
1

Measuring Performance

2

Measurement tools and techniques

 Fundamental strategies
 Interval timers & cycle counters
 Indirect measurement

2

3

Events

 Most measurement tools based on events
  Some predefined change to system state

 Definition depends on metric being
measured
  Memory reference
  Disk access
  Change in a register’s state
  Network message
  Processor interrupt

4

Event Classification

 Count metrics
  The number of times event X occurs
  Number of cache misses
  Number of I/O operations

3

5

Event Classification

 Secondary-event metrics
  Record a value when triggered

by some event
  Record block size for each I/O

operation
  Count number of operations
  Find average I/O transfer size

6

Event Classification

 Profiles
  Characterization of overall

behavior
  Aggregate/big picture view of an

application program
  Time spent in each function

4

7

Event-Driven Strategies

 Record necessary information only when
selected event occurs

 Modify system to record event
 Dump data when program terminates

  May need intermediate dumps also
 E.g. simple counter in page fault routine

8

Event-Driven Strategies

 System overhead
  Only when the event of interest actually occurs
  Infrequent events → little perturbation
  Frequent events → high perturbation

 No longer “typical” behavior?
  Perturbation changes system being measured

5

9

Event-Driven Strategies

 Inter-event time is unpredictable
  Depends on when events actually occur
  Makes it hard to estimate perturbation
  How long to measure?

 Event-driven measurement tools
 → Good for low-frequency events

10

Event-Driven Strategies

  Counts 8 events exactly

+1 +1 +1 +1 +1 +1 +1 +1

6

11

Tracing

 Similar to event-driven
 But record additional system state

  Event has occurred – count
  Additional information to uniquely identify

event
  E.g. addresses that cause page faults

 Overhead
  Additional memory or disk storage
  Time to save state

 Relatively large system perturbation

12

Tracing

  Counts 8 events plus extra data

+1;
Addr

+1;
Addr

+1;
Addr

+1;
Addr

+1;
Addr

+1;
Addr

+1;
Addr

+1;
Addr

7

13

Sampling

 Record necessary state at fixed time
intervals

 Overhead
  Independent of specific event frequency
  Depends on sampling frequency

 Misses some events
 Produces statistical summary

  May miss infrequent events
  Each replication will produce different results

14

Sampling

  Counts 3 events out of 5 samples

+1 +1 +1

8

15

Comparisons

Event
count

Tracing Sampling

Resolution Exact
count

Detailed
info

Statistical
summary

Overhead Low High Constant

Perturbation ~ #events High Fixed

16

Comparison

 Event counting
  Best for low frequency events
  Required if exact counts needed

 Sampling
  Best for high frequency events
  If statistical summary is adequate

 Tracing
  When additional detail is required

9

17

Indirect Measurements

 Used when desired metric is not directly
accessible

 Measure one thing directly
  Derive or deduce desired metric

 Highly dependent on creativity of
performance analyst

Time Measurement

Based on Ch 9 of Computer Systems:
A Programmer’s Perspective -

Bryant & O’Halloran

10

19

Computer Time Scales

 Two Fundamental Time Scales
  Processor: ~10–9 sec.
  External events: ~10–2 sec.

  Keyboard input
 Disk seek
  Screen refresh

  Implication
  Can execute many instructions

while waiting for external
event to occur

  Can alternate among
processes without anyone
noticing

Time Scale (1 Ghz Machine)

1.E-09 1.E-06 1.E-03 1.E+00 Time (seconds)

1 ns 1 µ s 1 ms 1 s

Integer Add
FP Multiply

FP Divide
Keystroke
Interrupt
Handler

Disk Access
Screen Refresh
Keystroke

Microscopic Macroscopic

20

Measurement Challenge

  How Much Time Does Program X Require?
  CPU time

  How many total seconds are used when executing X?
  Measure used for most applications
  Small dependence on other system activities

  Actual (“Wall”) Time
  How many seconds elapse between the start and the completion

of X?
  Depends on system load, I/O times, etc.

  Confounding Factors
  How does time get measured?
  Many processes share computing resources

  Transient effects when switching from one process to another
  Suddenly, the effects of alternating among processes become

noticeable

11

21

“Time” on a Computer System

real (wall clock) time

= user time (time executing instructions in the user process)

+ = real (wall clock) time

We will use the word “time” to refer to user time.

= system time (time executing instructions in kernel on behalf
of user process)

+

= some other userʼs time (time executing instructions in
different userʼs process)

cumulative user time

22

Activity Periods: Light Load

  Most of the time spent
executing one process

  Periodic interrupts every
10ms
  Interval timer
  Keep system from

executing one process to
exclusion of others

  Other interrupts
  Due to I/O activity

  Inactivity periods
  System time spent

processing interrupts
  ~250,000 clock cycles

Activity Periods, Load = 1

0 10 20 30 40 50 60 70 80

1

Time (ms)

Active
Inactive

12

23

Activity Periods: Heavy Load

  Sharing processor with one other active
process

  From perspective of this process, system
appears to be “inactive” for ~50% of the time
 Other process is executing

Activity Periods, Load = 2

0 10 20 30 40 50 60 70 80

1

Time (ms)

Active
Inactive

24

Interval Counting

 OS Measures Runtimes Using Interval
Timer
  Maintain 2 counts per process

  User time
  System time

  Each time get timer interrupt, increment
counter for executing process
  User time if running in user mode
  System time if running in kernel mode

13

25

Interval Counting Example

Au Au Au As Bu Bs Bu Bu Bu Bu As Au Au Au Au Au Bs Bu Bu Bs Au Au Au As As

A 110u + 40s

B 70u + 30s

(a) Interval Timings

B BAA A

(b) Actual Times

B

AA

B

A 120.0u + 33.3s

B 73.3u + 23.3s

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160

A

Au Au Au As Bu Bs Bu Bu Bu Bu As Au Au Au Au Au Bs Bu Bu Bs Au Au Au As As

A 110u + 40s

B 70u + 30s

(a) Interval Timings

B BAA A

Au Au Au As Bu Bs Bu Bu Bu Bu As Au Au Au Au Au Bs Bu Bu Bs Au Au Au As As

A 110u + 40s

B 70u + 30s

(a) Interval Timings

B BAA A

(b) Actual Times

B

AA

B

A 120.0u + 33.3s

B 73.3u + 23.3s

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160

A

(b) Actual Times

B

AA

B

A 120.0u + 33.3s

B 73.3u + 23.3s

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160

A

26

Unix time Command

  0.82 seconds user time
  82 timer intervals

  0.30 seconds system time
  30 timer intervals

  1.32 seconds wall time
  84.8% of total was used running these processes

  (.82+0.3)/1.32 = .848

time make osevent
gcc -O2 -Wall -g -march=i486 -c clock.c
gcc -O2 -Wall -g -march=i486 -c options.c
gcc -O2 -Wall -g -march=i486 -c load.c
gcc -O2 -Wall -g -march=i486 -o osevent osevent.c . . .
0.820u 0.300s 0:01.32 84.8% 0+0k 0+0io 4049pf+0w

14

27

Accuracy of Interval Counting

  Worst Case Analysis
  Timer Interval = δ
  Single process segment measurement can be off by ±δ
  No bound on error for multiple segments

  Could consistently underestimate, or consistently
overestimate

0 10 20 30 40 50 60 70 80

A

A

Minimum

Maximum

0 10 20 30 40 50 60 70 80

A

A

Minimum

Maximum

•  Computed time = 70ms
•  Min Actual = 60 + ε
•  Max Actual = 80 – ε

28

Accuracy of Int. Cntg. (cont.)

  Average Case Analysis
  Over/underestimates tend to balance out
  As long as total run time is sufficiently large

  Min run time ~1 second
  100 timer intervals

  Consistently miss 4% overhead due to timer interrupts

0 10 20 30 40 50 60 70 80

A

A

Minimum

Maximum

0 10 20 30 40 50 60 70 80

A

A

Minimum

Maximum

•  Computed time = 70ms
•  Min Actual = 60 + ε
•  Max Actual = 80 – ε

15

29

Cycle Counters

  Most modern systems have built in registers that are
incremented every clock cycle
  Very fine grained
 Maintained as part of process state

–  In Linux, counts elapsed global time
  Special assembly code instruction to access
  On (recent model) Intel machines:

  64 bit counter.
  RDTSC instruction sets %edx to high order 32-

bits, %eax to low order 32-bits

30

Cycle Counter Period

  Wrap Around Times for 550 MHz machine
  Low order 32 bits wrap around every 232 / (550 * 106) =

7.8 seconds
  High order 64 bits wrap around every 264 / (550 * 106) =

33539534679 seconds
  1065 years

  For 2 GHz machine
  Low order 32-bits every 2.1 seconds
  High order 64 bits every 293 years

16

31

Measuring with Cycle Counter
  Idea

  Get current value of cycle counter
  store as pair of unsigned’s cyc_hi and cyc_lo

  Compute something
  Get new value of cycle counter
  Perform double precision subtraction to get elapsed cycles

/* Keep track of most recent reading of cycle counter */
static unsigned cyc_hi = 0;
static unsigned cyc_lo = 0;

void start_counter()
{
 /* Get current value of cycle counter */
 access_counter(&cyc_hi, &cyc_lo);
}

32

Accessing the Cycle Cntr.
  GCC allows inline assembly code with mechanism for matching

registers with program variables
  Code only works on x86 machine compiling with GCC

  Emit assembly with rdtsc and two movl instructions

void access_counter(unsigned *hi, unsigned *lo)
{
 /* Get cycle counter */
 asm("rdtsc; movl %%edx,%0; movl %%eax,%1"
 : "=r" (*hi), "=r" (*lo)
 : /* No input */
 : "%edx", "%eax");
}

17

33

Completing Measurement

  Get new value of cycle counter
  Perform double precision subtraction to get elapsed cycles
  Express as double to avoid overflow problems

double get_counter()
{
 unsigned ncyc_hi, ncyc_lo
 unsigned hi, lo, borrow;
 /* Get cycle counter */
 access_counter(&ncyc_hi, &ncyc_lo);
 /* Do double precision subtraction */
 lo = ncyc_lo - cyc_lo;
 borrow = lo > ncyc_lo;
 hi = ncyc_hi - cyc_hi - borrow;
 return (double) hi * (1 << 30) * 4 + lo;
}

34

Timing With Cycle Counter

 Determine Clock Rate of Processor
  Count number of cycles required for some fixed

number of seconds

 Time Function P
  First attempt: Simply count cycles for one

execution of P
 double tsecs;
 start_counter();
 P();
 tsecs = get_counter() / (MHZ * 1e6);

 double MHZ;
 int sleep_time = 10;
 start_counter();
 sleep(sleep_time);
 MHZ = get_counter()/(sleep_time * 1e6);

18

35

Measurement Pitfalls

  Overhead
  Calling get_counter() incurs small amount of overhead
  Want to measure long enough code sequence to compensate

  Unexpected Cache Effects
  artificial hits or misses
  e.g., these measurements were taken with the Alpha cycle

counter:
 foo1(array1, array2, array3); /* 68,829 cycles */
 foo2(array1, array2, array3); /* 23,337 cycles */
 vs.
 foo2(array1, array2, array3); /* 70,513 cycles */
 foo1(array1, array2, array3); /* 23,203 cycles */

36

Dealing with Overhead & Cache Effects

  Always execute function once to “warm up” cache
  Keep doubling number of times execute P() until reach some

threshold
  Used CMIN = 50000

 int cnt = 1;
 double cmeas = 0;
 double cycles;
 do {
 int c = cnt;
 P(); /* Warm up cache */
 get_counter();
 while (c-- > 0)
 P();
 cmeas = get_counter();
 cycles = cmeas / cnt;
 cnt += cnt;
 } while (cmeas < CMIN); /* Make sure have enough */
 return cycles / (1e6 * MHZ);

19

37

Multitasking Effects

  Cycle Counter Measures Elapsed Time
  Keeps accumulating during periods of inactivity

  System activity
  Running other processes

  Key Observation
  Cycle counter never underestimates program run time
  Possibly overestimates by large amount

  K-Best Measurement Scheme
  Perform up to N (e.g., 20) measurements of function
  See if fastest K (e.g., 3) within some relative factor ε (e.g.,

0.001)

K

38

K-Best
Validation

  Very good accuracy for <
8ms
  Within one timer interval
  Even when heavily loaded

  Less accurate of > 10ms
  Light load: ~4% error

  Interval clock interrupt
handling

  Heavy load: Very high error

Intel Pentium III, Linux

0.001

0.01

0.1

1

10

100

0 10 20 30 40 50

Expected CPU Time (ms)

M
ea

su
re

d:
Ex

pe
ct

ed
 E

rr
or

Load 1
Load 2
Load 11

K = 3, ε = 0.001

20

39

How are “actual” run times of programs
determined?
 Write a procedure that repeatedly writes

values to an array of 2048 integers and
then reads them back

 Let r be the number of repetitions
 Determine expected run time T(r) of

procedure as a function of r by timing it
for r = 1…10 and performing a least squares
fit to T(r) = mr + b
  Linear regression (will discuss later this

semester)

40

Compensate
For Timer
Overhead

  Subtract Timer Overhead
  Estimate overhead of single

interrupt by measuring periods of
inactivity

  Call interval timer to determine
number of interrupts that have
occurred

  Better Accuracy for > 10ms
  Light load: 0.2% error
  Heavy load: Still very high error

K = 3, ε = 0.001

Intel Pentium III, Linux
Compensate for Timer Interrupt Handling

0.001

0.01

0.1

1

10

100

0 10 20 30 40 50

Expected CPU Time (ms)

M
ea

su
re

d:
Ex

pe
ct

ed
 E

rr
or

Load 1
Load 2
Load 11

21

41

K-Best
on NT

  Acceptable accuracy for <
50ms
  Scheduler allows process

to run multiple intervals

  Less accurate of > 10ms
  Light load: 2% error
  Heavy load: Generally very

high error

K = 3, ε = 0.001

Pentium II, Windows-NT

0.001

0.01

0.1

1

10

100

0 50 100 150 200 250 300

Expected CPU Time (ms)

M
ea

su
re

d:
Ex

pe
ct

ed
 E

rr
or

Load 1
Load 2
Load 11

42

Time of Day Clock
  Unix gettimeofday() function
  Return elapsed time since reference time (Jan 1, 1970)
  Implementation

  Uses interval counting on some machines
–  Coarse grained

  Uses cycle counter on others
–  Fine grained, but significant overhead and only 1 microsecond resolution

#include <sys/time.h>
#include <unistd.h>

 struct timeval tstart, tfinish;
 double tsecs;
 gettimeofday(&tstart, NULL);
 P();
 gettimeofday(&tfinish, NULL);
 tsecs = (tfinish.tv_sec - tstart.tv_sec) +
 1e6 * (tfinish.tv_usec - tstart.tv_usec);

22

43

K-Best Using gettimeofday

  Linux
  As good as using cycle counter
  For times > 10 microseconds

  Windows
  Implemented by interval

counting
  Too coarse-grained

Using gettimeofday

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

0 50 100 150 200 250 300

Expected CPU Time (ms)

M
ea

su
re

d:
Ex

pe
ct

ed
 E

rr
or

Win-NT
Linux
Linux-comp

44

Measurement Summary

  Timing is highly case and system dependent
  What is overall duration being measured?

  > 1 second: interval counting is OK
  << 1 second: must use cycle counters

  On what hardware / OS / OS version?
  Accessing counters

–  How gettimeofday is implemented
  Timer interrupt overhead
  Scheduling policy

  Devising a Measurement Method
  Long durations: use Unix timing functions
  Short durations

  If possible, use gettimeofday
  Otherwise must work with cycle counters
  K-best scheme most successful

23

45

Approximate Measures of Short
Intervals
 Suppose no access to cycle counters
 How to measure an event that is shorter

than the resolution of the clock?
 Cannot directly measure events with

 Te < Tc

 Overhead makes it hard to measure even
when Te > nTc,
  n is small integer

46

Approximate Measures of Short
Intervals

Tc

Te

Te

Case 1:
Count+1

Case 2:
Count+0

24

47

Approximate Measures of Short
Intervals
 Bernoulli experiment

  Outcome = +1 with probability p
  Outcome = +0 with probability (1-p)
  Equivalent to flipping a biased coin

 Repeat n times
  Approximates a binomial distribution
  Only approximate since each measurement

cannot be guaranteed to be independent
  Usually close enough in practice

48

Approximate Measures of Short
Intervals
 m = number of times Case 1 occurs

  Count+1
 n = total number of measurements
 Average duration is ratio of m/n
 Use confidence interval for proportions

ce T
n
mT =

25

49

Example

  Clock resolution = 10 us
  n = 8764 measurements
  m = 467 clock ticks counted
  95% confidence interval

10 us

?

?

Case 1:
467

Case 2:
8297

50

Example

)0580.0,0486.0(
8764

8764
4671

8764
467

96.1
8764
467),(21

=

 −
= cc

  Scale by clock period = 10 us
  95% chance that measured event is

  (0.49, 0.58) us

26

51

Important Aside

 Confidence interval calculation for
proportions discussed in last class (and
textbooks) is controversial
  Recently, statisticians have shown that it is

problematic
  The approach used on the previous slide + in the

textbooks (Lilja, Jain, others) is somewhat
discredited

  Link on class web page

52

Indirect Ad Hoc Techniques

 Sometimes the desired metric cannot be
measured directly

 Use your creativity to measure one thing
and then derive/infer the desired value

27

53

Example 1 – System Load

 What is system load?
  Number of jobs in run queue?
  Number of jobs actively time-sharing?
  Fraction of time processor is not in idle loop?
  Others?

 How to measure it?
  Modify OS
  PC sampling
  Indirect?

54

Example

 Let system run for fixed time T
 Note value of counter

Monitor

Count

n

T

28

55

Example

 Let system run for fixed time T
 Compare value of loaded system monitor

counter to unloaded system count value

Monitor

Monitor
App 1

Count

n

n/2

T

56

Example

 Let system run for fixed time T
 Compare value of loaded system monitor

counter to unloaded system count value

Monitor

Monitor
App 1

App 1

App 2

Monitor

Count

n

n/2

n/3

T

29

57

Example 2: The Memory Mountain

 Read throughput (read bandwidth)
  Number of bytes read from memory per second

(MB/s)
 Memory mountain

  Measured read throughput as a function of
spatial and temporal locality.

  Compact way to characterize memory system
performance.

58

Memory Mountain Test Function

/* The test function */
void test(int elems, int stride) {
 int i, result = 0;
 volatile int sink;

 for (i = 0; i < elems; i += stride)
 result += data[i];

 sink = result; /* So compiler doesn't optimize away the loop */
}

/* Run test(elems, stride) and return read throughput (MB/s) */
double run(int size, int stride, double Mhz)
{
 double cycles;
 int elems = size / sizeof(int);

 test(elems, stride); /* warm up the cache */
 cycles = fcyc2(test, elems, stride, 0); /* call test(elems,stride) */
 return (size / stride) / (cycles / Mhz); /* convert cycles to MB/s */
}

30

59

Memory Mountain Main Routine
/* mountain.c - Generate the memory mountain. */
#define MINBYTES (1 << 10) /* Working set size ranges from 1 KB */
#define MAXBYTES (1 << 23) /* ... up to 8 MB */
#define MAXSTRIDE 16 /* Strides range from 1 to 16 */
#define MAXELEMS MAXBYTES/sizeof(int)

int data[MAXELEMS]; /* The array we'll be traversing */

int main()
{
 int size; /* Working set size (in bytes) */
 int stride; /* Stride (in array elements) */
 double Mhz; /* Clock frequency */

 init_data(data, MAXELEMS); /* Initialize each element in data to 1 */
 Mhz = mhz(0); /* Estimate the clock frequency */
 for (size = MAXBYTES; size >= MINBYTES; size >>= 1) {

 for (stride = 1; stride <= MAXSTRIDE; stride++)
 printf("%.1f\t", run(size, stride, Mhz));
 printf("\n");

 }
 exit(0);
}

60

The Memory Mountain

s1

s3

s5

s7

s9

s1
1

s1
3

s1
5

8m

2m 51
2k 12

8k 32
k 8k

2k

0

200

400

600

800

1000

1200

re
ad

 th
ro

ug
hp

ut
 (M

B
/s

)

stride (words) working set size (bytes)

Pentium III Xeon
550 MHz
16 KB on-chip L1 d-cache
16 KB on-chip L1 i-cache
512 KB off-chip unified
L2 cache

Ridges of
Temporal
Locality

L1

L2

mem

Slopes of
Spatial
Locality

xe

31

61

Ridges of Temporal Locality
  Slice through the memory mountain with stride=1

  illuminates read throughputs of different caches and
memory

0

200

400

600

800

1000

1200
8m 4m 2m

10
24
k

51
2k

25
6k

12
8k 64
k

32
k

16
k 8k 4k 2k 1k

working set size (bytes)

re
ad

 th
ro

ug
pu

t (
M

B
/s

)

L1 cache
region

L2 cache
region

main memory
region

62

A Slope of Spatial Locality

  Slice through memory mountain with size=256KB
  shows cache block size.

0

100

200

300

400

500

600

700

800

s1 s2 s3 s4 s5 s6 s7 s8 s9 s10 s11 s12 s13 s14 s15 s16

stride (words)

re
ad

 th
ro

ug
hp

ut
 (M

B
/s

)

one access per cache line

32

63

Perturbation

 To obtain more information (higher
resolution)
  → Use more instrumentation points

  More instrumentation points
  → Greater perturbation

64

Perturbation

 Computer performance measurement
uncertainty principle
  Accuracy is inversely proportional to

resolution.

Resolution

A
cc

ur
ac

y

Low

High

High

33

65

Perturbation

 Superposition does not work here
  Non-linear
  Non-additive

 Double instrumentation ≠ double impact on
performance
  Some instrumentation cancels out
  Some multiplies impact

 No way to predict!

66

Instrumentation Code

 Changes memory access patterns
  Affects memory banking optimizations

 Generates additional load/store
instructions
  More frequent cache flushes and replacements
  But may reduce set associativity conflicts

 Generates more I/O operations
 Will increase overall execution time

  More time-sharing context switches
 Alters virtual memory paging behavior

34

67

Summary

  Measurement strategies
  Event-driven
  Tracing
  Sampling

  Measuring program time
  Profiling
  Trace generation
  Indirect measurements when all else fails

  System load example
  Perturbations

  Have to be careful to minimize perturbations due to
instrumentation

