
1

Fault Tolerance
Distributed Software Systems

Definitions

• Availability: probability the system
operates correctly at any given moment

• Reliability: ability to run correctly for a
long interval of time

• Safety: failure to operate correctly does
not lead to catastrophic failures

• Maintainability: ability to “easily” repair a
failed system

2

Failure Models

Different types of failures.

A server may produce arbitrary responses at arbitrary timesArbitrary failure

The server's response is incorrect
The value of the response is wrong
The server deviates from the correct flow of control

Response failure
 Value failure
 State transition failure

A server's response lies outside the specified time intervalTiming failure

A server fails to respond to incoming requests
A server fails to receive incoming messages
A server fails to send messages

Omission failure
 Receive omission
 Send omission

A server halts, but is working correctly until it haltsCrash failure

DescriptionType of failure

Failure Masking by Redundancy

Triple modular redundancy.

3

Agreement in Faulty Systems

• Many things can go wrong…
• Communication

– Message transmission can be unreliable
– Time taken to deliver a message is unbounded
– Adversary can intercept messages

• Processes
– Can fail or team up to produce wrong results

• Agreement very hard, sometime impossible, to
achieve!

Two-Army Problem
• “Two blue armies need to simultaneously attack the white

army to win; otherwise they will be defeated. The blue army
can communicate only across the area controlled by the
white army which can intercept the messengers.”

• What is the solution?

4

Byzantine Agreement
[Lamport et al. (1982)]

• Goal:
– Each process learn the true values sent by

correct processes

• Assumptions:
– Every message that is sent is delivered

correctly
– The receiver knows who sent the message
– Message delivery time is bounded

Byzantine Agreement Result

• In a system with m faulty processes
agreement can be achieved only if there
are 2m+1 functioning correctly

• Note: This result only guarantees that
each process receives the true values sent
by correct processors, but it does not
identify the correct processes!

5

Byzantine General Problem:
Example

• Phase 1: Generals announce their troop strengths
to each other

P1 P2

P3 P4

1

1
1

Byzantine General Problem:
Example

• Phase 1: Generals announce their troop strengths
to each other

P1 P2

P3 P4

2

2 2

6

Byzantine General Problem:
Example

• Phase 1: Generals announce their troop strengths
to each other

P1 P2

P3 P4

4 4

4

Byzantine General Problem:
Example

• Phase 2: Each general construct a vector with all
troops

4x21

P4P3P2P1 P1 P2

P3 P4

yx

z

4y21

P4P3P2P1

4z21

P4P3P2P1

7

Byzantine General Problem:
Example

• Phase 3: Generals send their vectors to each
other and compute majority voting

4y21

dcba

4z21

P4P3P2P1 P1 P2

P3 P4

(e, f, g, h)

(a, b, c, d)

(h, i, j, k)

4x21

hgfe

4z21

P4P3P2P1

4x21

4y21

kjih

P4P3P2P1

P2

P3

P4

P1

P3

P4

P1

P2
P3

(1, 2, ?, 4)

(1, 2, ?, 4)

(1, 2, ?, 4)

Flat Groups versus Hierarchical Groups

a) Communication in a flat group.
b) Communication in a simple hierarchical group

8

Reliable Group Communication

• Reliable multicast: all nonfaulty
processes which do not join/leave during
communication receive the message

• Atomic multicast: all messages are
delivered in the same order to all
processes

Basic Reliable-Multicasting Schemes

A simple solution to reliable multicasting when all
receivers are known and are assumed not to fail

a) Message transmission
b) Reporting feedback

9

Nonhierarchical Feedback Control

• Several receivers have scheduled a request for
retransmission, but the first retransmission
request leads to the suppression of others.

Hierarchical Feedback Control

The essence of hierarchical reliable multicasting.
a) Each local coordinator forwards the message to its children.
b) A local coordinator handles retransmission requests.

10

Group communication

• Role of group membership service
– Provide an interface for group membership

changes

– Implement a failure detector

– Notify members of group membership
changes

– Perform group address expansion

Services provided for process groups

Join

Group
address

expansion

Multicast
communication

 Group

send

Fail
Group membership

management

Leave

Process group

11

View delivery

• A view reflects current membership of group

• A view is delivered when a membership change
occurs and the application is notified of the
change
– Receiving a view is different from delivering a view

• All members have to agree to the delivery of a view

• View-synchronous group communication
– the delivery of a new view draws a conceptual line

across the system and every message is either
delivered on side or the other of that line

View-synchronous group communication

p

q

r

p crashes

view (q, r)view (p, q, r)

p

q

r

p crashes

view (q, r)view (p, q, r)

a (allowed). b (allowed).

p

q

r

view (p, q, r)

p

q

r

p crashes

view (q, r)view (p, q, r)

c (disallowed). d (disallowed).

p crashes

view (q, r)

12

Atomic Multicast

• All messages are delivered in the same
order to “all” processes

• Group view: the set of processes known by
the sender when it multicast the message

• Virtual synchronous multicast: a
message multicast to a group view G is
delivered to all nonfaulty processes in G
– If sender fails after sending the message, the

message may be delivered to no one

Virtual Synchronous Multicast

13

Virtual Synchrony Implementation [Birman et al 1991]

• The logical organization of a distributed
system to distinguish between message
receipt and message delivery

Virtual Synchrony Implementation:
[Birman et al., 1991]

• Only stable messages are delivered

• Stable message: a message received by all
processes in the message’s group view

• Assumptions (can be ensured by using TCP):
– Point-to-point communication is reliable

– Point-to-point communication ensures FIFO-ordering

14

Virtual Synchrony Implementation: Example

• Gi = {P1, P2, P3, P4,
P5}

• P5 fails

• P1 detects that P5
has failed

• P1 send a “view
change” message to
every process in Gi+1
= {P1, P2, P3, P4}

P1

P2 P3

P4

P5

change view

Virtual Synchrony Implementation: Example

• Every process
– Send each unstable

message m from Gi to
members in Gi+1

– Marks m as being stable
– Send a flush message to

mark that all unstable
messages have been
sent

P1

P2 P3

P4

P5

unstable message

flush
message

15

Virtual Synchrony Implementation: Example

• Every process
– After receiving a flush

message from any
process in Gi+1 installs
Gi+1 P1

P2 P3

P4

P5

Message Ordering

• Discussed last week how we can implement an
ordered multicast
– FIFO-order: messages from the same process are

delivered in the same order they were sent
– Causal-order: potential causality between different

messages is preserved
– Total-order: all processes receive messages in the

same order

• Total ordering does not imply causality or FIFO!
• Atomicity is orthogonal to ordering

16

Message Ordering and Atomicity

YesCausal-ordered delivery
Causal atomic
multicast

YesFIFO-ordered deliveryFIFO atomic multicast

YesNoneAtomic multicast

NoCausal-ordered deliveryCausal multicast

NoFIFO-ordered deliveryFIFO multicast

NoNoneReliable multicast

Total-ordered
Delivery?

Basic Message
Ordering

Multicast

