqrt{n}}, \bar{x}+t_{[1-\alpha / 2 ; n-1]} \frac{S}{\sqrt{n}}\right)
$$

\bar{x} : sample mean
s : sample standard deviation
n : sample size
$t_{[1-\alpha / 2 ; n-1]}$: critical value of the t distribution with $n-1$ degrees of freedom for an area of $\alpha / 2$ for the upper tail.

How many measurements do we need

 for a desired interval width?- Width of interval inversely proportional to $\sqrt{ } n$
- Want to minimize number of measurements
\square Find confidence interval for mean, such that:
> $\operatorname{Pr}($ actual mean in interval $)=(1-\alpha)$

$$
\left(c_{1}, c_{2}\right)=[(1-e) \bar{x},(1+e) \bar{x}]
$$

How many measurements?

$$
\begin{aligned}
\left(c_{1}, c_{2}\right) & =(1 \mp e) \bar{x} \\
& =\bar{x} \mp z_{1-\alpha / 2} \frac{s}{\sqrt{n}} \\
z_{1-\alpha / 2} \frac{s}{\sqrt{n}} & =\bar{x} e \\
n & =\left(\frac{z_{1-\alpha / 2} s}{\bar{x} e}\right)^{2}
\end{aligned}
$$

How many measurements?

\square But n depends on knowing mean and standard deviation!

- Estimate s with small number of measurements
\square Use this s to find n needed for desired interval width

How many measurements?

\square Mean $=7.94 \mathrm{~s}$
\square Standard deviation $=2.14 \mathrm{~s}$

- Want 90% confidence mean is within 7% of actual mean.

How many measurements?

- Mean $=7.94 \mathrm{~s}$
\square Standard deviation $=2.14 \mathrm{~s}$
- Want 90% confidence mean is within 7% of actual mean.
- $\alpha=0.90$
$\square(1-\alpha / 2)=0.95$
- Error $= \pm 3.5 \%$
$\square e=0.035$

How many measurements?

$$
n=\left(\frac{z_{1-\alpha / 2} s}{\bar{x} e}\right)^{2}=\left(\frac{1.895(2.14)}{0.035(7.94)}\right)=212.9
$$

- 213 measurements
$\rightarrow 90 \%$ chance true mean is within $\pm 3.5 \%$ interval

Confidence Interval Estimates for Proportions

Confidence Interval for Proportions

\square For categorical data:
> E.g. file types
\{html, html, gif, jpg, html, pdf, ps, html, pdf ...\}
> If n_{1} of n observations are of type html, then the sample proportion of $h t m l$ files is $p=n_{1} / n$.
\square The population proportion is π.
\square Goal: provide confidence interval for the population proportion π.

Confidence Interval for Proportions

\square The sampling distribution of the proportion formed by computing p from all possible samples of size n from a population of size N with replacement tends to a normal with mean π and standard error $\sigma_{p}=\sqrt{\frac{\pi(1-\pi)}{n}}$.

- The normal distribution is being used to approximate the binomial. So, $n \pi \geq 10$

Confidence Interval for Proportions

The $(1-\alpha) \%$ confidence interval for π is

$$
\left(p-z_{1-\alpha / 2} \sqrt{\frac{p(1-p)}{n}}, p+z_{1-\alpha / 2} \sqrt{\frac{p(1-p)}{n}}\right)
$$

p : sample proportion.
n : sample size
$z_{1-\alpha / 2}:(1-\alpha / 2)$-quantile of a unit normal variate $(\mathrm{N}(0,1))$.

Example 1

One thousand entries are selected from a Web log. Six hundred and fifty correspond to gif files. Find 90% and 95% confidence intervals for the proportion of files that are gif files.

Example 2

How much time does processor spend in OS?

- Interrupt every 10 ms
- Increment counters
> $n=$ number of interrupts
$>m=$ number of interrupts when PC within OS

Proportions

- How much time does processor spend in OS?
- Interrupt every 10 ms
\square Increment counters
> $n=$ number of interrupts
$\Rightarrow m=$ number of interrupts when PC within OS
\square Run for 1 minute
> $n=6000$
$\Rightarrow m=658$

Proportions

$$
\begin{aligned}
\left(c_{1}, c_{2}\right) & =\bar{p} \mp z_{1-\alpha / 2} \sqrt{\frac{\bar{p}(1-\bar{p})}{n}} \\
& =0.1097 \mp 1.96 \sqrt{\frac{0.1097(1-0.1097)}{6000}}=(0.1018,0.1176)
\end{aligned}
$$

- 95\% confidence interval for proportion
- So 95% certain processor spends 10.2-11.8\% of its time in OS

Number of measurements for proportions

$$
\begin{aligned}
(1-e) \bar{p} & =\bar{p}-z_{1-\alpha / 2} \sqrt{\frac{\bar{p}(1-\bar{p})}{n}} \\
e \bar{p} & =z_{1-\alpha / 2} \sqrt{\frac{\bar{p}(1-\bar{p})}{n}} \\
n & =\frac{z_{1-\alpha / 2}^{2} \bar{p}(1-\bar{p})}{(e \bar{p})^{2}}
\end{aligned}
$$

Number of measurements for proportions
-How long to run OS experiment?
\square Want 95\% confidence
$\square \pm 0.5 \%$

Number of measurements for proportions

- How long to run OS experiment?
\square Want 95\% confidence
$\square \pm 0.5 \%$
$\square e=0.005$
$\square p=0.1097$

Number of measurements for proportions

$$
\begin{aligned}
n & =\frac{z_{1-\alpha / 2}^{2} \bar{p}(1-\bar{p})}{(e \bar{p})^{2}} \\
& =\frac{(1.960)^{2}(0.1097)(1-0.1097)}{[0.005(0.1097)]^{2}} \\
& =1,247,102
\end{aligned}
$$

$\rightarrow 3.46$ hours

Confidence Interval Estimation for Variances

Confidence Interval for the Variance

- If the original variable is normally distributed then the chi-square distribution can be used to develop a confidence interval estimate of the population variance.
\square The (1- α)\% confidence interval for σ^{2} is

$$
\frac{(n-1) s^{2}}{\chi_{U}^{2}} \leq \sigma^{2} \leq \frac{(n-1) s^{2}}{\chi_{L}^{2}}
$$

χ_{L}^{2} : lower critical value of χ^{2}
χ_{U}^{2} : upper critical value of χ^{2}

Chi-square distribution

95% confidence interval for the population variance for a sample of size 100 for a $\mathrm{N}(3,2)$ population.

The population variance (4 in this case) is in the interval (3.6343, 6.362) with 95% confidence.

Confidence Interval for the Variance

If the population is not normally distributed, the confidence interval, especially for small samples, is not very accurate.

Key Assumption

- Measurement errors are Normally distributed.
- Is this true for most measurements on real computer systems?

Key Assumption

\square Saved by the Central Limit Theorem
Sum of a "large number" of values from any distribution will be Normally (Gaussian) distributed.
\square What is a "large number?"
$>$ Typically assumed to be $>\approx 6$ or 7 .

Normalizing data for confidence intervals

aIf the underlying distribution of the data being measured is not normal, then the data must be normalized
> Find the arithmetic mean of four or more randomly selected measurements
> Find confidence intervals for the means of these average values

- We can no longer obtain a confidence interval for the individual values
- Variance for the aggregated events tends to be smaller than the variance of the individual events

Summary

\square Use statistics to
> Deal with noisy measurements
> Estimate the true value from sample data
\square Errors in measurements are due to:
> Accuracy, precision, resolution of tools
> Other sources of noise
\rightarrow Systematic, random errors

Summary (cont'd)

- Use confidence intervals to quantify precision
-Confidence intervals for
> Mean of n samples
> Proportions
> Variance
\square Confidence level
> Pr(population parameter within computed interval)
- Compute number of measurements needed for desired interval width

