
1

Code Migration in Distributed
Systems

Distributed Software Systems

2

Motivation for Code Migration
❒ Load Sharing in Distributed Systems

❍ Long-running processes can be migrated to idle
processors

❒ Client-server systems
❍ Code for data entry shipped to client system
❍ If large quantities of data need to be processed, it is

better to ship the data processing component to the
client

❍ Dynamically configurable client software
• More flexibility, Easier maintenance and upgrades of client

software
❒ Enterprise and “Desktop Grids”, e.g. SETI@home

❍ Computationally-intensive tasks shipped to idle PCs
around the network

2

3

Dynamically Configurable Client Software

The principle of dynamically configuring a client to communicate to a
server. The client first fetches the necessary software, and then
invokes the server.

4

Models for Code Migration

❒ A process has three segments
❍ Code segment
❍ Execution segment – private data, stack, PC, registers
❍ Resource segment – references to external resources

such as files, printers, devices, etc
❒ Weak vs strong mobility

❍ weak mobility: only code segment + initialization data
migrated, e.g. Java applets

❍ strong mobility: code segment + execution segment
❒ Sender-initiated vs receiver-initiated migration

3

5

Models for Code Migration

Alternatives for code migration.

6

Migration and Local Resources

❒ Process-to-resource bindings make code
migration difficult

❒ Three types of process to resource
bindings
❍ Binding by identifier – when a process refers to

a resource by its identifier, e.g. URL, IP
address, local communication endpoint (socket)

❍ Binding by value – weaker form of binding when
only the value of a resource is needed, e.g. when
a program relies on standard language libraries

❍ Binding by type – weakest form of binding when
a process indicates the type of a resource, e.g.,
a printer

4

7

Migration and Local Resources (cont’d

❒ When migrating code, we may need to change the
references to resources but cannot change the
kind of process-to-resource binding.

❒ How a resource reference is changed depends on
the resource-to-machine bindings

❍ Unattached resources can be easily moved, e.g. data files
associated only with the program being moved

❍ Fastened resources can be moved at a high cost, e.g. a
database

❍ Fixed resources cannot be moved, e.g., local devices, local
communication endpoint

8

Migration and Local Resources cont’d

Actions to be taken with respect to the references
to local resources when migrating code to another
machine.

GR
GR
RB (or GR)

GR (or MV)
GR (or CP)
RB (or GR, CP)

MV (or GR)
CP (or MV, GR)
RB (or GR, CP)

By identifier
By value
By type

FixedFastenedUnattached

Resource-to machine binding

Process-to-
resource

binding

GR: Establish a global system-wide reference
MV: move the resource
CP: copy the value of the resource
RB: Rebind process to locally available resource

5

9

Migration in heterogeneous systems

❒ Weak mobility: no runtime information
needs to be transferred, so it suffices to
generate separate code segments for
different target platforms

❒ Strong mobility: how to transfer the
execution segment
❍ One approach: runtime systems maintains a

language-independent copy of the program
stack

❍ More common approach: Use a virtual machine

10

Migration in Heterogeneous Systems
The principle of maintaining a migration stack to support

migration of an execution segment in a heterogeneous
environment

3-15

6

11

Overview of Code Migration in D'Agents (1)

A simple example of a Tel agent in D'Agents
submitting a script to a remote machine

proc factorial n {
if ($n ≤ 1) { return 1; } # fac(1) = 1

expr $n * [factorial [expr $n – 1]] # fac(n) = n * fac(n – 1)

}

set number … # tells which factorial to compute

set machine … # identify the target machine

agent_submit $machine –procs factorial –vars number –script {factorial $number }

agent_receive … # receive the results (left unspecified for simplicity)

12

Example: D’Agents

❒ D’Agents: research middleware platform that
supports various forms of code migration

❒ Agent is a program that can migrate between
heterogeneous platforms

❍ written in Tcl, Scheme, or Java
❒ Agent mobility

❍ Sender-initiated weak mobility: agent_submit command
❍ Strong mobility by process migration: agent_jump

command
❍ Strong mobility by process cloning: agent_clone

• agent_clone similar to agent_jump except that invoking
process continues execution at the source machine

7

13

Overview of Code Migration in D'Agents (2)

An example of a Tel agent in D'Agents migrating to
different machines where it executes the UNIX
who command

all_users $machines

proc all_users machines {
set list "" # Create an initially empty list
foreach m $machines { # Consider all hosts in the set of given machines

agent_jump $m # Jump to each host
set users [exec who] # Execute the who command
append list $users # Append the results to the list

}
return $list # Return the complete list when done

}

set machines … # Initialize the set of machines to jump to
set this_machine # Set to the host that starts the agent

Create a migrating agent by submitting the script to this machine, from where
it will jump to all the others in $machines.

agent_submit $this_machine –procs all_users
-vars machines
-script { all_users $machines }

agent_receive … #receive the results (left unspecified for simplicity)

14

Implementation Issues (1)

The architecture of the D'Agents system.
❍ The Server is responsible for agent management,

authentication, and management of communication
between agents

❍ The RTS layer supports the core functionality of the
system, i.e., creation of agent, migration, interagent
communication, etc.

8

15

Implementation Issues (2)

The parts comprising the state of an agent in D'Agents.

Stack of activation records, one for each running commandStack of call frames

Stack of commands currently being executedStack of commands

Definitions of scripts to be executed by an agentProcedure definitions

User-defined global variables in a programGlobal program variables

Return codes, error codes, error strings, etc.Global system variables

Variables needed by the interpreter of an agentGlobal interpreter variables

DescriptionStatus

16

Software Agents
❒ A software agent is an autonomous process

capable of reacting to, and initiating
changes in its environment, possibly in
collaboration with users and other agents
❍ Collaborative agents

• part of a multi-agent system in which agents try to
achieve some common goal through collaboration

❍ Mobile agents
• capable of moving between systems

❍ Interface agents
• agents that assist an end user in the use of one or

more applications
• have learning capabilities

❍ Information agents
• manage information from many different sources

9

17

Software Agents in Distributed Systems

Some important properties by which different types of agents
can be distinguished.

Capable of learningNoAdaptive

Can migrate from one site to anotherNoMobile

Has a relatively long lifespanNoContinuous

Can exchange information with users and other agentsYesCommunicative

Initiates actions that affects its environmentYesProactive

Responds timely to changes in its environmentYesReactive

Can act on its ownYesAutonomous

DescriptionCommon to
all agents?Property

18

Agent Technology

The general model of an agent platform

10

19

Agent Communication Languages (1)

Examples of different message types in the FIPA ACL giving the
purpose of a message, along with the description of the actual
message content.

Reference to sourceSubscribe to an information sourceSUBSCRIBE

Action specificationRequest that an action be performedREQUEST

Proposal IDTell that a given proposal is rejectedREJECT-PROPOSAL

Proposal IDTell that a given proposal is acceptedACCEPT-PROPOSAL

ProposalProvide a proposalPROPOSE

Proposal specificsAsk for a proposalCFP

ExpressionQuery for a give objectQUERY-REF

PropositionQuery whether a given proposition is trueQUERY-IF

PropositionInform that a given proposition is trueINFORM

Message ContentDescriptionMessage purpose

20

Agent Communication Languages (2)

A simple example of a FIPA ACL message sent between two agents using
Prolog to express genealogy information.

female(beatrix),parent(beatrix,juliana,bernhard)Content

genealogyOntology

PrologLanguage

elke@iiop://royalty-watcher.uk:5623Receiver

max@http://fanclub-beatrix.royalty-spotters.nl:7239Sender

INFORMPurpose

ValueField

11

21

Secure Mobile Code

❒ Mobile code introduces security threats
❒ Mobile agents need to be protected from

malicious hosts
❍ hosts may try to steal or modify information

carried by the agent
❒ Hosts need to be protected against

malicious agents
❍ Viruses and worms are instances of (stealthy)

malicious agents!!

22

Protecting an agent
❒ Malicious hosts may

❍ steal information carried by an agent
❍ modify an agent to change its behavior
❍ destroy an agent

❒ Fully protecting an agent against all kinds
of attacks is impossible

❒ Alternative: organize agents in such a way
that modifications can be detected
❍ Example: Ajanta system

12

23

Ajanta
❒ Three mechanisms that allow an agent’s owner to

detect that the agent has been tampered with
❒ Read-only state

❍ Collection of data items signed by owner
• message digest encrypted with private key
• host can verify the received read-only state using the

public key of owner
❒ Append-only logs

❍ data collected by an agent can only be appended to the
log

❍ Initially checksum associated with empty log, Cinit = K+(N),
where N is a nonce and K+ is public key of owner

24

Ajanta cont’d
❒ Append-only logs (cont’d)

❍ When a server S appends X to the log, it calculates a new
checksum Cnew = K+(Cold, sig(S,X), S), where Cold is the
previously used checksum

❍ When the agent comes back to the owner, the owner can
start reading the log at the end successively decrypting
the checksum, until the initial checksum is reached

❒ Selective revealing of state
❍ an array of data items, each intended for a designated

server
❍ each entry is encrypted with the designated server’s

public key
❍ the entire array is signed by the agent’s owner

13

25

Protecting the target

❒ More critical problem than protecting an agent
❒ Approaches

❍ create a sandbox, e.g. Java
• a technique by which a downloaded program is executed in

such a way that each of its instructions can be fully
controlled

❍ create a playground
• a separate designated machine exclusively reserved for

downloaded code
• resources local to other machines are physically

disconnected from the playground
• users on other machines can access the playground using

traditional means, e.g. RPC

26

Sandbox vs Playground

8-28

A sandbox A playground

14

27

Java sandbox organization

8-27

28

Java sandbox implementation

❒ Java sandbox components
❍ Only trusted class loaders are used
❍ Byte code verifier checks whether downloaded

class contains illegal instructions or instructions
that could corrupt the stack or memory

❍ A security manager performs various checks at
run-time to ensure that the downloaded object
does not make any unauthorized access to client
resources

• e.g. checks I/O operations for validity, disallows
access to local files, etc.

15

29

Adding flexibility

❒ Playgrounds are more flexible than
sandboxes

❒ Next step: downloaded programs are
authenticated, and subsequently a specific
security policy is enforced based on the
where the program came from
❍ authentication achieved through digital

signatures
❍ enforcing a security policy more challenging

30

Enforcing security policies

❒ Wallach et al proposed three mechanisms
for enforcing a security policy for Java
programs
❍ Use object references as capabilities
❍ Stack introspection
❍ Name space management

• to access local resources, programs need to include
the appropriate files that contain the classes
implementing those resources

• Interpreter enforces different policies for different
downloaded programs by resolving the same name to
different classes

❒ Language-independent solutions are more difficult
to implement and require support from the OS

16

31

Enforcing security policies
The principle of using Java object references as

capabilities.

8-29

32

Enforcing security policies
The principle of stack introspection.

	Code Migration in Distributed Systems
	Motivation for Code Migration
	Dynamically Configurable Client Software
	Models for Code Migration
	Models for Code Migration
	Migration and Local Resources
	Migration and Local Resources (cont’d
	Migration and Local Resources cont’d
	Migration in heterogeneous systems
	Migration in Heterogeneous Systems
	Overview of Code Migration in D'Agents (1)
	Example: D’Agents
	Overview of Code Migration in D'Agents (2)
	Implementation Issues (1)
	Implementation Issues (2)
	Software Agents
	Software Agents in Distributed Systems
	Agent Technology
	Agent Communication Languages (1)
	Agent Communication Languages (2)
	Secure Mobile Code
	Protecting an agent
	Ajanta
	Ajanta cont’d
	Protecting the target
	Sandbox vs Playground
	Java sandbox organization
	Java sandbox implementation
	Adding flexibility
	Enforcing security policies
	Enforcing security policies
	Enforcing security policies

