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Measuring Performance 
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Measurement tools and techniques 

 Fundamental strategies 
 Interval timers & cycle counters 
 Indirect measurement 
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Events 

 Most measurement tools based on events 
  Some predefined change to system state 

 Definition depends on metric being 
measured 
  Memory reference 
  Disk access 
  Change in a register’s state 
  Network message 
  Processor interrupt 
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Event Classification 

 Count metrics 
  The number of times event X occurs 
  Number of cache misses 
  Number of I/O operations 
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Event Classification 

 Secondary-event metrics 
  Record a value when triggered 

by some event 
  Record block size for each I/O 

operation 
  Count number of operations 
  Find average I/O transfer size 
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Event Classification 

 Profiles 
  Characterization of overall 

behavior 
  Aggregate/big picture view of an 

application program 
  Time spent in each function 
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Event-Driven Strategies 

 Record necessary information only when 
selected event occurs 

 Modify system to record event 
 Dump data when program terminates 

  May need intermediate dumps also 
 E.g. simple counter in page fault routine 
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Event-Driven Strategies 

 System overhead 
  Only when the event of interest actually occurs 
  Infrequent events → little perturbation 
  Frequent events → high perturbation 

 No longer “typical” behavior? 
  Perturbation changes system being measured 
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Event-Driven Strategies 

 Inter-event time is unpredictable 
  Depends on when events actually occur 
  Makes it hard to estimate perturbation 
  How long to measure? 

 Event-driven measurement tools 
 → Good for low-frequency events 
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Event-Driven Strategies 

  Counts 8 events exactly 

+1 +1 +1 +1 +1 +1 +1 +1 
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Tracing 

 Similar to event-driven 
 But record additional system state 

  Event has occurred – count 
  Additional information to uniquely identify 

event 
  E.g. addresses that cause page faults 

 Overhead 
  Additional memory or disk storage 
  Time to save state 

 Relatively large system perturbation 
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Tracing 

  Counts 8 events plus extra data 
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Sampling 

 Record necessary state at fixed time 
intervals 

 Overhead 
  Independent of specific event frequency 
  Depends on sampling frequency 

 Misses some events 
 Produces statistical summary 

  May miss infrequent events 
  Each replication will produce different results 
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Sampling 

  Counts 3 events out of 5 samples 

+1 +1 +1 
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Comparisons 

Event 
count 

Tracing Sampling 

Resolution Exact 
count 

Detailed 
info 

Statistical 
summary 

Overhead Low High Constant 

Perturbation ~ #events High Fixed 

16 

Comparison 

 Event counting 
  Best for low frequency events 
  Required if exact counts needed 

 Sampling 
  Best for high frequency events 
  If statistical summary is adequate 

 Tracing 
  When additional detail is required 
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Indirect Measurements 

 Used when desired metric is not directly 
accessible 

 Measure one thing directly 
  Derive or deduce desired metric 

 Highly dependent on creativity of 
performance analyst 

Time Measurement 

Based on Ch 9 of Computer Systems:  
A Programmer’s Perspective -  

Bryant & O’Halloran 
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Computer Time Scales 

 Two Fundamental Time Scales 
  Processor:  ~10–9 sec. 
  External events:  ~10–2 sec. 

  Keyboard input 
 Disk seek 
  Screen refresh 

  Implication 
  Can execute many instructions 

while waiting for external 
event to occur 

  Can alternate among 
processes without anyone 
noticing 

Time Scale (1 Ghz Machine) 
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Measurement Challenge 

  How Much Time Does Program X Require? 
  CPU time 

  How many total seconds are used when executing X? 
  Measure used for most applications 
  Small dependence on other system activities 

  Actual (“Wall”) Time 
  How many seconds elapse between the start and the completion 

of X? 
  Depends on system load, I/O times, etc. 

  Confounding Factors 
  How does time get measured? 
  Many processes share computing resources 

  Transient effects when switching from one process to another 
  Suddenly, the effects of alternating among processes become 

noticeable 
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“Time” on a Computer System 

real (wall clock) time

= user time (time executing instructions in the user process)

+ =  real (wall clock) time

We will use the word “time” to refer to user time.

= system time (time executing instructions in kernel on behalf 
of user process)

+

= some other userʼs time (time executing instructions in 
different userʼs process)

cumulative user time
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Activity Periods: Light Load 

  Most of the time spent 
executing one process 

  Periodic interrupts every 
10ms 
  Interval timer 
  Keep system from 

executing one process to 
exclusion of others 

  Other interrupts 
  Due to I/O activity 

  Inactivity periods 
  System time spent 

processing interrupts 
  ~250,000 clock cycles  

Activity Periods, Load = 1
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Activity Periods: Heavy Load 

  Sharing processor with one other active 
process 

  From perspective of this process, system 
appears to be “inactive” for ~50% of the time 
 Other process is executing 

Activity Periods, Load = 2
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Interval Counting 

 OS Measures Runtimes Using Interval 
Timer 
  Maintain 2 counts per process 

  User time 
  System time 

  Each time get timer interrupt, increment 
counter for executing process 
  User time if running in user mode 
  System time if running in kernel mode 
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Interval Counting Example 

Au Au Au As Bu Bs Bu Bu Bu Bu As Au Au Au Au Au Bs Bu Bu Bs Au Au Au As As

A 110u + 40s

B 70u + 30s

(a)  Interval Timings

B BAA A

(b)  Actual Times

B

AA

B

A 120.0u + 33.3s

B 73.3u + 23.3s

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160

A

Au Au Au As Bu Bs Bu Bu Bu Bu As Au Au Au Au Au Bs Bu Bu Bs Au Au Au As As

A 110u + 40s

B 70u + 30s

(a)  Interval Timings

B BAA A

Au Au Au As Bu Bs Bu Bu Bu Bu As Au Au Au Au Au Bs Bu Bu Bs Au Au Au As As

A 110u + 40s

B 70u + 30s

(a)  Interval Timings

B BAA A

(b)  Actual Times

B

AA

B

A 120.0u + 33.3s

B 73.3u + 23.3s

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160

A

(b)  Actual Times

B

AA

B

A 120.0u + 33.3s

B 73.3u + 23.3s

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160

A

26 

Unix time Command 

  0.82 seconds user time 
  82 timer intervals 

  0.30 seconds system time 
  30 timer intervals 

  1.32 seconds wall time 
  84.8% of total was used running these processes  

  (.82+0.3)/1.32 = .848 

time make osevent 
gcc -O2 -Wall -g  -march=i486 -c clock.c 
gcc -O2 -Wall -g  -march=i486 -c options.c 
gcc -O2 -Wall -g  -march=i486 -c load.c 
gcc -O2 -Wall -g  -march=i486 -o osevent osevent.c . . . 
0.820u 0.300s 0:01.32 84.8%     0+0k 0+0io 4049pf+0w 
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Accuracy of Interval Counting 

  Worst Case Analysis 
  Timer Interval = δ 
  Single process segment measurement can be off by ±δ 
  No bound on error for multiple segments 

  Could consistently underestimate, or consistently 
overestimate 
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Accuracy of Int. Cntg. (cont.) 

  Average Case Analysis 
  Over/underestimates tend to balance out 
  As long as total run time is sufficiently large 

  Min run time ~1 second 
  100 timer intervals 

  Consistently miss 4% overhead due to timer interrupts 
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Cycle Counters 

  Most modern systems have built in registers that are 
incremented every clock cycle 
  Very fine grained 
 Maintained as part of process state 

–  In Linux, counts elapsed global time 
  Special assembly code instruction to access 
  On (recent model) Intel machines: 

  64 bit counter. 
  RDTSC instruction sets %edx to high order 32-

bits, %eax to low order 32-bits 
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Cycle Counter Period 

  Wrap Around Times for 550 MHz machine 
  Low order 32 bits wrap around every 232 / (550 * 106) = 

7.8 seconds 
  High order 64 bits wrap around every 264 / (550 * 106) = 

33539534679 seconds 
  1065 years 

  For 2 GHz machine 
  Low order 32-bits every 2.1 seconds 
  High order 64 bits every 293 years 
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Measuring with Cycle Counter 
  Idea 

  Get current value of cycle counter 
  store as pair of unsigned’s cyc_hi and cyc_lo 

  Compute something 
  Get new value of cycle counter 
  Perform double precision subtraction to get elapsed cycles 

/* Keep track of most recent reading of cycle counter */ 
static unsigned cyc_hi = 0; 
static unsigned cyc_lo = 0; 

void start_counter() 
{ 
  /* Get current value of cycle counter */ 
  access_counter(&cyc_hi, &cyc_lo); 
} 
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Accessing the Cycle Cntr. 
  GCC allows inline assembly code with mechanism for matching 

registers with program variables 
  Code only works on x86 machine compiling with GCC 

  Emit assembly with rdtsc and two movl instructions 

void access_counter(unsigned *hi, unsigned *lo) 
{ 
  /* Get cycle counter */ 
  asm("rdtsc; movl %%edx,%0; movl %%eax,%1" 
      : "=r" (*hi), "=r" (*lo) 
      : /* No input */ 
      : "%edx", "%eax"); 
} 
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Completing Measurement 

  Get new value of cycle counter 
  Perform double precision subtraction to get elapsed cycles 
  Express as double to avoid overflow problems 

double get_counter() 
{ 
  unsigned ncyc_hi, ncyc_lo 
  unsigned hi, lo, borrow; 
  /* Get cycle counter */ 
  access_counter(&ncyc_hi, &ncyc_lo); 
  /* Do double precision subtraction */ 
  lo = ncyc_lo - cyc_lo; 
  borrow = lo > ncyc_lo; 
  hi = ncyc_hi - cyc_hi - borrow; 
  return (double) hi * (1 << 30) * 4 + lo; 
} 
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Timing With Cycle Counter 

 Determine Clock Rate of Processor 
  Count number of cycles required for some fixed 

number of seconds 

 Time Function P 
  First attempt: Simply count cycles for one 

execution of P 
  double tsecs; 
  start_counter(); 
  P(); 
  tsecs = get_counter() / (MHZ * 1e6); 

  double MHZ; 
  int sleep_time = 10; 
  start_counter(); 
  sleep(sleep_time); 
  MHZ = get_counter()/(sleep_time * 1e6); 
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Measurement Pitfalls 

  Overhead 
  Calling get_counter() incurs small amount of overhead 
  Want to measure long enough code sequence to compensate 

  Unexpected Cache Effects 
  artificial hits or misses 
  e.g., these measurements were taken with the Alpha cycle 

counter: 
 foo1(array1, array2, array3);    /* 68,829 cycles */ 
 foo2(array1, array2, array3);  /* 23,337 cycles */ 
  vs. 
 foo2(array1, array2, array3);  /* 70,513 cycles */ 
 foo1(array1, array2, array3);    /* 23,203 cycles */ 
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Dealing with Overhead & Cache Effects 

  Always execute function once to “warm up” cache 
  Keep doubling number of times execute P() until reach some 

threshold 
  Used CMIN = 50000 

  int cnt = 1; 
  double cmeas = 0; 
  double cycles; 
  do  { 
    int c = cnt; 
    P();  /* Warm up cache */ 
    get_counter(); 
    while (c-- > 0) 
      P(); 
    cmeas = get_counter(); 
    cycles = cmeas / cnt; 
    cnt += cnt; 
  } while (cmeas < CMIN);  /* Make sure have enough */ 
  return cycles / (1e6 * MHZ); 
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Multitasking Effects 

  Cycle Counter Measures Elapsed Time 
  Keeps accumulating during periods of inactivity 

  System activity 
  Running other processes 

  Key Observation 
  Cycle counter never underestimates program run time 
  Possibly overestimates by large amount 

  K-Best Measurement Scheme 
  Perform up to N (e.g., 20) measurements of function 
  See if fastest K (e.g., 3) within some relative factor ε (e.g., 

0.001) 

K

38 

K-Best 
Validation 

  Very good accuracy for < 
8ms 
  Within one timer interval 
  Even when heavily loaded 

  Less accurate of > 10ms 
  Light load: ~4% error 

  Interval clock interrupt 
handling 

  Heavy load: Very high error 

Intel Pentium III, Linux
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How are “actual” run times of programs 
determined? 
 Write a procedure that repeatedly writes 

values to an array of 2048 integers and 
then reads them back 

 Let r be the number of repetitions 
 Determine expected run time T(r) of 

procedure as a function of r by timing it 
for r = 1…10 and performing a least squares 
fit to T(r) = mr + b 
  Linear regression (will discuss later this 

semester) 
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Compensate 
For Timer 
Overhead 

  Subtract Timer Overhead 
  Estimate overhead of single 

interrupt by measuring periods of 
inactivity 

  Call interval timer to determine 
number of interrupts that have 
occurred 

  Better Accuracy for > 10ms 
  Light load: 0.2% error 
  Heavy load: Still very high error 

K = 3, ε = 0.001

Intel Pentium III, Linux
Compensate for Timer Interrupt Handling
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K-Best 
on NT 

  Acceptable accuracy for < 
50ms 
  Scheduler allows process 

to run multiple intervals 

  Less accurate of > 10ms 
  Light load: 2% error 
  Heavy load: Generally very 

high error 

K = 3, ε = 0.001

Pentium II, Windows-NT
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Time of Day Clock 
  Unix gettimeofday() function 
  Return elapsed time since reference time (Jan 1, 1970) 
  Implementation 

  Uses interval counting on some machines 
–  Coarse grained 

  Uses cycle counter on others 
–  Fine grained, but significant overhead and only 1 microsecond resolution 

#include <sys/time.h> 
#include <unistd.h> 

  struct timeval tstart, tfinish; 
  double tsecs; 
  gettimeofday(&tstart, NULL); 
  P(); 
  gettimeofday(&tfinish, NULL); 
  tsecs = (tfinish.tv_sec - tstart.tv_sec) +  
      1e6 * (tfinish.tv_usec - tstart.tv_usec); 
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K-Best Using gettimeofday 

  Linux 
  As good as using cycle counter 
  For times > 10 microseconds 

  Windows 
  Implemented by interval 

counting 
  Too coarse-grained 

Using gettimeofday
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Measurement Summary 

  Timing is highly case and system dependent 
  What is overall duration being measured? 

  > 1 second: interval counting is OK 
  << 1 second: must use cycle counters 

  On what hardware / OS / OS version? 
  Accessing counters 

–  How gettimeofday is implemented 
  Timer interrupt overhead 
  Scheduling policy 

  Devising a Measurement Method 
  Long durations: use Unix timing functions 
  Short durations 

  If possible, use gettimeofday 
  Otherwise must work with cycle counters 
  K-best scheme most successful 
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Approximate Measures of Short 
Intervals 
 Suppose no access to cycle counters 
 How to measure an event that is shorter 

than the resolution of the clock? 
 Cannot directly measure events with 

 Te < Tc 

 Overhead makes it hard to measure even 
when Te > nTc,  
  n is small integer 

46 

Approximate Measures of Short 
Intervals 

Tc 

Te 

Te 

Case 1: 
Count+1 

Case 2: 
Count+0 
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Approximate Measures of Short 
Intervals 
 Bernoulli experiment 

  Outcome = +1 with probability p 
  Outcome = +0 with probability (1-p) 
  Equivalent to flipping a biased coin 

 Repeat n times 
  Approximates a binomial distribution 
  Only approximate since each measurement 

cannot be guaranteed to be independent 
  Usually close enough in practice 
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Approximate Measures of Short 
Intervals 
 m = number of times Case 1 occurs 

  Count+1 
 n = total number of measurements 
 Average duration is ratio of m/n 
 Use confidence interval for proportions 

ce T
n
mT =
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Example 

  Clock resolution = 10 us 
  n = 8764 measurements 
  m = 467 clock ticks counted 
  95% confidence interval 

10 us 
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Case 1: 
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Case 2: 
8297 
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Example 
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  Scale by clock period = 10 us 
  95% chance that measured event is 

  (0.49, 0.58) us 
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Important Aside 

 Confidence interval calculation for 
proportions discussed in last class (and 
textbooks) is controversial 
  Recently, statisticians have shown that it is 

problematic 
  The approach used on the previous slide + in the 

textbooks (Lilja, Jain, others) is somewhat 
discredited 

  Link on class web page 
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Indirect Ad Hoc Techniques 

 Sometimes the desired metric cannot be 
measured directly 

 Use your creativity to measure one thing 
and then derive/infer the desired value 
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Example 1 – System Load 

 What is system load? 
  Number of jobs in run queue? 
  Number of jobs actively time-sharing? 
  Fraction of time processor is not in idle loop? 
  Others? 

 How to measure it? 
  Modify OS 
  PC sampling 
  Indirect? 
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Example 

 Let system run for fixed time T 
 Note value of counter 

Monitor 

Count 

n 

T 
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Example 

 Let system run for fixed time T 
 Compare value of loaded system monitor 

counter to unloaded system count value 

Monitor 
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n 

n/2 

T 
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Example 

 Let system run for fixed time T 
 Compare value of loaded system monitor 

counter to unloaded system count value 

Monitor 
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App 1 
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Example 2: The Memory Mountain 

 Read throughput (read bandwidth) 
  Number of bytes read from memory per second 

(MB/s) 
 Memory mountain 

  Measured read throughput as a function of 
spatial and temporal locality. 

  Compact way to characterize memory system 
performance.  
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Memory Mountain Test Function 

/* The test function */ 
void test(int elems, int stride) { 
    int i, result = 0;  
    volatile int sink;  

    for (i = 0; i < elems; i += stride) 
 result += data[i]; 

    sink = result; /* So compiler doesn't optimize away the loop */ 
} 

/* Run test(elems, stride) and return read throughput (MB/s) */ 
double run(int size, int stride, double Mhz) 
{ 
    double cycles; 
    int elems = size / sizeof(int);  

    test(elems, stride);                     /* warm up the cache */ 
    cycles = fcyc2(test, elems, stride, 0);  /* call test(elems,stride) */ 
    return (size / stride) / (cycles / Mhz); /* convert cycles to MB/s */ 
} 
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Memory Mountain Main Routine 
/* mountain.c - Generate the memory mountain. */ 
#define MINBYTES (1 << 10)  /* Working set size ranges from 1 KB */ 
#define MAXBYTES (1 << 23)  /* ... up to 8 MB */ 
#define MAXSTRIDE 16        /* Strides range from 1 to 16 */ 
#define MAXELEMS MAXBYTES/sizeof(int)  

int data[MAXELEMS];         /* The array we'll be traversing */ 

int main() 
{ 
    int size;        /* Working set size (in bytes) */ 
    int stride;      /* Stride (in array elements) */ 
    double Mhz;      /* Clock frequency */ 

    init_data(data, MAXELEMS); /* Initialize each element in data to 1 */ 
    Mhz = mhz(0);              /* Estimate the clock frequency */ 
    for (size = MAXBYTES; size >= MINBYTES; size >>= 1) { 

 for (stride = 1; stride <= MAXSTRIDE; stride++)  
     printf("%.1f\t", run(size, stride, Mhz));   
 printf("\n"); 

    } 
    exit(0); 
} 
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The Memory Mountain 
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Ridges of Temporal Locality 
  Slice through the memory mountain with stride=1 

  illuminates read throughputs of different caches and 
memory 
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A Slope of Spatial Locality 

  Slice through memory mountain with size=256KB 
  shows cache block size. 
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Perturbation 

 To obtain more information (higher 
resolution) 
   → Use more instrumentation points 

  More instrumentation points 
   → Greater perturbation 

64 

Perturbation 

 Computer performance measurement 
uncertainty principle  
  Accuracy is inversely proportional to 

resolution. 

Resolution 

A
cc

ur
ac

y 

Low 

High 

High 



33 

65 

Perturbation 

 Superposition does not work here 
  Non-linear 
  Non-additive 

 Double instrumentation ≠ double impact on 
performance 
  Some instrumentation cancels out 
  Some multiplies impact 

 No way to predict! 
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Instrumentation Code 

 Changes memory access patterns 
  Affects memory banking optimizations 

 Generates additional load/store 
instructions 
  More frequent cache flushes and replacements 
  But may reduce set associativity conflicts 

 Generates more I/O operations 
 Will increase overall execution time 

  More time-sharing context switches 
 Alters virtual memory paging behavior 
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Summary 

  Measurement strategies 
  Event-driven 
  Tracing 
  Sampling 

  Measuring program time 
  Profiling 
  Trace generation 
  Indirect measurements when all else fails 

  System load example 
  Perturbations 

  Have to be careful to minimize perturbations due to 
instrumentation 


