

Instructor’s Guide for

 Coulouris, Dollimore and Kindberg

Distributed Systems: Concepts and Design

 Edn. 2 (2nd impression)



 Addison-Wesley Publishers 1994 F161

9

Figure 13.1 Transactions T and U with exclusive locks.

Transaction T:
Bank$Withdraw(A, 4)
Bank$Deposit(B, 4)

Transaction U:
Bank$Withdraw(C, 3)
Bank$Deposit(B, 3)

Operations Locks Operations Locks
OpenTransaction

balance := A.Read() locks A

A.Write(balance – 4)

OpenTransaction

balance := C.Read() locks C

C.Write(balance – 3)

balance := B.Read() locks B

 balance := B.Read() waits for T’s
lock on B

B.Write(balance + 4) •

CloseTransaction unlocks A, B •

• locks B

B.Write(balance + 3)

CloseTransaction unlocks B, C

This document was created with FrameMaker 4.0.4

Instructor’s Guide for

 Coulouris, Dollimore and Kindberg

Distributed Systems: Concepts and Design

 Edn. 2 (2nd impression)



 Addison-Wesley Publishers 1994 F162

Figure 13.2 Read and Write operation conflict rules.

Operations of different
transactions

Conflict Reason

Read Read No Because the effect of a pair of Read operations does
not depend on the order in which they are executed

Read Write Yes Because the effect of a Read and a Write operation
depends on the order of their execution

Write Write Yes Because the effect of a pair of Write operations
depends on the order of their execution

Instructor’s Guide for

 Coulouris, Dollimore and Kindberg

Distributed Systems: Concepts and Design

 Edn. 2 (2nd impression)



 Addison-Wesley Publishers 1994 F163

Figure 13.3 Lock compatibility.

For one data item Lock requested

Read Write

Lock already set None OK OK

 Read OK Wait

Write Wait Wait

Instructor’s Guide for

 Coulouris, Dollimore and Kindberg

Distributed Systems: Concepts and Design

 Edn. 2 (2nd impression)



 Addison-Wesley Publishers 1994 F164

Figure 13.4 Use of locks in strict two-phase locking.

1. When an operation accesses a data item within a transaction:

a) If the data item is not already locked, the server locks it and the operation
proceeds.

b) If the data item has a conflicting lock set by another transaction, the transaction
must wait until it is unlocked.

c) If the data item has a non-conflicting lock set by another transaction, the lock
is shared and the operation proceeds.

d) If the data item has already been locked in the same transaction, the lock will
be promoted if necessary and the operation proceeds. (Where promotion is
prevented by a conflicting lock, rule (b) is used.)

2. When a transaction is committed or aborted, the server unlocks all data items it
locked for the transaction.

Instructor’s Guide for

 Coulouris, Dollimore and Kindberg

Distributed Systems: Concepts and Design

 Edn. 2 (2nd impression)



 Addison-Wesley Publishers 1994 F165

Figure 13.5 Lock manager functions.

Lock (Trans, DataItem, LockType)
if there is a conflicting lock, that is, if there is an entry in the table belonging to
another transaction that conflicts with DataItem, Wait on the condition variable
associated with the entry.
if (immediately or after a Wait) there are no conflicting locks:

if there is no entry for DataItem, add an entry to the table of locks
else if there is an entry for DataItem belonging to a different transaction, add Trans

to the entry (share the lock)
else if there is an entry for DataItem belonging to Trans and LockType is more

exclusive than the type in the entry, change entry to LockType (promote lock).

UnLock (Trans)
if there are any entries in the table belonging to transaction Trans, for each entry:

if there is only one holder (Trans) in the entry, remove the entry
else (a shared lock) remove Trans from the entry and Signal the associated

condition variable.

Instructor’s Guide for

 Coulouris, Dollimore and Kindberg

Distributed Systems: Concepts and Design

 Edn. 2 (2nd impression)



 Addison-Wesley Publishers 1994 F166

Figure 13.6 Deadlock with read and write locks.

Transaction T Transaction U

Operations Locks Operations Locks

balance:= A.Read() read locks A

balance:= C.Read() read locks C

C.Write(balance – 3) write locks C

A.Write(balance – 4) write locks A

•••

balance := B.Read() read locks B

 balance := B.Read() shares read
lock on B

B.Write(balance + 4) waits for U

••• B.Write(balance + 3) waits for T

••• •••

Instructor’s Guide for

 Coulouris, Dollimore and Kindberg

Distributed Systems: Concepts and Design

 Edn. 2 (2nd impression)



 Addison-Wesley Publishers 1994 F167

Figure 13.7 An illustration of Violet showing the union of some diaries.

January 1988

25
Monday

26
Tuesday

28
Thursday

29
Friday

9:00–10:00
Jones
unavailable

10:00–12:00
Jones
unavailable

9:00–12:00
Jones
Smith
unavailable

13:00–14:00
Jones
Smith
unavailable

11:00-–12:00
Jones
unavailable

14:00–15:00
Jones
Smith
unavailable

January 1988

26
Tuesday

27
Wednesday

27
Wednesday

29
Friday

10:00–12:00
hardware
research

13:00–14:00
Dept.
meeting

14:00–15:00
Dr. Visitor
Interesting
facts

9:00–12:00
Equipment
planning

View: {Smith.qmw, Jones.qmw}

View: Meetings.qmw

9:00–10:00
Jones
unavailable

25
Monday

28
Thursday

Instructor’s Guide for

 Coulouris, Dollimore and Kindberg

Distributed Systems: Concepts and Design

 Edn. 2 (2nd impression)



 Addison-Wesley Publishers 1994 F168

Figure 13.8 The wait-for graph for Figure 13.6.

B

CA Held by

Waits for

Held by

Held by Held by

T UU T

Instructor’s Guide for

 Coulouris, Dollimore and Kindberg

Distributed Systems: Concepts and Design

 Edn. 2 (2nd impression)



 Addison-Wesley Publishers 1994 F169

Figure 13.9 A cycle in a wait-for graph.

U

V

T

Instructor’s Guide for

 Coulouris, Dollimore and Kindberg

Distributed Systems: Concepts and Design

 Edn. 2 (2nd impression)



 Addison-Wesley Publishers 1994 F170

C

T

U
V

Held by

Held by

Held by

T
U

V

W

W

B

Held by

Waits for

Figure 13.10 Another wait-for graph.

Instructor’s Guide for

 Coulouris, Dollimore and Kindberg

Distributed Systems: Concepts and Design

 Edn. 2 (2nd impression)



 Addison-Wesley Publishers 1994 F171

Figure 13.11 Resolution of the deadlock in Figure 13.6.

Transaction T Transaction U
Operations Locks Operations Locks
balance:= A.Read() read locks A

balance:= C.Read() read locks C

C.Write(balance – 3) write locks C

A.Write(balance – 4) write locks A

••• •••

balance := B.Read() read locks B

 balance := B.Read() shares read lock
on B

B.Write(balance + 4) waits on U’s
read lock onB

••• B.Write(balance + 3) waits on T’s
read lock on B

(timeout elapses)
T’s lock on B becomes vulnerable,

unlock B, abort T

•••

B.Write(balance +3) write locks B

unlock B and C

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 2 (2nd impression)  Addison-Wesley Publishers 1994 F172

Figure 13.12 Lock compatibility (read, write and commit locks).

For one data item Lock to be set

Read Write Commit

Lock already set None OK OK OK

Read OK OK Wait

Write OK Wait Wait

Commit Wait Wait Wait

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 2 (2nd impression)  Addison-Wesley Publishers 1994 F173

Branch

BalancesA B C

Figure 13.13 Lock hierarchy for the Bank Server.

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 2 (2nd impression)  Addison-Wesley Publishers 1994 F174

Figure 13.14 Lock hierarchy for Violet.

Week

Monday Tuesday Wednesday Thursday Friday

9:00–10:00

time slots

10:00–11:00 11:00–12:00 12:00–13:00 13:00–14:00 14:00–15:00 15:00–16:00

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 2 (2nd impression)  Addison-Wesley Publishers 1994 F175

Figure 13.15 Lock compatibility table for hierarchic locks.

For one data item Lock to be set

Read Write I-Read I-Write

Lock already set Read OK Wait OK Wait

Write Wait Wait Wait Wait

I-Read OK Wait OK OK

I-Write Wait Wait OK OK

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 2 (2nd impression)  Addison-Wesley Publishers 1994 F176

Ti Tj Rule

Read Write 1. Ti must not read data items written by Tj

Write Read 2. Tj must not read data items written by Ti

Write Write 3. Ti must not write data items written by Tj and
Tj must not write data items written by Ti.

Figure 13.16 Validation of transactions.

Earlier committed
transactions

Read Validation Write

T1

Tj
Transaction
being validated

T2

T3

Later active
transactions

active1

active2

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 2 (2nd impression)  Addison-Wesley Publishers 1994 F177

Figure 13.17 Transaction conflicts for timestamp ordering.

Rule Tj

1. Write Tj must not write a data item that has been read by any Ti where Ti > Tj
this requires that Tj > the maximum read timestamp of the data item

2. Write Tj must not write a data item that has been written by any Ti where
Ti > Tj this requires that Tj > the maximum write timestamp of the data
item

3. Read Tj must not read a data item that has been written by any Ti where
Ti > Tj this implies that Tj cannot read if Tj < write timestamp of the
committed version of the data item

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 2 (2nd impression)  Addison-Wesley Publishers 1994 F178

Figure 13.18 Write operations and timestamps.

a) T3 Write b) T3 Write

c) T3 Write d) T3 Write

data item produced by transaction Ti
(with write timestamp Ti)
T1 < T2 < T3 < T4

T2

Time

Before

After T2 T3

T1

Time

Before

After

T1

T1

T2

T2 T3

Time

Before

After

T1

T1 T3

T4

T4

Time

Transaction
abortsBefore

After

T4

T4

Key:

TentativeCommitted

Ti Ti

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 2 (2nd impression)  Addison-Wesley Publishers 1994 F179

Figure 13.19 Read operations and timestamps.

a) T3 Read b) T3 Read

c) T3 Read d) T3 Read

data item produced by transaction Ti
(with write timestamp Ti)
T1 < T2 < T3 < T4

Time

Read
proceeds

Selected

T2

Time

Read
proceeds

Selected

T2 T4

Time

Read waits

Selected

T1 T2

Time

Transaction
aborts

T4

Key:

TentativeCommitted

Ti Ti

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 2 (2nd impression)  Addison-Wesley Publishers 1994 F180

Figure 13.20 Timestamps in transactions T and U.

Timestamps and versions of data items

 T U A B C

 RTS WTS RTS WTS RTS WTS
{} S {} S {} S

OpenTransaction

bal := A.Read () {T}

OpenTransaction

bal := C.Read() {U}

A.Write (bal – 4) S, T
bal:= B.Read () {T}

 C.Write(bal – 3) S,U

bal := B.Read() {U}

B.Write(bal + 4)

Aborts

B.Write(bal + 3) S,U

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 2 (2nd impression)  Addison-Wesley Publishers 1994 F181

Figure 13.21 Late Write operation would invalidate a Read.

Data item produced by
transaction Ti (with write
timestamp Ti and read
timestamp Tk)

Time

T4 Write;

T1 < T2< T3 < T4 < T5

T5 Read;T3 Write;T3 Read;

T2
T3

T3
T5

T1

Key:

TentativeCommitted

Ti Ti
Tk Tk

Instructor’s Guide for

 Coulouris, Dollimore and Kindberg

Distributed Systems: Concepts and Design

 Edn. 2 (2nd impression)



 Addison-Wesley Publishers 1994 F183

9

Figure 14.1 Distributed transactions.

(a) Simple distributed
transaction

(b) Nested transactions

Client

X

Y

Z

X

Y

M

N

T

T1

T2

T11

T12

Client

Z T21

T22 P

This document was created with FrameMaker 4.0.4

Instructor’s Guide for

 Coulouris, Dollimore and Kindberg

Distributed Systems: Concepts and Design

 Edn. 2 (2nd impression)



 Addison-Wesley Publishers 1994 F184

Figure 14.2 Nested banking transaction.

T

T1

T3

Withdraw(A,4)

Deposit(C,4);

Withdraw(B,3)

Deposit(D,3);

T2

T4

Client
X

Y

Z

Instructor’s Guide for

 Coulouris, Dollimore and Kindberg

Distributed Systems: Concepts and Design

 Edn. 2 (2nd impression)



 Addison-Wesley Publishers 1994 F185

Figure 14.3 A distributed banking transaction.

..

BranchZ

BranchX

T = OpenTransaction
 BranchX$Withdraw(A,4);
 BranchZ$Deposit(C,4);
 BranchY$Withdraw(B,3);
 BranchZ$Deposit(D,3);
 CloseTransaction

Coordinator

Worker

Worker

C

D

Client

5. BranchY$AddServer(T,BranchX)
6. BranchY$Withdraw(B,3)

BranchY

BT

A

3. BranchZ$AddServer(T, BranchX)
4. BranchZ$Deposit(C,4)7. BranchZ$Deposit(D,3)

1. BranchX$OpenTransaction

2. BranchX$Withdraw(A,4)

8. BranchX$CloseTransaction(T)

Instructor’s Guide for

 Coulouris, Dollimore and Kindberg

Distributed Systems: Concepts and Design

 Edn. 2 (2nd impression)



 Addison-Wesley Publishers 1994 F186

Figure 14.4 Operations for two-phase commit protocol.

CanCommit?(Trans) → Yes / No
Call from coordinator to worker to ask whether it can commit a transaction. Worker
replies with its vote.

DoCommit(Trans)
Call from coordinator to worker to tell worker to commit its transaction.

HaveCommitted(Trans)
Call from worker to coordinator to confirm that it has committed the transaction.

GetDecision(Trans) → Yes / No
Call from worker to coordinator to ask for the decision on a transaction after it has
voted Yes, but has still had no reply after some delay. Used to recover from failure or
time out.

Instructor’s Guide for

 Coulouris, Dollimore and Kindberg

Distributed Systems: Concepts and Design

 Edn. 2 (2nd impression)



 Addison-Wesley Publishers 1994 F187

Figure 14.5 The two-phase commit protocol.

Phase 1 (voting phase):

1. The coordinator sends a CanCommit? request to each of the workers in the
transaction;

2. When a worker receives a CanCommit? request it replies with its vote (Yes or No)
to the coordinator. If the vote is No the worker aborts immediately;

Phase 2 (completion according to outcome of vote):

3. The coordinator collects the votes (including its own);

a) If there are no failures and all the votes are Yes the coordinator decides to
commit the transaction and sends a DoCommit request to each of the workers;

b) Otherwise the coordinator decides to abort the transaction and sends
AbortTransaction requests to all workers that voted Yes;

4. Workers that voted Yes are waiting for a DoCommit or AbortTransaction request
from the coordinator. When a worker receives one of these messages it acts
accordingly and in the case of commit, makes a HaveCommitted call as
confirmation to the coordinator.

Instructor’s Guide for

 Coulouris, Dollimore and Kindberg

Distributed Systems: Concepts and Design

 Edn. 2 (2nd impression)



 Addison-Wesley Publishers 1994 F188

Figure 14.6 Communication in two-phase commit protocol.

CanCommit?
Yes

DoCommit

HaveCommitted

status

Coordinator

1

3

(waiting for votes)

committed

done

prepared to commit
step

Worker

2

4

(uncertain)
prepared to commit

committed

statusstepstatus

Instructor’s Guide for

 Coulouris, Dollimore and Kindberg

Distributed Systems: Concepts and Design

 Edn. 2 (2nd impression)



 Addison-Wesley Publishers 1994 F189

Figure 14.7 Operations in service for nested transactions.

OpenSubTransaction(Trans) → NewTrans
Opens a new subtransaction whose parent is Trans and returns a unique
subtransaction identifier NewTrans.

GetStatus(Trans) → committed, aborted, tentative
Asks transaction Trans to report on its status.

Instructor’s Guide for

 Coulouris, Dollimore and Kindberg

Distributed Systems: Concepts and Design

 Edn. 2 (2nd impression)



 Addison-Wesley Publishers 1994 F190

Figure 14.8 Nested transactions.

.

OpenSubTransaction

T1T

T 2

T11

OpenTransaction

Z

X

M

Y

Client

OpenSubTransaction

TID in example T T1 T11 T2

actual TID Z, nZ Z, nZ:X, nX Z, nZ:X, nX:M, nm Z, nZ:Y, nY

Instructor’s Guide for

 Coulouris, Dollimore and Kindberg

Distributed Systems: Concepts and Design

 Edn. 2 (2nd impression)



 Addison-Wesley Publishers 1994 F191

Figure 14.9 Transaction T decides whether to commit.

T

T1

T2

T11

T12

T22

T21

abort (at M)

provisional commit (at N)

provisional commit (at X)

aborted (at Y)

provisional commit (at N)

provisional commit (at P)

The information held by each server in the example shown in Figure 14.9 is as follows:

Server Transaction Child
transactions

Provisional
Commit list

Abort List

Z T T1, T2 T1@X, T12@N T11, T2
X T1 T11, T12 T1, T12@N T11
Y T2 T21, T22 (T21@N, T22@P) T2
M T11 T11
N T12, T21 T21, T12
P T22 T22

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 2 (2nd impression)  Addison-Wesley Publishers 1994 F192

Figure 14.10 CanCommit? operation of nested transaction service.

CanCommit?(Trans, AbortList) → Yes / No
Call from coordinator to worker to ask whether it can commit a transaction. Worker
replies with its vote Yes / No. .

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 2 (2nd impression)  Addison-Wesley Publishers 1994 F193

Figure 14.11 Interleavings of transactions U, V and W.

U V W

Deposit(D) lock D

Deposit(B) lock B

Deposit(A) lock A

Deposit(C) lock C

Withdraw(B) wait

Withdraw(C) wait

Withdraw(A) wait

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 2 (2nd impression)  Addison-Wesley Publishers 1994 F194

Figure 14.12 Distributed deadlock.

(a) (b)

D

Waits for

Waits
for

Held by

Held
by

B

Waits for
Held

by

X

Y

Z

Held by

W

UV

AC

W

V

U

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 2 (2nd impression)  Addison-Wesley Publishers 1994 F195

Figure 14.13 Local and global wait-for graphs.

 Local wait-for
graph

Local wait-for
graph

Global deadlock detector

U

X

T V

Y

T

UU UV

T

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 2 (2nd impression)  Addison-Wesley Publishers 1994 F196

Figure 14.14 Probes transmitted to detect deadlock.

V

Held by
W

Waits forHeld by

Waits
for

Waits for
Deadlock
detected

U

C
A

B

Initiation

W→ U → V → W

W→
 U

W
→

 U →
 V

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 2 (2nd impression)  Addison-Wesley Publishers 1994 F197

Figure 14.15 Two probes initiated.

(a) Initial situation (b) Detection initiated at data
item requested by T

(c) Detection initiated at data
item requested by W

U

T

V

W

waits for

waits
for
Waits
for

Waits for

V

waits for

W

T
→

 U
→

 W

T →
 U→

 W
→

 V

U

T T → U
Waits for

U

W
 →

 V
 →

 T W
→

 V→
 T→

 U

waits
for

W →
 V

V

T

W
Waits
for

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 2 (2nd impression)  Addison-Wesley Publishers 1994 F198

Figure 14.16 Probes travel downhill.

(a) V stores probe when U starts waiting (b) Probe is forwarded when V starts waiting

U

W

Vprobe
queue U → V

Waits for
B

Waits for
B

Waits
for C

V→ W
U V probe

queue

V
U → V

U
→

 V U

→W

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 2 (2nd impression)  Addison-Wesley Publishers 1994 F199

Figure 14.17 Cycles and shared locks.

V

TS

W

X

waits for

waits for waits for

waits for

waits for
Waits for

Waits for

Waits for

Waits for

Waits for

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 2 (2nd impression)  Addison-Wesley Publishers 1994 F200

Figure 14.18 Replicated transactional service.

B

A

Client + front end

BB BA A

GetBalance(A)

Client + front end

Replica managers
Replica managers

Deposit(B,3);

UT

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 2 (2nd impression)  Addison-Wesley Publishers 1994 F201

Figure 14.19 Available copies.

A
X

Client + front end

P
B

Client + front end

Replica managers

Deposit(A,3);

UT

Deposit(B,3);

GetBalance(B)

GetBalance(A)

Replica managers

Y

M

B
N

A

B

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 2 (2nd impression)  Addison-Wesley Publishers 1994 F202

Figure 14.20 Network partition.

Client + front end

B

Withdraw(B, 4)

Client + front end

Replica managers

Deposit(B,3);
UT Network

partition

B

B B

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 2 (2nd impression)  Addison-Wesley Publishers 1994 F203

Replica managers

Network partition

VX Y Z

TTransaction

Figure 14.21 Two network partitions.

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 2 (2nd impression)  Addison-Wesley Publishers 1994 F204

Figure 14.22 Virtual partition.

X V Y Z

Replica managers

Virtual partition Network partition

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 2 (2nd impression)  Addison-Wesley Publishers 1994 F205

Figure 14.23 Two overlapping virtual partitions.

Virtual partition V1 Virtual partition V2

Y X V Z

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 2 (2nd impression)  Addison-Wesley Publishers 1994 F206

Figure 14.24 Creating a virtual partition.

Phase 1:

• The initiator sends a Join request to each potential member. The argument of Join
is a proposed logical timestamp for the new virtual partition;

• When a replica manager receives a Join request it compares the proposed logical
timestamp with that of its current virtual partition;

– If the proposed logical timestamp is greater it agrees to join and replies Yes;

– If it is less, it refuses to join and replies No;

Phase 2:

• If the initiator has received sufficient Yes replies to have Read and Write quora, it
may complete the creation of the new virtual partition by sending a Confirmation
message to the sites that agreed to join. The creation timestamp and list of actual
members are sent as arguments;

• Replica managers receiving the Confirmation message join the new virtual
partition and record its creation timestamp and list of actual members.

