ANOVA- Analyisis of Variance

CS 700

Comparing alternatives

- Comparing two alternatives
> use confidence intervals
\square Comparing more than two alternatives
> ANOVA
- Analysis of Variance

Comparing More Than Two Alternatives

\square Naïve approach
> Compare confidence intervals

One-Factor Analysis of Variance (ANOVA)

- Very general technique
> Look at total variation in a set of measurements
> Divide into meaningful components
- Also called
> One-way classification
> One-factor experimental design
- Introduce basic concept with one-factor ANOVA
- Generalize later with design of experiments

One-Factor Analysis of Variance (ANOVA)

- Separates total variation observed in a set of measurements into:

1. Variation within one system

- Due to random measurement errors

2. Variation between systems

- Due to real differences + random error
\square Is variation(2) statistically > variation(1)?

ANOVA

- Make n measurements of k alternatives
$\square y_{i j}=i$ th measurment on j th alternative
\square Assumes errors are:
> Independent
> Gaussian (normal)

Measurements for All Alternatives

	Alternatives						
Measurem ents	1	2	\ldots	j	\ldots	k	
1	y_{11}	y_{12}	\ldots	$y_{1 j}$	\ldots	$y_{k 1}$	
2	y_{21}	y_{22}	\ldots	$y_{2 \mathrm{j}}$	\ldots	$y_{2 k}$	
\ldots							
i	$y_{i 1}$	$y_{\mathrm{i} 2}$	\ldots	y_{ij}	\ldots	y_{ik}	
\ldots							
n	$y_{\mathrm{n} 1}$	$y_{\mathrm{n} 2}$	\ldots	y_{nj}	\ldots	y_{nk}	
Col mean	y_{11}	$y_{.2}$	\ldots	y_{j}	\ldots	y_{k}	
Effect	α_{1}	α_{2}	\ldots	α_{j}	\ldots	α_{k}	

Column Means

- Column means are average values of all measurements within a single alternative
- Average performance of one alternative

$$
\bar{y}_{. j}=\frac{\sum_{i=1}^{n} y_{i j}}{n}
$$

Column Means

	Alternatives						
Measurem ents	1	2	\ldots	j	\ldots	k	
1	y_{11}	y_{12}	\ldots	$y_{1 j}$	\ldots	$y_{\mathrm{k} 1}$	
2	y_{21}	y_{22}	\ldots	$y_{2 \mathrm{j}}$	\ldots	$y_{2 \mathrm{k}}$	
\ldots							
i	$y_{i 1}$	$y_{\mathrm{i} 2}$	\ldots	y_{ij}	\ldots	y_{ik}	
\ldots							
n	$y_{n 1}$	$y_{\mathrm{n} 2}$	\ldots	y_{nj}	\ldots	$y_{n \mathrm{k}}$	
Col mean	y_{11}	y_{2}	\ldots	y_{j}	\ldots	$y_{\cdot \mathrm{k}}$	
Effect	α_{1}	α_{2}	\ldots	α_{j}	\ldots	α_{k}	

Deviation From Column Mean

$$
\begin{aligned}
y_{i j} & =\bar{y}_{. j}+e_{i j} \\
e_{i j} & =\text { deviation of } y_{i j} \text { from column mean } \\
& =\text { error in measurements }
\end{aligned}
$$

Error $=$ Deviation From Column Mean

	Alternatives							
Measurem ents	1	2	\ldots	j	\ldots	k		
1	y_{11}	y_{12}	\ldots	$y_{i j}$	\ldots	$y_{k 1}$		
2	y_{21}	y_{22}	\ldots	$y_{2 j}$	\ldots	$y_{2 k}$		
\ldots	\ldots	\ldots	\ldots		\ldots	\ldots		
i	$y_{i 1}$	$y_{i 2}$	\ldots		$y_{i j}$	\ldots		
\ldots	\ldots	\ldots	\ldots		\ldots	\ldots		
n	$y_{n 1}$	$y_{n 2}$	\ldots	$y_{n j}$	\ldots	$y_{i k}$		
Col mean	y_{11}	$y_{.2}$	\ldots	y_{j}	\ldots	$y_{n k}$		
Effect	α_{1}	α_{2}	\ldots	α_{j}	\ldots	y_{k}		

Overall Mean

- Average of all measurements made of all alternatives

$$
\bar{y}_{. .}=\frac{\sum_{j=1}^{k} \sum_{i=1}^{n} y_{i j}}{k n}
$$

Overall Mean

	Alternatives					
Measurem ents	1	2	...	j	...	k
1	y_{11}	y_{12}	...	$y_{1 j}$...	$y_{k 1}$
2	y_{21}	y_{22}	...	$y_{2 j}$...	$y_{2 k}$
...
i	$y_{i 1}$	$y_{i 2}$...	$y_{i j}$...	$y_{\text {ik }}$
...
n	$y_{n 1}$	$y_{\mathrm{n} 2}$...	$y_{n j}$...	$y_{n k}$
Col mean	y_{1}	$y_{.2}$...	y_{j}	...	$y_{\text {k }}$
Effect	α_{1}	α_{2}	...	α_{j}	...	$\alpha_{\text {k }}$

Deviation From Overall Mean

$\bar{y}_{. j}=\bar{y}_{. .}+\alpha_{j}$
$\alpha_{j}=$ deviation of column mean from overall mean
$=$ effect of alternative j

Effect = Deviation From Overall Mean

	Alternatives						
Measurem ents	1	2	\ldots	j	\ldots	k	
1	y_{11}	y_{12}	\ldots	$y_{1 j}$	\ldots	$y_{k 1}$	
2	y_{21}	y_{22}	\ldots	$y_{2 j}$	\ldots	$y_{2 k}$	
\ldots							
i	$y_{i 1}$	$y_{i 2}$	\ldots	$y_{i j}$	\ldots	$y_{i k}$	
\ldots							
n	$y_{n 1}$	$y_{n 2}$	\ldots	$y_{n j}$	\ldots	$y_{n k}$	
Col mean	y_{11}	y_{22}	\ldots	y_{j}	\ldots	$y_{k k}$	
Effect	α_{1}	α_{22}	\ldots	α_{j}	\ldots	α_{k}	
		L_{2}					

Effects and Errors

- Effect is distance from overall mean
> Horizontally across alternatives
- Error is distance from column mean
> Vertically within one alternative
- Error across alternatives, too
- Individual measurements are then:

$$
y_{i j}=\bar{y}_{. .}+\alpha_{j}+e_{i j}
$$

Sum of Squares of Differences: SSE

$$
\begin{aligned}
& y_{i j}=\bar{y}_{. j}+e_{i j} \\
& e_{i j}=y_{i j}-\bar{y}_{. j} \\
& S S E=\sum_{j=1}^{k} \sum_{i=1}^{n}\left(e_{i j}\right)^{2}=\sum_{j=1}^{k} \sum_{i=1}^{n}\left(y_{i j}-\bar{y}_{. j}\right)^{2}
\end{aligned}
$$

Sum of Squares of Differences: SSA

$$
\begin{aligned}
& \bar{y}_{. j}=\bar{y}_{. .}+\alpha_{j} \\
& \alpha_{j}=\bar{y}_{. j}-\bar{y}_{. .}
\end{aligned}
$$

$$
S S A=n \sum_{j=1}^{k}\left(\alpha_{j}\right)^{2}=n \sum_{j=1}^{k}\left(\bar{y}_{. j}-\bar{y}_{. .}\right)^{2}
$$

Sum of Squares of Differences: SST

$$
\begin{aligned}
& y_{i j}=\bar{y}_{. .}+\alpha_{j}+e_{i j} \\
& t_{i j}=\alpha_{j}+e_{i j}=y_{i j}-\bar{y}_{. .} \\
& S S T=\sum_{j=1}^{k} \sum_{i=1}^{n}\left(t_{i j}\right)^{2}=\sum_{j=1}^{k} \sum_{i=1}^{n}\left(y_{i j}-\bar{y}_{. .}\right)^{2}
\end{aligned}
$$

Sum of Squares of Differences

$$
\begin{aligned}
& S S A=n \sum_{j=1}^{k}\left(\bar{y}_{. j}-\bar{y}_{. .}\right)^{2} \\
& S S E=\sum_{j=1}^{k} \sum_{i=1}^{n}\left(y_{i j}-\bar{y}_{. j}\right)^{2} \\
& S S T=\sum_{j=1}^{k} \sum_{i=1}^{n}\left(y_{i j}-\bar{y}_{. .}\right)^{2}
\end{aligned}
$$

Sum of Squares of Differences

- SST = differences between each measurement and overall mean
- SSA = variation due to effects of alternatives
- SSE = variation due to errors in measurments

$$
S S T=S S A+S S E
$$

ANOVA - Fundamental Idea

- Separates variation in measured values into:

1. Variation due to effects of alternatives SSA - variation across columns
2. Variation due to errors

SSE - variation within a single column

- If differences among alternatives are due to real differences, SSA should be statistically > SSE

Comparing SSE and SSA

\square Simple approach
$>$ SSA / SST = fraction of total variation explained by differences among alternatives
> SSE / SST = fraction of total variation due to experimental error
\square But is it statistically significant?

Statistically Comparing SSE and SSA

$$
\begin{aligned}
\text { Variance } & =\text { mean square value } \\
& =\frac{\text { total variation }}{\text { degrees of freedom }} \\
s_{x}^{2} & =\frac{S S x}{d f}
\end{aligned}
$$

Degrees of Freedom

$\square d f(S S A)=k-1$, since k alternatives
$\square d f(S S E)=k(n-1)$, since k alternatives, each with $(n-1) d f$
$\square d f(S S T)=d f(S S A)+d f(S S E)=k n-1$

Degrees of Freedom for Effects

	Alternatives					
Measurem ents	1	2	...	j	...	k
1	y_{11}	y_{12}	...	$y_{1 j}$...	$y_{\mathrm{k} 1}$
2	y_{21}	y_{22}	...	$y_{2 j}$	\ldots	$y_{2 k}$
...	...	\ldots
i	$y_{i 1}$	$y_{i 2}$...	$y_{i j}$...	$y_{\text {ik }}$
...
n	$y_{n 1}$	$y_{n 2}$...	$y_{n j}$...	$y_{\text {nk }}$
Col mean	y_{1}	$y_{.2}$...	y_{j}	...	$y_{\text {k }}$
Effect	α_{1}	α_{2}		α_{j}		α_{k}

Degrees of Freedom for Errors

	Alternatives							
Measurem ents	1	2	\ldots	j	\ldots	k		
1	y_{11}	y_{12}	\ldots	y_{12}	\ldots	$y_{k 1}$		
2	y_{21}	y_{22}	\ldots	$y_{2 j}$	\ldots	$y_{2 k}$		
\ldots	\ldots	\ldots	\ldots		\ldots	\ldots		
i	$y_{i 1}$	$y_{i 2}$	\ldots		$y_{i j}$	\ldots		
\ldots	\ldots	\ldots	\ldots	\ldots	\ldots	$y_{i k}$		
n	$y_{n 1}$	$y_{n 2}$	\ldots	$y_{n j}$	\ldots	$y_{n k}$		
Col mean	y_{11}	y_{2}	\ldots	y_{j}	\ldots	$y_{k k}$		
Effect	α_{1}	α_{2}	\ldots	α_{j}	\ldots	α_{k}		

Degrees of Freedom for Errors

	Alternatives					
Measurem ents	1	2	...	j	...	k
1	y_{11}	y_{12}	...	y	...	$y_{\mathrm{k} 1}$
2	y_{21}	y_{22}	...	$4 y_{2 j} \Gamma$...	$y_{2 k}$
...	\ldots
i	$y_{i 1}$	$y_{i 2}$...	$y_{i j}$...	$y_{\text {ik }}$
...	\cdots
n	$y_{n 1}$	$y_{n 2}$...	$y_{n j}$...	$y_{\text {nk }}$
Col mean	y_{1}	$Y_{.2}$...	y_{j}	\cdots	$y_{\text {k }}$
Effect	α_{1}	$\imath_{\alpha_{2}}$		α_{j}		

Variances from Sum of Squares (Mean Square Value)

$$
\begin{aligned}
& s_{a}^{2}=\frac{S S A}{k-1} \\
& s_{e}^{2}=\frac{S S E}{k(n-1)}
\end{aligned}
$$

Comparing Variances

- Use F-test to compare ratio of variances

$$
\begin{aligned}
F & =\frac{s_{a}^{2}}{s_{e}^{2}} \\
F_{[1-\alpha ; d f(\text { num }), d f(d e n o m)]} & =\text { tabulated critical values }
\end{aligned}
$$

F-test

If $F_{\text {computed }}>F_{\text {table }}$
\rightarrow We have $(1-\alpha)$ * 100% confidence that variation due to actual differences in alternatives, SSA, is statistically greater than variation due to errors, SSE.

ANOVA Summary

Variation	Alternatives	Error	Total
Sum of squares	$S S A$	$S S E$	$S S T$
Deg freedom	$k-1$	$k(n-1)$	$k n-1$
Mean square	$s_{a}^{2}=S S A /(k-1)$	$s_{e}^{2}=S S E /[k(n-1)]$	
Computed F	s_{a}^{2} / s_{e}^{2}		
Tabulated F	$F_{[1-\alpha ;(k-1), k(n-1)]}$		

ANOVA Example

	Alternatives			
Measurements	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	Overall mean
$\mathbf{1}$	0.0972	0.1382	0.7966	
$\mathbf{2}$	0.0971	0.1432	0.5300	
$\mathbf{3}$	0.0969	0.1382	0.5152	
$\mathbf{4}$	0.1954	0.1730	0.6675	
$\mathbf{5}$	0.0974	0.1383	0.5298	
Column mean	0.1168	0.1462	0.6078	0.2903
Effects	-0.1735	-0.1441	0.3175	

ANOVA Example

Variation	Alternatives	Error	Total
Sum of squares	$S S A=0.7585$	$S S E=0.0685$	$S S T=0.8270$
Deg freedom	$k-1=2$	$k(n-1)=12$	$k n-1=14$
Mean square	$s_{a}^{2}=0.3793$	$s_{e}^{2}=0.0057$	
Computed F	$0.3793 / 0.0057=66.4$		
Tabulated F	$F_{[0.95 ; 2,12]}=3.89$		

Conclusions from example

\square SSA/SST $=0.7585 / 0.8270=0.917$
$\rightarrow 91.7 \%$ of total variation in measurements is due to differences among alternatives
\square SSE/SST $=0.0685 / 0.8270=0.083$
$\rightarrow 8.3 \%$ of total variation in measurements is due to noise in measurements

- Computed Fstatistic > tabulated F statistic
$\rightarrow 95 \%$ confidence that differences among alternatives are statistically significant.

Contrasts

ANOVA tells us that there is a statistically significant difference among alternatives

- But it does not tell us where difference is
\square Use method of contrasts to compare subsets of alternatives
> A vs B
$>\{A, B\}$ vs $\{C\}$
$>E t c$.

Contrasts

- Contrast = linear combination of effects of alternatives

$$
\begin{gathered}
c=\sum_{j=1}^{k} w_{j} \alpha_{j} \\
\sum_{j=1}^{k} w_{j}=0
\end{gathered}
$$

Contrasts

- E.g. Compare effect of system 1 to effect of system 2

$$
\begin{aligned}
w_{1} & =1 \\
w_{2} & =-1 \\
w_{3} & =0 \\
c & =(1) \alpha_{1}+(-1) \alpha_{2}+(0) \alpha_{3} \\
& =\alpha_{1}-\alpha_{2}
\end{aligned}
$$

Construct confidence interval for contrasts

\square Need
> Estimate of variance
> Appropriate value from t table
\square Compute confidence interval as before

- If interval includes 0
> Then no statistically significant difference exists between the alternatives included in the contrast

Variance of random variables

\square Recall that, for independent random variables X_{1} and X_{2}
$\operatorname{Var}\left[X_{1}+X_{2}\right]=\operatorname{Var}\left[X_{1}\right]+\operatorname{Var}\left[X_{2}\right]$
$\operatorname{Var}\left[a X_{1}\right]=a^{2} \operatorname{Var}\left[X_{1}\right]$

Variance of a contrast c

$$
\begin{aligned}
\operatorname{Var}[c] & =\operatorname{Var}\left[\sum_{j=1}^{k}\left(w_{j} \alpha_{j}\right)\right] & & s_{c}^{2}=\frac{\sum_{j=1}^{k}\left(w_{j}^{2} s_{e}^{2}\right)}{k n} \\
& =\sum_{j=1}^{k} \operatorname{Var}\left[w_{j} \alpha_{j}\right] & & s_{e}^{2}=\frac{S S E}{k(n-1)} \\
& =\sum_{j=1}^{k} w_{j}^{2} \operatorname{Var}\left[\alpha_{j}\right] & & d f\left(s_{c}^{2}\right)=k(n-1)
\end{aligned}
$$

- Assumes variation due to errors is equally distributed among kn total measurements

Confidence interval for contrasts

$$
\begin{aligned}
& \left(c_{1}, c_{2}\right)=c \bar{\mp} t_{1-\alpha / 2 ; k(n-1)} s_{c} \\
& s_{c}=\sqrt{\frac{\sum_{j=1}^{k}\left(w_{j}^{2} s_{e}^{2}\right)}{k n}} \\
& s_{e}^{2}=\frac{S S E}{k(n-1)}
\end{aligned}
$$

Example

- 90\% confidence interval for contrast of [Sys1- Sys2]

$$
\begin{aligned}
\alpha_{1} & =-0.1735 \\
\alpha_{2} & =-0.1441 \\
\alpha_{3} & =0.3175 \\
c_{[1-2]} & =-0.1735-(-0.1441)=-0.0294 \\
s_{c} & =s_{e} \sqrt{\frac{1^{2}+(-1)^{2}+0^{2}}{3(5)}}=0.0275 \\
90 \% & :\left(c_{1}, c_{2}\right)=(-0.0784,0.0196)
\end{aligned}
$$

Summary

U Use one-factor ANOVA to separate total variation into:

- Variation within one system
- Due to random errors
- Variation between systems
- Due to real differences (+ random error)

Is the variation due to real differences statistically greater than the variation due to errors?
\square Use contrasts to compare effects of subsets of alternatives

