Comparing Systems Using Sample Data

CS 700

Comparing alternatives

- Today's lecture: comparing two alternatives
> use confidence intervals
\square Comparing more than two alternatives
> ANOVA
- Analysis of Variance
> Will discuss later this semester

Comparing Two Alternatives

\square Suppose you want to compare two cache replacement policies under similar workloads.
Metric of interest: cache hit ratio.

- Types of comparisons:
> Paired observations
> Unpaired observations.

Paired Observations

Example of Paired Observations

\square Six similar workloads were used to compare the cache hit ratio obtained under object replacement policies A and B on a Web server. Is A better than B ?

Workload	Cache Hit Ratio		
	Policy A	Policy B	A-B
1	0.35	0.28	0.07
2	0.46	0.37	0.09
3	0.29	0.34	-0.05
4	0.54	0.60	-0.06
5	0.32	0.22	0.10
6	0.15	0.18	-0.03
	Sample mean		
	Sample variance		0.02000
	Sample standard dev.		0.07430

Example of Paired Observations

Sample mean	0.02000
Sample variance	0.00552
Sample standard dev.	0.07430

In Excel:
TINV(1-0.9,5)
0.95 quantile of t -variable with 5 degrees of freedom 90\% confidence interval
lower bound -0.0411
upper bound

Example of Paired Observations

Sample mean	0.02000
Sample variance	0.00552
Sample standard dev.	0.07430

In Excel:
TINV(1-0.9,5)
0.95 quantile of t -variable with $\mathbf{5}$ degrees of freedom

90\% confidence interval
lower bound -0.0411
upper bound 0.0811

The interval includes zero, so we cannot say that policy A is better than policy B.

Unpaired Observations

Inferences concerning two means

- For large samples, we can statistically test the equality of the means of two samples by using the statistic

$$
Z=\frac{\bar{X}_{1}-\bar{X}_{2}}{\sqrt{\frac{\sigma_{1}^{2}}{n_{1}}}+\sqrt{\frac{\sigma_{2}^{2}}{n_{2}}}}
$$

> Z is a random variable having the standard normal distribution.
> We need to check if the confidence interval of Z at a given level includes zero

- We can approximate the population variances above with sample variances when n_{1} and n_{2} are greater than 30

Inferences concerning two means

(cont'd)

For small samples, if the population variances are unknown, we can test for equality of the two means using the t-statistic below, provided we can assume that both populations are normal with equal variances

$$
t=\frac{\bar{X}_{1}-\bar{X}_{2}}{S_{p} \sqrt{\frac{1}{n_{1}}+\frac{1}{n_{2}}}}
$$

$>t$ is a random variable having the t-distribution with $n_{1}+$ $n_{2}-2$ degrees of freedom and S_{p} is the square root of the pooled estimate of the variance of the two samples

$$
S_{p}^{2}=\frac{\left(n_{1}-1\right) s_{1}^{2}+\left(n_{2}-1\right) s_{2}^{2}}{\left(n_{1}-1\right)+\left(n_{2}-1\right)}
$$

Inferences concerning two means

 (cont'd)The pooled-variance \dagger test can be used if we assume that the two population variances are equal
> In practice, we can use it if one sample variance is less than 4 times the variance of the other sample
\square If this is not true, we need another test
> Smith-Satterthwaite test described on the following slides

Unpaired Observations (t-test)

1. Size of samples for A and $B: n_{A}$ and n_{B}
2. Compute sample means:

$$
\begin{aligned}
& \bar{x}_{A}=\frac{1}{n_{A}} \sum_{i=1}^{n_{A}} x_{i A} \\
& \bar{x}_{B}=\frac{1}{n_{B}} \sum_{i=1}^{n_{B}} x_{i B}
\end{aligned}
$$

Unpaired Observations (t-test)

3. Compute the sample standard deviations:

$$
\begin{aligned}
& s_{A}=\sqrt{\frac{\left(\sum_{i=1}^{n_{A}} x_{i A}^{2}\right)-n_{A}\left(\bar{x}_{A}\right)^{2}}{n_{A}-1}} \\
& s_{B}=\sqrt{\frac{\left(\sum_{i=1}^{n_{B}} x_{i B}^{2}\right)-n_{B}\left(\bar{x}_{B}\right)^{2}}{n_{B}-1}}
\end{aligned}
$$

Unpaired Observations (t-test)

4. Compute the mean difference: $\bar{x}_{a}-\bar{x}_{b}$
5. Compute the standard deviation of the mean difference:

$$
s=\sqrt{\frac{s_{a}^{2}}{n_{a}}+\frac{s_{b}^{2}}{n_{b}}}
$$

6. Compute the effective number of degrees of freedom.

$$
v=\frac{\left(s_{a}^{2} / n_{a}+s_{b}^{2} / n_{b}\right)^{2}}{\frac{1}{n_{a}-1}\left(\frac{s_{a}^{2}}{n_{a}}\right)^{2}+\frac{1}{n_{b}-1}\left(\frac{s_{b}^{2}}{n_{b}}\right)^{2}}
$$

Unpaired Observations (\dagger-test)

7. Compute the confidence interval for the mean difference:

$$
\left(\bar{x}_{a}-\bar{x}_{b}\right) \pm t_{[1-\alpha / 2 ; v]} \times S
$$

8. If the confidence interval includes zero, the difference is not significant at 100(1- α)\% confidence level.

Example of Unpaired Observations

- Two cache replacement policies A and B are compared under similar workloads. Is A better than B ?

Workload	Cache Hit Ratio	
	Policy A	Policy B
1	0.35	0.49
2	0.23	0.33
3	0.29	0.33
4	0.21	0.55
5	0.21	0.65
6	0.15	0.18
7	0.42	0.29
8		0.35
9		0.44
Mean	0.2657	0.4011
St. Dev	0.0934	0.1447

Example of Unpaired Observations

na	7
nb	9
mean diff	-0.135
st.dev diff.	0.059776
Eff. Deg. Freed.	13
alpha	0.1
1-alpha/2	0.95
t[1-alpha/2,v]	1.782287
90\% Confidence Interval	
lower bound upper bound	$\begin{aligned} & \hline-0.24193 \\ & -0.02886 \end{aligned}$

At a 90% confidence level the two policies are not identical since zero is not in the interval. With 90% confidence, the cache hit ratio for policy A is smaller than that for policy B. So, policy B is better at that confidence level.

Approximate Visual Test

A

CIs do not overlap: A is higher than B

CIs overlap and mean of A is in B's CI:
A and B are similar

CIs overlap and mean of A is not in B's CI: need to do t-test

Example of Visual Test

Workload	Cache Hit Ratio	
	Policy A	Policy B
1	0.35	0.49
2	0.23	0.33
3	0.29	0.33
4	0.21	0.55
5	0.21	0.65
6	0.15	0.18
7	0.42	0.29
8		0.35
9		0.44
Mean	0.2657	0.4011
St. Dev	0.0934	0.1447

na	7		
nb	9		
alpha	0.1	for	90\% confidence interval
1-alpha/2	0.95		
	Policy A	Policy B	
t[1-alpha/2,v]	1.9432	1.8595	Cls overlap but mean of A is
90\% Confidenc	rval		not in CI of B and vice-versa
lower bound	0.197	0.311	not in Cr or B and vice-versa
upper bound	0.334	0.491	Need to do a t-test.

Non-parametric tests

- The unpaired t-tests can be used if we assume that the data in the two samples being compared are taken from normally distributed populationsWhat if we cannot make this assumption?
> We can make some normalizing transformations on the two samples and then apply the t-test
> Some non-parametric procedure such as the Wilcoxon rank sum test that does not depend upon the assumption of normality of the two populations can be used

Rank-sum (Wilcoxon test)

- Non-parameteric test, i.e., does not depend upon distribution of population, for comparing two samples
- Example:
> Suppose the time between two successive crashes are recorded for two competing computer systems as follows (time in weeks): System I: 0.630 .170 .350 .490 .180 .430 .120 .200 .47 1.360 .510 .450 .840 .320 .40 System II: 1.130 .540 .960 .260 .390 .880 .920 .531 .01 0.480 .891 .071 .110 .58
> The problem is to determine if the two populations are the same or if one is likely to produce larger observations than the other

Rank-sum test (cont'd)

U-test is a non-parameteric alternative to the paired and unpaired t-tests
\square First step in the U-test is to rank the data jointly, in increasing order of magnitude

$$
0.120 .170 .180 .200 .260 .320 .350 .390 .400 .43
$$

I I I I II I I II I I
0.450 .470 .480 .490 .510 .530 .540 .580 .630 .84

I I II I I II II II I I
0.880 .890 .920 .961 .011 .071 .111 .131 .36

II II II II II II II II I

- Assign each data item a rank in this order
- If there are ties among values, the rank assigned to each observation is the mean of the ranks which they jointly occupy

Rank-sum test (cont'd)

- The values in the first sample occupy ranks 1, 2,3,4,6,7,9,10,11,12,14,15,19,20 and 29
- The sum of the ranks for the two samples, $W_{1}=162$ and $W_{2}=273$
- The U-test is based on the statistics

$$
U_{1}=W_{1}-\frac{n_{1}\left(n_{1}+1\right)}{2}
$$

or

$$
U_{2}=W_{2}-\frac{n_{2}\left(n_{2}+1\right)}{2}
$$

or on the statistic U which is the smaller of the two

Rank-sum test (cont'd)

- Under the null hypothesis that the two samples come from identical populations, it can be shown that the mean and variance of the sampling distribution of U_{1} are

$$
\mu_{U_{1}}=\frac{n_{1} n_{2}}{2}
$$

and

$$
\sigma_{U_{1}}^{2}=\frac{n_{1} n_{2}\left(n_{1}+n_{2}+1\right)}{12}
$$

Numerical studies have shown that the sampling distribution of U1 can be approximated closely by the normal distribution when n 1 and n 2 are both greater than 8

Rank-sum test (cont'd)

Thus, the test of the null hypothesis that both samples come from identical populations can be based on

$$
Z=\frac{U_{1}-\mu_{U_{1}}}{\sigma_{U_{1}}}
$$

which is a random variable having approximately the standard normal distribution
\square The alternative hypothesis is either:
$>$ Two-sided test (Populations are not identical)

- We reject the null hypothesis if $Z<-Z_{\alpha / 2}$ or $Z>Z_{a / 2}$
> One-sided test
- Population 2 is stochastically larger than Population 1
- We reject the null hypothesis if $\mathrm{Z}<-\mathrm{Z}_{\alpha}$
- Or, Population 1 is stochastically larger than Population 2
- We reject the null hypothesis if $\mathrm{Z}>\mathrm{Z}_{\alpha}$

Example cont'd

\square At the 0.01 level of significance, test the null hypothesis that the two samples in our example come from the same population

- Alternative hypothesis, populations are not identical
> For $a=0.01$, we can reject the null hypothesis if Z
<-2.575 or Z > 2.575
- Calculations: n1 = 15, n2 = 14, W1 = 162
$\mathrm{U} 1=162-15 \times 16 / 2=42$
$Z=(42-15 \times 14 / 2) / \int((15 \times 14 \times 30) / 12)=-2.75$
> Since Z is less than -2.575 , we reject the null hypothesis; we conclude there is a difference between the two systems

