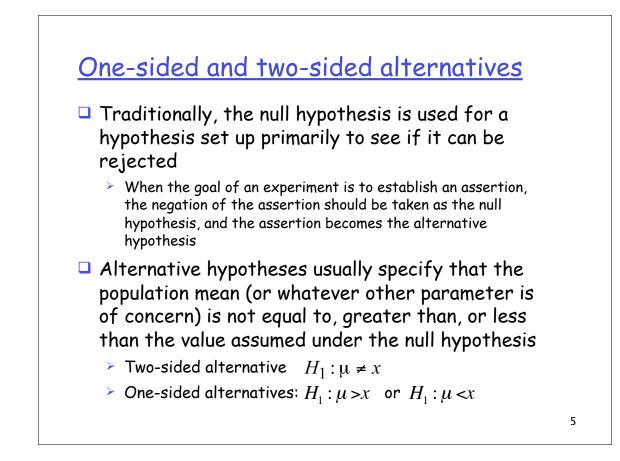
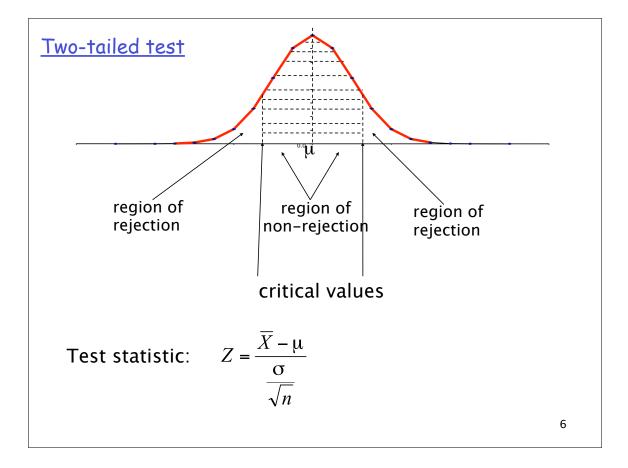
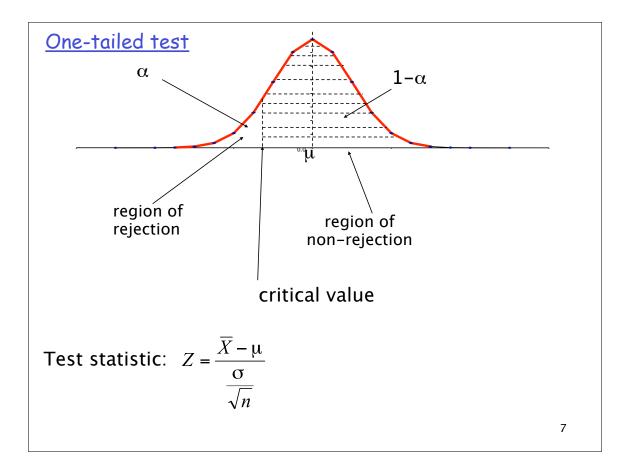


	Actual S	situation
	H _o true	H _o false
Accept H _o	Correct decision Confidence= $1-\alpha$	Type II Error: Pr[Type II]=β
Reject H _o	Type I Error P[Type I]=α	Correct Decision Power= $1-\beta$





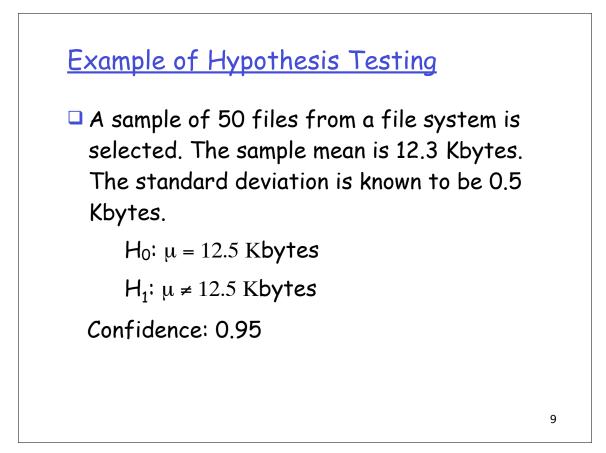


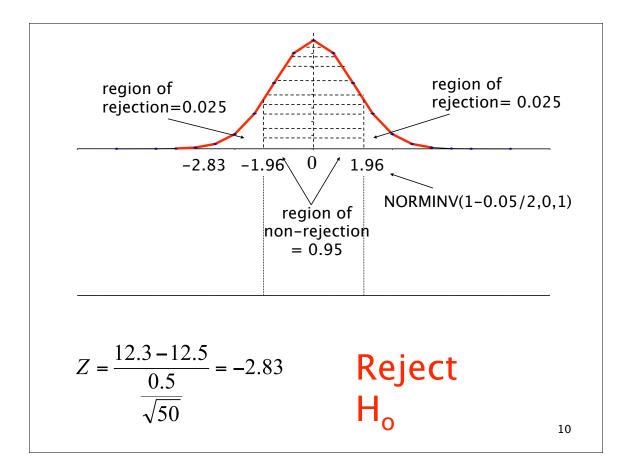
<u>Critical regions for two-sided and one-sided alternative</u> <u>hypotheses</u>

Null hypothesis: $\mu = \mu_0$

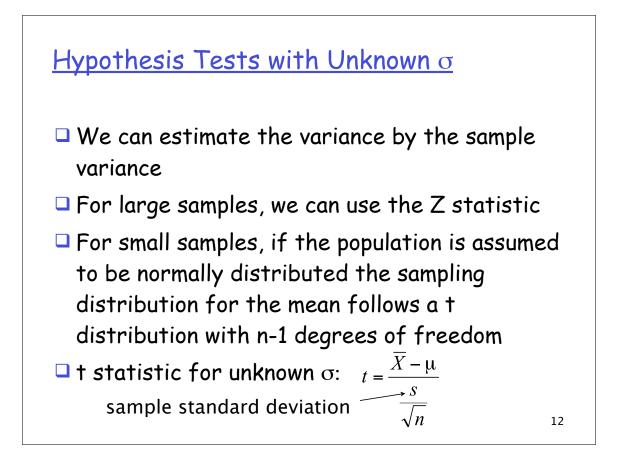
Alternative hypothesis	Reject null hypothesis if:
μ < μ ₀	Z < -z _α
$\mu > \mu_0$	Ζ > z _α
μ ≠ μ ₀	$Z \leftarrow -z_{\alpha/2} \text{ or } Z > z_{\alpha/2}$

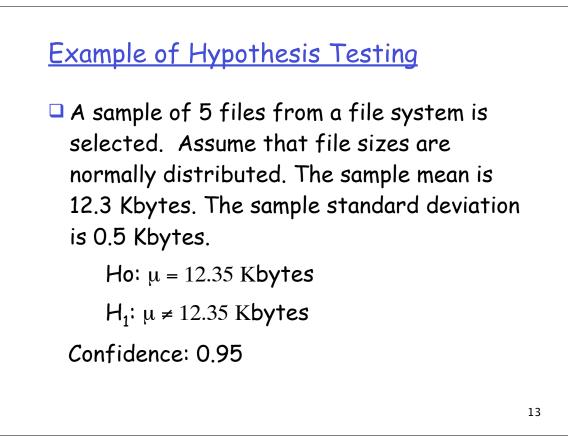
Note that the critical region for accepting the null hypothesis can be used to compute the (1- α)100% confidence intervals for the population mean μ , i.e. $(\overline{x} - z_{1-\alpha/2} \frac{s}{\sqrt{n}}, \overline{x} + z_{1-\alpha/2} \frac{s}{\sqrt{n}})$





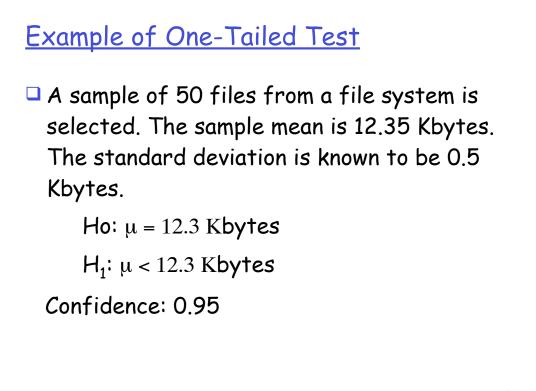
Null Hypothesis ^µ =	12.5
Level of Significance	0.05
Population Standard Deviation	0.5
Sample Size	50
Sample Mean	12.3
Standard Error of the Mean	0.070710678
Z Test Statistic	-2.828427125
Two-Tailed Tes	st
Lower Critical Value	-1.959961082
Upper Critical Value	1.959961082
p-Value	0.00467786





Example

t = (12.3 - 12.35)/(0.5/√5) = -0.2236
α = 0.05, degrees of freedom = 4
t_{α/2} = 2.776 for 4 degrees of freedom In EXCEL, TINV(0.05,4)
The t test statistic (-0.2236) is between the lower and upper critical values (i.e. -2.776 and 2.776)
So the null hypothesis should not be rejected.



Example of One-Tailed Test

$$Z = \frac{\overline{X} - \mu}{\sigma / \sqrt{n}} = \frac{12.35 - 12.3}{0.5 / \sqrt{50}} = 0.707 \quad \text{Statistic}$$
Critical value = NORMINV(0.05,0,1) = -1.645.
Region of non-rejection: $Z \ge -1.645$.
So, do not reject H_o. (Z exceeds critical value)

<u>One-tailed Test</u>

Null Hypothesis ^µ =	12.3
Level of Significance	0.05
Population Standard Deviation	0.5
Sample Size	50
Sample Mean	12.35
Standard Error of the Mean	0.070710678
Z Test Statistic	0.707106781
Lower-Tail Tes	 t
Lower Critical Value	-1.644853
<i>p</i> -Value	0.760250013
Do not reject the null hy	pothesis

State the null and alternative hypothesis.
 Choose the level of significance α.
 Choose the sample size n. Larger samples allow us to detect even small differences between sample statistics and true population parameters. For a given α, increasing n decreases β.
 Choose the appropriate statistical technique and test statistic to use (Z or t).

17

Steps in Hypothesis Testing

4. Determine the critical values that divide the regions of acceptance and non-acceptance.

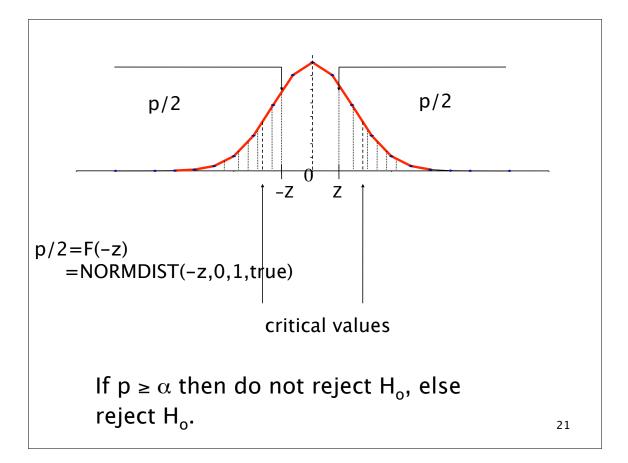
5. Collect the data and compute the sample mean and the appropriate test statistic (e.g., Z).

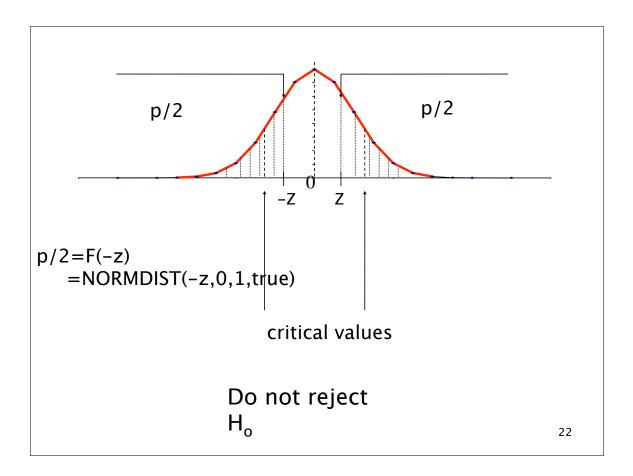
6. If the test statistic falls in the nonreject region, H_0 cannot be rejected. Else H_0 is rejected.

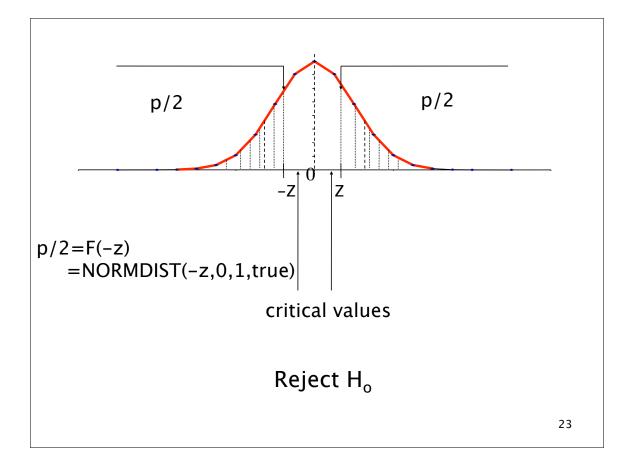
19

The p-value Approach

 p-value: observed level of significance.
 Defined as the probability that the test statistic is equal to or more extreme than the result obtained from the sample data, given that H₀ is true.







<u>nputing p-values</u>		
		_
Z Test of Hypothesis for the Me	an	
Null Hypothesis ^μ =	12.5	
Level of Significance	0.05	
Population Standard Deviation	0.5	
Sample Size	50	
Sample Mean	12.3	
Standard Error of the Mean	0.070710678	
Z Test Statistic	-2.828427125	
Two-Tailed Test		
Lower Critical Value	-1.959961082	
Upper Critical Value	1.959961082	
p-Value	0.00467786	
Reject the null hypot	hesis	

The null hypothesis is rejected because p (0.0047) is less than the level of significance (0.05). $_{24}$

- 1. State the null and alternative hypothesis.
- 2. Choose the level of significance α .
- Choose the sample size n. Larger samples allow us to detect even small differences between sample statistics and true population parameters. For a given α, increasing n decreases β.
- 4. Choose the appropriate statistical technique and test statistic to use (Z or t).

