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Measuring Performance 
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Measurement tools and techniques 

 Fundamental strategies 
 Interval timers & cycle counters 
 Indirect measurement 
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Events 

 Most measurement tools based on events 
  Some predefined change to system state 

 Definition depends on metric being 
measured 
  Memory reference 
  Disk access 
  Change in a register’s state 
  Network message 
  Processor interrupt 
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Event Classification 

 Count metrics 
  The number of times event X occurs 
  Number of cache misses 
  Number of I/O operations 
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Event Classification 

 Secondary-event metrics 
  Record a value when triggered 

by some event 
  Record block size for each I/O 

operation 
  Count number of operations 
  Find average I/O transfer size 
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Event Classification 

 Profiles 
  Characterization of overall 

behavior 
  Aggregate/big picture view of an 

application program 
  Time spent in each function 
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Event-Driven Strategies 

 Record necessary information only when 
selected event occurs 

 Modify system to record event 
 Dump data when program terminates 

  May need intermediate dumps also 
 E.g. simple counter in page fault routine 
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Event-Driven Strategies 

 System overhead 
  Only when the event of interest actually occurs 
  Infrequent events → little perturbation 
  Frequent events → high perturbation 

 No longer “typical” behavior? 
  Perturbation changes system being measured 
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Event-Driven Strategies 

 Inter-event time is unpredictable 
  Depends on when events actually occur 
  Makes it hard to estimate perturbation 
  How long to measure? 

 Event-driven measurement tools 
 → Good for low-frequency events 
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Event-Driven Strategies 

  Counts 8 events exactly 

+1 +1 +1 +1 +1 +1 +1 +1 
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Tracing 

 Similar to event-driven 
 But record additional system state 

  Event has occurred – count 
  Additional information to uniquely identify 

event 
  E.g. addresses that cause page faults 

 Overhead 
  Additional memory or disk storage 
  Time to save state 

 Relatively large system perturbation 
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Tracing 

  Counts 8 events plus extra data 
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Sampling 

 Record necessary state at fixed time 
intervals 

 Overhead 
  Independent of specific event frequency 
  Depends on sampling frequency 

 Misses some events 
 Produces statistical summary 

  May miss infrequent events 
  Each replication will produce different results 
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Sampling 

  Counts 3 events out of 5 samples 

+1 +1 +1 
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Comparisons 

Event 
count 

Tracing Sampling 

Resolution Exact 
count 

Detailed 
info 

Statistical 
summary 

Overhead Low High Constant 

Perturbation ~ #events High Fixed 

16 

Comparison 

 Event counting 
  Best for low frequency events 
  Required if exact counts needed 

 Sampling 
  Best for high frequency events 
  If statistical summary is adequate 

 Tracing 
  When additional detail is required 
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Indirect Measurements 

 Used when desired metric is not directly 
accessible 

 Measure one thing directly 
  Derive or deduce desired metric 

 Highly dependent on creativity of 
performance analyst 

Time Measurement 

Based on Ch 9 of Computer Systems:  
A Programmer’s Perspective -  

Bryant & O’Halloran 
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Computer Time Scales 

 Two Fundamental Time Scales 
  Processor:  ~10–9 sec. 
  External events:  ~10–2 sec. 

  Keyboard input 
 Disk seek 
  Screen refresh 

  Implication 
  Can execute many instructions 

while waiting for external 
event to occur 

  Can alternate among 
processes without anyone 
noticing 

Time Scale (1 Ghz Machine) 
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Keystroke 
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Microscopic Macroscopic 
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Measurement Challenge 

  How Much Time Does Program X Require? 
  CPU time 

  How many total seconds are used when executing X? 
  Measure used for most applications 
  Small dependence on other system activities 

  Actual (“Wall”) Time 
  How many seconds elapse between the start and the completion 

of X? 
  Depends on system load, I/O times, etc. 

  Confounding Factors 
  How does time get measured? 
  Many processes share computing resources 

  Transient effects when switching from one process to another 
  Suddenly, the effects of alternating among processes become 

noticeable 
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“Time” on a Computer System 

real (wall clock) time


= user time (time executing instructions in the user process)


+
 =  real (wall clock) time


We will use the word “time” to refer to user time.


= system time (time executing instructions in kernel on behalf 
of user process)


+


= some other userʼs time (time executing instructions in 
different userʼs process)


cumulative user time
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Activity Periods: Light Load 

  Most of the time spent 
executing one process 

  Periodic interrupts every 
10ms 
  Interval timer 
  Keep system from 

executing one process to 
exclusion of others 

  Other interrupts 
  Due to I/O activity 

  Inactivity periods 
  System time spent 

processing interrupts 
  ~250,000 clock cycles  

Activity Periods, Load = 1
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Activity Periods: Heavy Load 

  Sharing processor with one other active 
process 

  From perspective of this process, system 
appears to be “inactive” for ~50% of the time 
 Other process is executing 

Activity Periods, Load = 2
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Interval Counting 

 OS Measures Runtimes Using Interval 
Timer 
  Maintain 2 counts per process 

  User time 
  System time 

  Each time get timer interrupt, increment 
counter for executing process 
  User time if running in user mode 
  System time if running in kernel mode 
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Interval Counting Example 
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Unix time Command 

  0.82 seconds user time 
  82 timer intervals 

  0.30 seconds system time 
  30 timer intervals 

  1.32 seconds wall time 
  84.8% of total was used running these processes  

  (.82+0.3)/1.32 = .848 

time make osevent 
gcc -O2 -Wall -g  -march=i486 -c clock.c 
gcc -O2 -Wall -g  -march=i486 -c options.c 
gcc -O2 -Wall -g  -march=i486 -c load.c 
gcc -O2 -Wall -g  -march=i486 -o osevent osevent.c . . . 
0.820u 0.300s 0:01.32 84.8%     0+0k 0+0io 4049pf+0w 
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Accuracy of Interval Counting 

  Worst Case Analysis 
  Timer Interval = δ 
  Single process segment measurement can be off by ±δ 
  No bound on error for multiple segments 

  Could consistently underestimate, or consistently 
overestimate 
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Accuracy of Int. Cntg. (cont.) 

  Average Case Analysis 
  Over/underestimates tend to balance out 
  As long as total run time is sufficiently large 

  Min run time ~1 second 
  100 timer intervals 

  Consistently miss 4% overhead due to timer interrupts 
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Cycle Counters 

  Most modern systems have built in registers that are 
incremented every clock cycle 
  Very fine grained 
 Maintained as part of process state 

–  In Linux, counts elapsed global time 
  Special assembly code instruction to access 
  On (recent model) Intel machines: 

  64 bit counter. 
  RDTSC instruction sets %edx to high order 32-

bits, %eax to low order 32-bits 
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Cycle Counter Period 

  Wrap Around Times for 550 MHz machine 
  Low order 32 bits wrap around every 232 / (550 * 106) = 

7.8 seconds 
  High order 64 bits wrap around every 264 / (550 * 106) = 

33539534679 seconds 
  1065 years 

  For 2 GHz machine 
  Low order 32-bits every 2.1 seconds 
  High order 64 bits every 293 years 
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Measuring with Cycle Counter 
  Idea 

  Get current value of cycle counter 
  store as pair of unsigned’s cyc_hi and cyc_lo 

  Compute something 
  Get new value of cycle counter 
  Perform double precision subtraction to get elapsed cycles 

/* Keep track of most recent reading of cycle counter */ 
static unsigned cyc_hi = 0; 
static unsigned cyc_lo = 0; 

void start_counter() 
{ 
  /* Get current value of cycle counter */ 
  access_counter(&cyc_hi, &cyc_lo); 
} 
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Accessing the Cycle Cntr. 
  GCC allows inline assembly code with mechanism for matching 

registers with program variables 
  Code only works on x86 machine compiling with GCC 

  Emit assembly with rdtsc and two movl instructions 

void access_counter(unsigned *hi, unsigned *lo) 
{ 
  /* Get cycle counter */ 
  asm("rdtsc; movl %%edx,%0; movl %%eax,%1" 
      : "=r" (*hi), "=r" (*lo) 
      : /* No input */ 
      : "%edx", "%eax"); 
} 
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Completing Measurement 

  Get new value of cycle counter 
  Perform double precision subtraction to get elapsed cycles 
  Express as double to avoid overflow problems 

double get_counter() 
{ 
  unsigned ncyc_hi, ncyc_lo 
  unsigned hi, lo, borrow; 
  /* Get cycle counter */ 
  access_counter(&ncyc_hi, &ncyc_lo); 
  /* Do double precision subtraction */ 
  lo = ncyc_lo - cyc_lo; 
  borrow = lo > ncyc_lo; 
  hi = ncyc_hi - cyc_hi - borrow; 
  return (double) hi * (1 << 30) * 4 + lo; 
} 
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Timing With Cycle Counter 

 Determine Clock Rate of Processor 
  Count number of cycles required for some fixed 

number of seconds 

 Time Function P 
  First attempt: Simply count cycles for one 

execution of P 
  double tsecs; 
  start_counter(); 
  P(); 
  tsecs = get_counter() / (MHZ * 1e6); 

  double MHZ; 
  int sleep_time = 10; 
  start_counter(); 
  sleep(sleep_time); 
  MHZ = get_counter()/(sleep_time * 1e6); 
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Measurement Pitfalls 

  Overhead 
  Calling get_counter() incurs small amount of overhead 
  Want to measure long enough code sequence to compensate 

  Unexpected Cache Effects 
  artificial hits or misses 
  e.g., these measurements were taken with the Alpha cycle 

counter: 
 foo1(array1, array2, array3);    /* 68,829 cycles */ 
 foo2(array1, array2, array3);  /* 23,337 cycles */ 
  vs. 
 foo2(array1, array2, array3);  /* 70,513 cycles */ 
 foo1(array1, array2, array3);    /* 23,203 cycles */ 
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Dealing with Overhead & Cache Effects 

  Always execute function once to “warm up” cache 
  Keep doubling number of times execute P() until reach some 

threshold 
  Used CMIN = 50000 

  int cnt = 1; 
  double cmeas = 0; 
  double cycles; 
  do  { 
    int c = cnt; 
    P();  /* Warm up cache */ 
    get_counter(); 
    while (c-- > 0) 
      P(); 
    cmeas = get_counter(); 
    cycles = cmeas / cnt; 
    cnt += cnt; 
  } while (cmeas < CMIN);  /* Make sure have enough */ 
  return cycles / (1e6 * MHZ); 
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Multitasking Effects 

  Cycle Counter Measures Elapsed Time 
  Keeps accumulating during periods of inactivity 

  System activity 
  Running other processes 

  Key Observation 
  Cycle counter never underestimates program run time 
  Possibly overestimates by large amount 

  K-Best Measurement Scheme 
  Perform up to N (e.g., 20) measurements of function 
  See if fastest K (e.g., 3) within some relative factor ε (e.g., 

0.001) 

K
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K-Best 
Validation 

  Very good accuracy for < 
8ms 
  Within one timer interval 
  Even when heavily loaded 

  Less accurate of > 10ms 
  Light load: ~4% error 

  Interval clock interrupt 
handling 

  Heavy load: Very high error 

Intel Pentium III, Linux
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How are “actual” run times of programs 
determined? 
 Write a procedure that repeatedly writes 

values to an array of 2048 integers and 
then reads them back 

 Let r be the number of repetitions 
 Determine expected run time T(r) of 

procedure as a function of r by timing it 
for r = 1…10 and performing a least squares 
fit to T(r) = mr + b 
  Linear regression (will discuss later this 

semester) 
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Compensate 
For Timer 
Overhead 

  Subtract Timer Overhead 
  Estimate overhead of single 

interrupt by measuring periods of 
inactivity 

  Call interval timer to determine 
number of interrupts that have 
occurred 

  Better Accuracy for > 10ms 
  Light load: 0.2% error 
  Heavy load: Still very high error 

K = 3, ε = 0.001


Intel Pentium III, Linux
Compensate for Timer Interrupt Handling
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K-Best 
on NT 

  Acceptable accuracy for < 
50ms 
  Scheduler allows process 

to run multiple intervals 

  Less accurate of > 10ms 
  Light load: 2% error 
  Heavy load: Generally very 

high error 

K = 3, ε = 0.001


Pentium II, Windows-NT
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Time of Day Clock 
  Unix gettimeofday() function 
  Return elapsed time since reference time (Jan 1, 1970) 
  Implementation 

  Uses interval counting on some machines 
–  Coarse grained 

  Uses cycle counter on others 
–  Fine grained, but significant overhead and only 1 microsecond resolution 

#include <sys/time.h> 
#include <unistd.h> 

  struct timeval tstart, tfinish; 
  double tsecs; 
  gettimeofday(&tstart, NULL); 
  P(); 
  gettimeofday(&tfinish, NULL); 
  tsecs = (tfinish.tv_sec - tstart.tv_sec) +  
      1e6 * (tfinish.tv_usec - tstart.tv_usec); 
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K-Best Using gettimeofday 

  Linux 
  As good as using cycle counter 
  For times > 10 microseconds 

  Windows 
  Implemented by interval 

counting 
  Too coarse-grained 

Using gettimeofday
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Measurement Summary 

  Timing is highly case and system dependent 
  What is overall duration being measured? 

  > 1 second: interval counting is OK 
  << 1 second: must use cycle counters 

  On what hardware / OS / OS version? 
  Accessing counters 

–  How gettimeofday is implemented 
  Timer interrupt overhead 
  Scheduling policy 

  Devising a Measurement Method 
  Long durations: use Unix timing functions 
  Short durations 

  If possible, use gettimeofday 
  Otherwise must work with cycle counters 
  K-best scheme most successful 
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Approximate Measures of Short 
Intervals 
 Suppose no access to cycle counters 
 How to measure an event that is shorter 

than the resolution of the clock? 
 Cannot directly measure events with 

 Te < Tc 

 Overhead makes it hard to measure even 
when Te > nTc,  
  n is small integer 

46 

Approximate Measures of Short 
Intervals 

Tc 

Te 

Te 

Case 1: 
Count+1 

Case 2: 
Count+0 
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Approximate Measures of Short 
Intervals 
 Bernoulli experiment 

  Outcome = +1 with probability p 
  Outcome = +0 with probability (1-p) 
  Equivalent to flipping a biased coin 

 Repeat n times 
  Approximates a binomial distribution 
  Only approximate since each measurement 

cannot be guaranteed to be independent 
  Usually close enough in practice 
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Approximate Measures of Short 
Intervals 
 m = number of times Case 1 occurs 

  Count+1 
 n = total number of measurements 
 Average duration is ratio of m/n 
 Use confidence interval for proportions 

ce T
n
mT =
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Example 

  Clock resolution = 10 us 
  n = 8764 measurements 
  m = 467 clock ticks counted 
  95% confidence interval 

10 us 

? 

? 

Case 1: 
467 

Case 2: 
8297 
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Example 
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  Scale by clock period = 10 us 
  95% chance that measured event is 

  (0.49, 0.58) us 



26 

51 

Important Aside 

 Confidence interval calculation for 
proportions discussed in last class (and 
textbooks) is controversial 
  Recently, statisticians have shown that it is 

problematic 
  The approach used on the previous slide + in the 

textbooks (Lilja, Jain, others) is somewhat 
discredited 

  Link on class web page 

52 

Indirect Ad Hoc Techniques 

 Sometimes the desired metric cannot be 
measured directly 

 Use your creativity to measure one thing 
and then derive/infer the desired value 
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Example 1 – System Load 

 What is system load? 
  Number of jobs in run queue? 
  Number of jobs actively time-sharing? 
  Fraction of time processor is not in idle loop? 
  Others? 

 How to measure it? 
  Modify OS 
  PC sampling 
  Indirect? 
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Example 

 Let system run for fixed time T 
 Note value of counter 

Monitor 

Count 

n 

T 
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Example 

 Let system run for fixed time T 
 Compare value of loaded system monitor 

counter to unloaded system count value 

Monitor 

Monitor 
App 1 

Count 

n 

n/2 

T 
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Example 

 Let system run for fixed time T 
 Compare value of loaded system monitor 

counter to unloaded system count value 

Monitor 

Monitor 
App 1 

App 1 

App 2 

Monitor 

Count 

n 

n/2 

n/3 

T 
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Example 2: The Memory Mountain 

 Read throughput (read bandwidth) 
  Number of bytes read from memory per second 

(MB/s) 
 Memory mountain 

  Measured read throughput as a function of 
spatial and temporal locality. 

  Compact way to characterize memory system 
performance.  
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Memory Mountain Test Function 

/* The test function */ 
void test(int elems, int stride) { 
    int i, result = 0;  
    volatile int sink;  

    for (i = 0; i < elems; i += stride) 
 result += data[i]; 

    sink = result; /* So compiler doesn't optimize away the loop */ 
} 

/* Run test(elems, stride) and return read throughput (MB/s) */ 
double run(int size, int stride, double Mhz) 
{ 
    double cycles; 
    int elems = size / sizeof(int);  

    test(elems, stride);                     /* warm up the cache */ 
    cycles = fcyc2(test, elems, stride, 0);  /* call test(elems,stride) */ 
    return (size / stride) / (cycles / Mhz); /* convert cycles to MB/s */ 
} 
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Memory Mountain Main Routine 
/* mountain.c - Generate the memory mountain. */ 
#define MINBYTES (1 << 10)  /* Working set size ranges from 1 KB */ 
#define MAXBYTES (1 << 23)  /* ... up to 8 MB */ 
#define MAXSTRIDE 16        /* Strides range from 1 to 16 */ 
#define MAXELEMS MAXBYTES/sizeof(int)  

int data[MAXELEMS];         /* The array we'll be traversing */ 

int main() 
{ 
    int size;        /* Working set size (in bytes) */ 
    int stride;      /* Stride (in array elements) */ 
    double Mhz;      /* Clock frequency */ 

    init_data(data, MAXELEMS); /* Initialize each element in data to 1 */ 
    Mhz = mhz(0);              /* Estimate the clock frequency */ 
    for (size = MAXBYTES; size >= MINBYTES; size >>= 1) { 

 for (stride = 1; stride <= MAXSTRIDE; stride++)  
     printf("%.1f\t", run(size, stride, Mhz));   
 printf("\n"); 

    } 
    exit(0); 
} 
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The Memory Mountain 
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Ridges of Temporal Locality 
  Slice through the memory mountain with stride=1 

  illuminates read throughputs of different caches and 
memory 
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A Slope of Spatial Locality 

  Slice through memory mountain with size=256KB 
  shows cache block size. 
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Perturbation 

 To obtain more information (higher 
resolution) 
   → Use more instrumentation points 

  More instrumentation points 
   → Greater perturbation 
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Perturbation 

 Computer performance measurement 
uncertainty principle  
  Accuracy is inversely proportional to 

resolution. 
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Perturbation 

 Superposition does not work here 
  Non-linear 
  Non-additive 

 Double instrumentation ≠ double impact on 
performance 
  Some instrumentation cancels out 
  Some multiplies impact 

 No way to predict! 

66 

Instrumentation Code 

 Changes memory access patterns 
  Affects memory banking optimizations 

 Generates additional load/store 
instructions 
  More frequent cache flushes and replacements 
  But may reduce set associativity conflicts 

 Generates more I/O operations 
 Will increase overall execution time 

  More time-sharing context switches 
 Alters virtual memory paging behavior 
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Summary 

  Measurement strategies 
  Event-driven 
  Tracing 
  Sampling 

  Measuring program time 
  Profiling 
  Trace generation 
  Indirect measurements when all else fails 

  System load example 
  Perturbations 

  Have to be careful to minimize perturbations due to 
instrumentation 


