

	Alternatives					
Neasurem ents	1	2		j		k
1	y 11	<i>Y</i> 12		y 1j		y _{k1}
2	y ₂₁	y 22		<i>y</i> 2j		y _{2k}
i	y i1	y _{i2}		y _{ij}	•••	Yik
n	y _{n1}	y n2		Y nj		y _{nk}
ol mean	Y .1	У.2		y .j		Y.k
Effect	α ₁	α2		α _j		α _k

	nn Me					
			Alteri	natives		
Neasurem ents	1	2		j		k
1	Y 11	<i>Y</i> 12		y 1j		Y k1
2	y ₂₁	y 22		y 2j	•••	y _{2k}
i	y _{i1}	y i2		y ij	•••	Yik
n	y_{n1}	y n2		y nj		y nk
Col mean	Y .1	y .2		y .j		<u>У.</u> к
Effect	α ₁	α2		α _j		α _k

	all Me				
			Alteri	natives	
Neasurem ents	1	2		j	 k
1	Y 11	y 12		y 1j	 Y _{k1}
2	y 21	y 22		y 2j	 y _{2k}
i	y i1	y i2		y ij	 Yik
n	y n1	y n2		y nj	 Ynk
Col mean	y .1	Y .2		У .ј	 Y.ĸ
Effect	α ₁	α2		α _j	 α _k

			Alterr	natives	
Measurem ents	1	2		j	 k
1	Y 11	<i>Y</i> 12		y 1j	 y _{k1}
2	y ₂₁	y 22		y 2j	 y _{2k}
i	y _{i1}	y _{i2}		y ij	 Yik
n	y_{n1}	y _{n2}		y nj	 y nk
Col mean	Y .1	У.2		Y .j	 Y.ĸ
Effect	01	α2		α,	 ak

Sum of Squares of Differences: SSE

$$y_{ij} = \overline{y}_{.j} + e_{ij}$$

$$e_{ij} = y_{ij} - \overline{y}_{.j}$$

$$SSE = \sum_{j=1}^{k} \sum_{i=1}^{n} (e_{ij})^{2} = \sum_{j=1}^{k} \sum_{i=1}^{n} (y_{ij} - \overline{y}_{.j})^{2}$$
17

$$\begin{split} & \overline{y}_{,j} = \overline{y}_{,.} + \alpha_j \\ & \alpha_j = \overline{y}_{,j} - \overline{y}_{,.} \\ & SSA = n \sum_{j=1}^k \left(\alpha_j \right)^2 = n \sum_{j=1}^k \left(\overline{y}_{,j} - \overline{y}_{,.} \right)^2 \end{split}$$

Sum of Squares of Differences: SST

$$y_{ij} = \overline{y}_{..} + \alpha_{j} + e_{ij}$$

$$t_{ij} = \alpha_{j} + e_{ij} = y_{ij} - \overline{y}_{..}$$

$$SST = \sum_{j=1}^{k} \sum_{i=1}^{n} (t_{ij})^{2} = \sum_{j=1}^{k} \sum_{i=1}^{n} (y_{ij} - \overline{y}_{..})^{2}$$

			Alter	natives	
Neasurem ents	1	2		j	 k
1	Y 11	<i>Y</i> 12		×1j	 y _{k1}
2	y ₂₁	Y 22		Y _{2j}	 y _{2k}
i	y _{i1}	y _{i2}		У _{іј}	 Yik
n	Y n1	Y _{n2}		y nj	 Y nk
Col mean	Y .1	У.2		У .ј	 Y.ĸ
Effect	α ₁	α2		α	 α _k

<u>F-test</u>

□ If $F_{computed} > F_{table}$ → We have $(1 - \alpha) * 100\%$ confidence that variation due to actual differences in alternatives, SSA, is statistically greater than variation due to errors, SSE.

<u>ANOVA S</u>	<u>ummary</u>		
Variation	Alternatives	Error	Total
Sum of squares	SSA	SSE	SST
Deg freedom	<i>k</i> – 1	k(n-1)	<i>kn</i> – 1
Mean square	$s_a^2 = SSA/(k-1)$	$s_e^2 = SSE / [k(n-1)]$	
Computed F	s_a^2/s_e^2		
Tabulated F	$F_{[1-\alpha;(k-1),k(n-1)]}$		
			32

Measurements	1	2	3	Overall mear
1	0.0972	0.1382	0.7966	
2	0.0971	0.1432	0.5300	
3	0.0969	0.1382	0.5152	
4	0.1954	0.1730	0.6675	
5	0.0974	0.1383	0.5298	
Column mean	0.1168	0.1462	0.6078	0.2903
Effects	-0.1735	-0.1441	0.3175	

ANOVA	<u>Example</u>		
Variation	Alternatives	Error	Total
Sum of squares	<i>SSA</i> = 0.7585	SSE = 0.0685	SST = 0.8270
Deg freedom	k - 1 = 2	k(n-1) = 12	kn - 1 = 14
Mean square	$s_a^2 = 0.3793$	$s_e^2 = 0.0057$	
Computed F	0.3793/0.0057 = 66.4		
Tabulated F	$F_{[0.95;2,12]} = 3.89$		
			34

Contrast = linear combination of *effects* of alternatives

$$c = \sum_{j=1}^{k} w_j \alpha_j$$
$$\sum_{j=1}^{k} w_j = 0$$

$$Confidence interval for contrasts$$
$$(c_1, c_2) = c \mp t_{1-\alpha/2;k(n-1)}s_c$$
$$\int_{c} \frac{\sum_{j=1}^{k} (w_j^2 s_e^2)}{kn}$$
$$\int_{c} s_e^2 = \frac{SSE}{k(n-1)}$$

Example

□ 90% confidence interval for contrast of [Sys1- Sys2]

$$\alpha_{1} = -0.1735$$

$$\alpha_{2} = -0.1441$$

$$\alpha_{3} = 0.3175$$

$$c_{[1-2]} = -0.1735 - (-0.1441) = -0.0294$$

$$s_{c} = s_{e} \sqrt{\frac{1^{2} + (-1)^{2} + 0^{2}}{3(5)}} = 0.0275$$
90%: $(c_{1}, c_{2}) = (-0.0784, 0.0196)$

