
1

Application Layer 1

Application-level protocols

Distributed Software Systems
ACKNOWLEDGEMENT: This lecture is based on slides that were made
available by the authors of Computer Networking: A Top Down Approach
Featuring the Internet Jim Kurose, Keith Ross, 2nd edition, Addison Wesley,
2002

Application Layer 2

Applications and application-layer protocols

Application: communicating,
distributed processes

❍ running in network hosts in
“user space”

❍ exchange messages to
implement app

❍ e.g., email, file transfer,
the Web

Application-layer protocols
❍ one “piece” of an app
❍ define messages

exchanged by apps and
actions taken

❍ user services provided by
lower layer protocols

application
transport
network
data link
physical

application
transport
network
data link
physical

application
transport
network
data link
physical

2

Application Layer 3

Network applications: some jargon

❒ A process is a program
that is running within a
host.

❒ Within the same host, two
processes communicate
with interprocess
communication defined by
the OS.

❒ Processes running in
different hosts
communicate with an
application-layer protocol

❒ A user agent is an
interface between the
user and the network
application.

❍ Web:browser
❍ E-mail: mail reader
❍ streaming audio/video:

media player

Application Layer 4

Client-server paradigm

Typical network app has two
pieces: client and server

application
transport
network
data link
physical

application
transport
network
data link
physical

Client:
❒ initiates contact with server

(“speaks first”)
❒ typically requests service from

server,
❒ for Web, client is implemented

in browser; for e-mail, in mail
reader

Server:
❒ provides requested service to

client
❒ e.g., Web server sends

requested Web page, mail
server delivers e-mail

request

reply

3

Application Layer 5

Application-layer protocols (cont).

API: application
programming interface

❒ defines interface
between application
and transport layer

❒ socket: Internet API
❍ two processes

communicate by sending
data into socket,
reading data out of
socket

Q: how does a process
“identify” the other
process with which it
wants to communicate?

❍ IP address of host
running other process

❍ “port number” - allows
receiving host to
determine to which
local process the
message should be
delivered

… lots more on this later.

Application Layer 6

What transport service does an app need?

Data loss
❒ some apps (e.g., audio) can

tolerate some loss
❒ other apps (e.g., file

transfer, telnet) require
100% reliable data transfer

Timing
❒ some apps (e.g., Internet

telephony, interactive
games) require low delay to
be “effective”

Bandwidth
❒ some apps (e.g., multimedia)

require minimum amount of
bandwidth to be “effective”

❒ other apps (“elastic apps”)
make use of whatever
bandwidth they get

4

Application Layer 7

Transport service requirements of common apps

Application

file transfer
e-mail

Web documents
real-time audio/video

stored audio/video
interactive games

financial apps

Data loss

no loss
no loss
loss-tolerant
loss-tolerant

loss-tolerant
loss-tolerant
no loss

Bandwidth

elastic
elastic
elastic
audio: 5Kb-1Mb
video:10Kb-5Mb
same as above
few Kbps up
elastic

Time Sensitive

no
no
no
yes, 100’s msec

yes, few secs
yes, 100’s msec
yes and no

Application Layer 8

Services provided by Internet
transport protocols

TCP service:
❒ connection-oriented: setup

required between client,
server

❒ reliable transport between
sending and receiving process

❒ flow control: sender won’t
overwhelm receiver

❒ congestion control: throttle
sender when network
overloaded

❒ does not providing: timing,
minimum bandwidth
guarantees

UDP service:
❒ unreliable data transfer

between sending and
receiving process

❒ does not provide:
connection setup,
reliability, flow control,
congestion control, timing,
or bandwidth guarantee

Q: why bother? Why is
there a UDP?

5

Application Layer 9

Internet apps: their protocols and transport
protocols

Application

e-mail
remote terminal access

Web
file transfer

streaming multimedia

remote file server
Internet telephony

Application
layer protocol

smtp [RFC 821]
telnet [RFC 854]
http [RFC 2068]
ftp [RFC 959]
proprietary
(e.g. RealNetworks)
NSF
proprietary
(e.g., Vocaltec)

Underlying
transport protocol

TCP
TCP
TCP
TCP
TCP or UDP

TCP or UDP
typically UDP

Application Layer 10

The Web: some jargon

❒ Web page:
❍ consists of “objects”
❍ addressed by a URL

❒ Most Web pages
consist of:

❍ base HTML page, and
❍ several referenced

objects.
❒ URL has two

components: host name
and path name:

❒ User agent for Web is
called a browser:

❍ MS Internet Explorer
❍ Netscape Communicator

❒ Server for Web is
called Web server:

❍ Apache (public domain)
❍ MS Internet

Information Server

www.someSchool.edu/someDept/pic.gif

6

Application Layer 11

The Web: the http protocol

http: hypertext transfer
protocol

❒ Web’s application layer
protocol

❒ client/server model
❍ client: browser that

requests, receives,
“displays” Web objects

❍ server: Web server
sends objects in
response to requests

❒ http1.0: RFC 1945
❒ http1.1: RFC 2068

PC running
Explorer

Server
running

NCSA Web
server

Mac running
Navigator

http request

http request

http response

http
 response

Application Layer 12

The http protocol: more

http: TCP transport
service:

❒ client initiates TCP
connection (creates socket)
to server, port 80

❒ server accepts TCP
connection from client

❒ http messages (application-
layer protocol messages)
exchanged between browser
(http client) and Web server
(http server)

❒ TCP connection closed

http is “stateless”
❒ server maintains no

information about
past client requests

Protocols that maintain
“state” are complex!

❒ past history (state) must
be maintained

❒ if server/client crashes,
their views of “state” may
be inconsistent, must be
reconciled

aside

7

Application Layer 13

http example
Suppose user enters URL

www.someSchool.edu/someDepartment/home.index

1a. http client initiates TCP
connection to http server
(process) at
www.someSchool.edu. Port 80
is default for http server.

2. http client sends http request
message (containing URL) into
TCP connection socket

1b. http server at host
www.someSchool.edu waiting
for TCP connection at port 80.
“accepts” connection, notifying
client

3. http server receives request
message, forms response
message containing requested
object
(someDepartment/home.index),
sends message into socket

time

(contains text,
references to 10

jpeg images)

Application Layer 14

http example (cont.)

5. http client receives response
message containing html file,
displays html. Parsing html
file, finds 10 referenced jpeg
objects

6. Steps 1-5 repeated for each
of 10 jpeg objects

4. http server closes TCP
connection.

time

8

Application Layer 15

Non-persistent and persistent connections

Non-persistent
❒ HTTP/1.0
❒ server parses request,

responds, and closes
TCP connection

❒ 2 RTTs to fetch each
object

❒ Each object transfer
suffers from slow
start

Persistent
❒ default for HTTP/1.1
❒ on same TCP

connection: server,
parses request,
responds, parses new
request,..

❒ Client sends requests
for all referenced
objects as soon as it
receives base HTML.

❒ Fewer RTTs and less
slow start.

But most 1.0 browsers use
parallel TCP connections.

Application Layer 16

http message format: request

❒ two types of http messages: request, response
❒ http request message:

❍ ASCII (human-readable format)

GET /somedir/page.html HTTP/1.0
User-agent: Mozilla/4.0
Accept: text/html, image/gif,image/jpeg
Accept-language:fr

(extra carriage return, line feed)

request line
(GET, POST,

HEAD commands)

header
lines

Carriage return,
line feed

indicates end
of message

9

Application Layer 17

http request message: general format

Application Layer 18

http message format: response

HTTP/1.0 200 OK
Date: Thu, 06 Aug 1998 12:00:15 GMT
Server: Apache/1.3.0 (Unix)
Last-Modified: Mon, 22 Jun 1998 …...
Content-Length: 6821
Content-Type: text/html

data data data data data ...

status line
(protocol

status code
status phrase)

header
lines

data, e.g.,
requested
html file

10

Application Layer 19

http response status codes

200 OK
❍ request succeeded, requested object later in this message

301 Moved Permanently
❍ requested object moved, new location specified later in

this message (Location:)
400 Bad Request

❍ request message not understood by server
404 Not Found

❍ requested document not found on this server
505 HTTP Version Not Supported

In first line in server->client response message.
A few sample codes:

Application Layer 20

Trying out http (client side) for yourself

1. Telnet to your favorite Web server:
Opens TCP connection to port 80
(default http server port) at www.eurecom.fr.
Anything typed in sent
to port 80 at www.eurecom.fr

telnet www.eurecom.fr 80

2. Type in a GET http request:
GET /~ross/index.html HTTP/1.0 By typing this in (hit carriage

return twice), you send
this minimal (but complete)
GET request to http server

3. Look at response message sent by http server!

11

Application Layer 21

User-server interaction: authentication

Authentication goal: control
access to server documents

❒ stateless: client must present
authorization in each request

❒ authorization: typically name,
password

❍ authorization: header
line in request

❍ if no authorization
presented, server refuses
access, sends
WWW authenticate:

header line in response

client server
usual http request msg
401: authorization req.
WWW authenticate:

usual http request msg
+ Authorization:line

usual http response msg

usual http request msg
+ Authorization:line

usual http response msg time

Browser caches name & password so
that user does not have to repeatedly enter it.

Application Layer 22

User-server interaction: cookies

❒ server sends “cookie” to
client in response mst
Set-cookie: 1678453

❒ client presents cookie in
later requests
cookie: 1678453

❒ server matches
presented-cookie with
server-stored info

❍ authentication
❍ remembering user

preferences, previous
choices

client server
usual http request msg
usual http response +
Set-cookie: #

usual http request msg
cookie: #

usual http response msg

usual http request msg
cookie: #

usual http response msg

cookie-
spectific

action

cookie-
spectific

action

12

Application Layer 23

User-server interaction: conditional GET

❒ Goal: don’t send object if
client has up-to-date stored
(cached) version

❒ client: specify date of
cached copy in http request
If-modified-since:

<date>

❒ server: response contains
no object if cached copy up-
to-date:
HTTP/1.0 304 Not

Modified

client server

http request msg
If-modified-since:

<date>

http response
HTTP/1.0

304 Not Modified

object
not

modified

http request msg
If-modified-since:

<date>

http response
HTTP/1.1 200 OK

…
<data>

object
modified

Application Layer 24

Web Caches (proxy server)

❒ user sets browser:
Web accesses via web
cache

❒ client sends all http
requests to web cache

❍ if object at web
cache, web cache
immediately returns
object in http
response

❍ else requests object
from origin server,
then returns http
response to client

Goal: satisfy client request without involving origin server

client

Proxy
server

client

http request

http request

http response

http
 response

http request

http
 response

http requesthttp response

origin
server

origin
server

13

Application Layer 25

Why Web Caching?

Assume: cache is “close”
to client (e.g., in same
network)

❒ smaller response time:
cache “closer” to
client

❒ decrease traffic to
distant servers

❍ link out of
institutional/local ISP
network often
bottleneck

origin
servers

public
Internet

institutional
network 10 Mbps LAN

1.5 Mbps
access link

institutional
cache

Application Layer 26

ftp: the file transfer protocol

❒ transfer file to/from remote host
❒ client/server model

❍ client: side that initiates transfer (either to/from
remote)

❍ server: remote host
❒ ftp: RFC 959
❒ ftp server: port 21

file transfer FTP
server

FTP
user

interface

FTP
client

local file
system

remote file
system

user
at host

14

Application Layer 27

ftp: separate control, data connections

❒ ftp client contacts ftp server
at port 21, specifying TCP as
transport protocol

❒ two parallel TCP connections
opened:

❍ control: exchange
commands, responses
between client, server.

“out of band control”
❍ data: file data to/from

server
❒ ftp server maintains “state”:

current directory, earlier
authentication

FTP
client

FTP
server

TCP control connection
port 21

TCP data connection
port 20

Application Layer 28

ftp commands, responses

Sample commands:
❒ sent as ASCII text over

control channel
❒ USER username
❒ PASS password
❒ LIST return list of file in

current directory
❒ RETR filename retrieves

(gets) file
❒ STOR filename stores

(puts) file onto remote
host

Sample return codes
❒ status code and phrase (as

in http)
❒ 331 Username OK,

password required
❒ 125 data connection

already open;
transfer starting

❒ 425 Can’t open data
connection

❒ 452 Error writing
file

15

Application Layer 29

Electronic Mail

Three major components:
❒ user agents
❒ mail servers
❒ simple mail transfer

protocol: smtp

User Agent
❒ a.k.a. “mail reader”
❒ composing, editing, reading

mail messages
❒ e.g., Eudora, Outlook, elm,

Netscape Messenger
❒ outgoing, incoming messages

stored on server

user mailbox

outgoing
message queue

mail
server

user
agent

user
agent

user
agent

mail
server

user
agent

user
agent

mail
server

user
agent

SMTP

SMTP

SMTP

Application Layer 30

Electronic Mail: mail servers

Mail Servers
❒ mailbox contains incoming

messages (yet to be read)
for user

❒ message queue of outgoing
(to be sent) mail messages

❒ smtp protocol between mail
servers to send email
messages

❍ client: sending mail
server

❍ “server”: receiving mail
server

mail
server

user
agent

user
agent

user
agent

mail
server

user
agent

user
agent

mail
server

user
agent

SMTP

SMTP

SMTP

16

Application Layer 31

Electronic Mail: smtp [RFC 821]

❒ uses tcp to reliably transfer email msg from client to
server, port 25

❒ direct transfer: sending server to receiving server
❒ three phases of transfer

❍ handshaking (greeting)
❍ transfer of messages
❍ closure

❒ command/response interaction
❍ commands: ASCII text
❍ response: status code and phrase

❒ messages must be in 7-bit ASCII

Application Layer 32

Sample smtp interaction
S: 220 hamburger.edu
C: HELO crepes.fr
S: 250 Hello crepes.fr, pleased to meet you
C: MAIL FROM: <alice@crepes.fr>
S: 250 alice@crepes.fr... Sender ok
C: RCPT TO: <bob@hamburger.edu>
S: 250 bob@hamburger.edu ... Recipient ok
C: DATA
S: 354 Enter mail, end with "." on a line by itself
C: Do you like ketchup?
C: How about pickles?
C: .
S: 250 Message accepted for delivery
C: QUIT
S: 221 hamburger.edu closing connection

17

Application Layer 33

try smtp interaction for yourself:

❒ telnet servername 25
❒ see 220 reply from server
❒ enter HELO, MAIL FROM, RCPT TO, DATA, QUIT

commands
above lets you send email without using email client

(reader)

Application Layer 34

smtp: final words

❒ smtp uses persistent
connections

❒ smtp requires that
message (header & body)
be in 7-bit ascii

❒ certain character strings
are not permitted in
message (e.g., CRLF.CRLF).
Thus message has to be
encoded (usually into either
base-64 or quoted
printable)

❒ smtp server uses
CRLF.CRLF to determine
end of message

Comparison with http
❒ http: pull
❒ email: push

❒ both have ASCII
command/response
interaction, status codes

❒ http: each object is
encapsulated in its own
response message

❒ smtp: multiple objects
message sent in a multipart
message

18

Application Layer 35

Mail message format

smtp: protocol for exchanging
email msgs

RFC 822: standard for text
message format:

❒ header lines, e.g.,
❍ To:
❍ From:
❍ Subject:
different from smtp

commands!
❒ body

❍ the “message”, ASCII
characters only

header

body

blank
line

Application Layer 36

Message format: multimedia extensions

❒ MIME: multimedia mail extension, RFC 2045, 2056
❒ additional lines in msg header declare MIME content

type

From: alice@crepes.fr
To: bob@hamburger.edu
Subject: Picture of yummy crepe.
MIME-Version: 1.0
Content-Transfer-Encoding: base64
Content-Type: image/jpeg

base64 encoded data
.........................
......base64 encoded data

multimedia data
type, subtype,

parameter declaration

method used
to encode data

MIME version

encoded data

19

Application Layer 37

MIME types
Content-Type: type/subtype; parameters

Text
❒ example subtypes: plain,

html

Image
❒ example subtypes: jpeg,

gif

Audio
❒ exampe subtypes: basic

(8-bit mu-law encoded),
32kadpcm (32 kbps
coding)

Video
❒ example subtypes: mpeg,

quicktime

Application
❒ other data that must be

processed by reader
before “viewable”

❒ example subtypes:
msword, octet-stream

Application Layer 38

Multipart Type
From: alice@crepes.fr
To: bob@hamburger.edu
Subject: Picture of yummy crepe.
MIME-Version: 1.0
Content-Type: multipart/mixed; boundary=98766789

--98766789
Content-Transfer-Encoding: quoted-printable
Content-Type: text/plain

Dear Bob,
Please find a picture of a crepe.
--98766789
Content-Transfer-Encoding: base64
Content-Type: image/jpeg

base64 encoded data
.........................
......base64 encoded data
--98766789--

20

Application Layer 39

Mail access protocols

❒ SMTP: delivery/storage to receiver’s server
❒ Mail access protocol: retrieval from server

❍ POP: Post Office Protocol [RFC 1939]
• authorization (agent <-->server) and download

❍ IMAP: Internet Mail Access Protocol [RFC 1730]
• more features (more complex)
• manipulation of stored msgs on server

❍ HTTP: Hotmail , Yahoo! Mail, etc.

user
agent

sender’s mail
server

user
agent

SMTP SMTP POP3 or
IMAP

receiver’s mail
server

Application Layer 40

POP3 protocol

authorization phase
❒ client commands:

❍ user: declare username
❍ pass: password

❒ server responses
❍ +OK

❍ -ERR

transaction phase, client:
❒ list: list message numbers
❒ retr: retrieve message by

number
❒ dele: delete
❒ quit

C: list
S: 1 498
S: 2 912
S: .
C: retr 1
S: <message 1 contents>
S: .
C: dele 1
C: retr 2
S: <message 1 contents>
S: .
C: dele 2
C: quit
S: +OK POP3 server signing off

S: +OK POP3 server ready
C: user alice
S: +OK
C: pass hungry
S: +OK user successfully logged on

21

Application Layer 41

Summary

❒ application service
requirements:

❍ reliability, bandwidth,
delay

❒ client-server paradigm
❒ Internet transport service

model
❍ connection-oriented,

reliable: TCP
❍ unreliable, datagrams: UDP

Our study of network apps now complete!

❒ specific protocols:
❍ http
❍ ftp
❍ smtp, pop3

❒ socket programming
❍ client/server

implementation
❍ using tcp, udp sockets

Application Layer 42

Summary

❒ typical request/reply message exchange:
❍ client requests info or service
❍ server responds with data, status code

❒ message formats:
❍ headers: fields giving info about data
❍ data: info being communicated

Most importantly: learned about protocols

22

Application Layer 43

Client-Server Applications

❒ The application-layer protocols we have looked at
illustrate the choices that arise in the design and
implementation of a client-server application

❍ choice of transport protocol
❍ stateful vs stateless servers
❍ in-band vs out-of-band control messages

❒ Another important design choice is whether the
client and especially the server is concurrent or
not

❒ We review these choices in the following slides

Application Layer 44

Issues in Client design

❒ Must know or find out the location of the
server

❒ Which protocol to use: reliable or
unreliable?

❒ Blocking (synchronous) request or non-
blocking (asynchronous)

23

Application Layer 45

Issues in Server Design

❒ Connection-oriented or connection-less
servers
❍ TCP or UDP?

❒ Concurrent or iterative servers: handle
multiple requests concurrently or one after
the other?

❒ Stateful or stateless servers
❒ Multi-protocol, multi-service servers

Application Layer 46

Connection-less vs connection-
oriented servers

❒ protocol used determines level of reliability
❒ TCP provides reliable-data delivery

❍ verifies that data arrives at other end, retransmits
segments that don’t

❍ checks that data is not corrupted along the way
❍ makes sure data arrives in order
❍ eliminates duplicate packets
❍ provides flow control to make sure sender does not send

data faster than receiver can consume it
❍ informs both client and server if underlying network

becomes inoperable

24

Application Layer 47

Connection-less servers
❒ UDP unreliable – best effort delivery
❒ UDP relies on application to take whatever

actions are necessary for reliability
❒ UDP used if

❍ application protocol designed to handle
reliability and delivery errors in an application-
specific manner, e.g. audio and video on the
internet

❍ overhead of TCP connections too much for
application

❍ multicast

Application Layer 48

Stateful vs stateless servers
❒ State ≡ Information that server maintains about

the status of ongoing interactions with clients
❒ Stateful servers

❍ state information can help server in performing request
faster

❍ state information needs to be preserved across (or
reconstructed after) crashes

❒ Stateless servers
❍ quicker and more reliable recovery after crashes
❍ smaller memory requirements

❒ Stateless servers: application protocol should
have idempotent operations

25

Application Layer 49

Concurrency in servers
❒ Concurrency needed if several clients and

service is expensive
❒ Operating system support

❍ Multiple processes
❍ Threads
❍ Asynchronous I/O, e.g. using select() system

call
❒ Process/thread pre-allocation for

improving performance
❒ Delayed process/thread allocation

	Application-level protocols
	Applications and application-layer protocols
	Network applications: some jargon
	Client-server paradigm
	Application-layer protocols (cont).
	What transport service does an app need?
	Transport service requirements of common apps
	Services provided by Internet transport protocols
	Internet apps: their protocols and transport protocols
	The Web: some jargon
	The Web: the http protocol
	The http protocol: more
	http example
	http example (cont.)
	Non-persistent and persistent connections
	http message format: request
	http request message: general format
	http message format: response
	http response status codes
	Trying out http (client side) for yourself
	User-server interaction: authentication
	User-server interaction: cookies
	User-server interaction: conditional GET
	Web Caches (proxy server)
	Why Web Caching?
	ftp: the file transfer protocol
	ftp: separate control, data connections
	ftp commands, responses
	Electronic Mail
	Electronic Mail: mail servers
	Electronic Mail: smtp [RFC 821]
	Sample smtp interaction
	try smtp interaction for yourself:
	smtp: final words
	Mail message format
	Message format: multimedia extensions
	MIME typesContent-Type: type/subtype; parameters
	Multipart Type
	Mail access protocols
	POP3 protocol
	Summary
	Summary
	Client-Server Applications
	Issues in Client design
	Issues in Server Design
	Connection-less vs connection-oriented servers
	Connection-less servers
	Stateful vs stateless servers
	Concurrency in servers

