
1

CORBA

Distributed Software Systems

CORBA IDL
• Need to understand IDL-to-Java mapping or IDL-

to-C++ mapping
– usually a chapter in ORB programmer’s manual
– Chapter 20 of Orfali & Harkey
– For C++, see Henning & Vinoski

• similar to C++ class declarations
• no code (implementation)
• Java issues – holder classes used for output

parameters
• C++ issues - _var classes (smart pointers)

2

IDL
• Some features

– oneway operations (must have void return type)
– interfaces may be derived from other interfaces

• multiple inheritance allowed
• no state or code inherited since there is none in IDL
• derived interfaces cannot redefine attributes or operations

(although types, constants, exceptions can be redefined)

– constructed types
• struct, enum, union, sequence, array
• sequences are variable length
• arrays can be multidimensional

IDL cont’d
• Object references

interface account;
interface bank {

account newAccount(in string name);
void deleteAccount(in account a);

}

newAccount returns a reference to an account object,
deleteAccount takes an object reference as a
parameter

3

IDL cont’d
• Attributes

– default read/write; mapped to two functions
– readonly attributes mapped to a single function

• Exceptions
– user defined exceptions can contain any data field

desired
– any number of user exceptions can be listed for an

operation
• all operations, and attributes, can raise system exceptions

IDL -- user exceptions

Interface bank {
exception reject {
string reason; // programmer chosen fields

};

account newAccount(in string name)
raises (reject);

4

Built in IDL types

• Object root of all IDL interfaces
• NamedValue a pair (string,value)
• TypeCode representation of a type
• Principal caller of an operation

All these are useful in DII/DSI world

Creating multiple copies of objects

• In distributed object systems, objects are
always created by the server
– a server process can be thought of as a

“container” for objects
– must distinguish between CORBA objects and

other objects

• To create multiple objects (instantiations) of
a class, use a ClassFactory

5

Example

module Bank {
interface Account {
float balance();

};
interface AccountManager {
Account open(in string name);

};
};

Object stringification

• Can convert object references to strings and
vice versa
– useful for saving object references to a file
– can be passed between processes

• ORB.object_to_string returns a stringified
Internet (or Interoperable) Object Reference (IOR)

• ORB.object_to_string does reverse

6

Callbacks
• Useful for servers to call objects in clients

– client object reference does not have to be registered

Sleeper

Client Server

Alarm
Clock

setRing(this,time)

wakeMe()

Interface Sleeper {
oneway void wakeMe();
}

Interface AlarmClock {
void setRing (in Sleeper s,
in Time t);

Approaches for object
implementations

• Inheritance: ImplBase approach
– implementation class that you write extends

_<interface_name>ImplBase
– uses up Java single inheritance

• Delegation: the Tie approach
– _tie<interface_name> class inherits from

ImplBase class ; delegator class that delegates
every call to the real implementation class that
you write

7

Delegation based approach

• The implementation class that you write
should implement the Interface
– can also extend a different class
– useful for multiple inheritance

Example
module HelloApp
{

interface Hello
{

string sayHello();
};

};
idltojava -ftie Hello.idl
This generates two additional files in a HelloApp subdirectory:
_HelloOperations.java

The servant class will implement this interface.
_HelloTie.java

This class acts as the skeleton, receiving invocations from the ORB and
delegating them to the servant that actually does the work.

8

Example cont’d
class HelloBasic {

public String sayHello() {

return "\nHello world !!\n";

}

}

class HelloServant extends HelloBasic implements

_HelloOperations

{

}

Example cont’d
public class HelloServer {

public static void main(String args[])

{

try{

// create and initialize the ORB

ORB orb = ORB.init(args, null); //

create servant and register it with the ORB

HelloServant servant = new HelloServant();

Hello helloRef = new _HelloTie(servant);

orb.connect(helloRef);

9

org.omg.CORBA.Object objRef =
orb.resolve_initial_references("NameService");

NamingContext ncRef = NamingContextHelper.narrow(objRef);
// bind the Object Reference in Naming
NameComponent nc = new NameComponent("Hello", "");
NameComponent path[] = {nc}; ncRef.rebind(path, helloRef);
// wait for invocations from clients
java.lang.Object sync = new java.lang.Object();
synchronized (sync) {

sync.wait();
}

}
catch (Exception e) {

System.err.println("ERROR: " + e);
e.printStackTrace(System.out);
}
}

}

DII/DSI
• Useful for constructing requests (DII) or serving

requests (DSI) at run-time
– no pre-compiled stubs
– more expensive
– useful for agents, bridges (inter-operability)

• DII -- query the interface repository for
information on operation to be invoked and
construct request

• DSI -- servant class inherits from
DynamicImplementation class and implements
invoke operation that “deconstructs” the request

10

Portable Object Adaptor (POA)

• “BOA” done right
• deals with activation of objects and servers
• supports both IDL-generated skeletons and

DSI

Life-span of a CORBA object

11

POA concepts

• Objects can be either transient or persistent
– persistent objects outlive the processes (servers) they

“live in” ; a persistent object spans multiple server
lifetimes

– terminology: servant = object implementation
• servant managers

– An application can register servants directly with the
POA OR it can supply servant manager objects to the
POA that can create servants to carry out a request

– you can supply your own or use the default servant
manages supplied by the ORB

Servant Managers

• Objects that assist the POA in the management of
your server-side objects

• POA invokes operations on servant managers to
create, activate, and deactivate servants
– note that there is a clear distinction between creation

and activation
– client only sees an object reference
– servant managers must be registered with POA

12

POAs

• A single server can support multiple POAs
derived from the root POA (create_POA)

• Each POA can be customized
(create_POA_policy)

• Each POA maintains a list of active servant
managers

• Each POA also maintains a map of active
objects (Object_ID to servant map)

Persistent Objects & References
• CORBA object references are unique

– encapsulate both the POA and an Object ID
– Object ID is a value used by the POA and your

implementation to identify a particular object
• no standard form, can be implementation specific (e.g., key of

a DBMS record)

• Implementing persistent objects
– providing the code for storing and restoring object state
– maintaining the mapping between object references and

object state

13

Corba IOR

Servant Managers

• Applications that activate all their objects at server
start up time do not need servant managers

• Servant managers let POAs activate objects on
demand

• Servant Managers are responsible for determining
if an object exists, and managing the association
between object ids and servants

14

Servant Managers cont’d
• Implement one of two interfaces

– ServantActivator
• typically used with persistent objects
• RETAIN policy

– ServantLocator
• NON-RETAIN policy

• Both types of Servant Managers contain
two operations -- one to find and return a
servant, and the second to deactivate a
servant

POA policies

• Threading
– threading model

• ORB_CTRL_MODEL
• SINGLE_THREAD_MODEL

• Lifespan
– persistence model for objects in the POA

• TRANSIENT
• PERSISTENT

15

POA Policies cont’d

• Object Id uniqueness
– specifies whether servants activated by this POA have

unique object ids
• UNIQUE_ID
• MULTIPLE_ID (e.g. when a single servant incarnates multiple

CORBA objects)

• ID Assignment
– who generates Object Ids

• USER_ID (typically for persistent objects)
• SYSTEM_ID (typically for transient objects)

POA Policies cont’d

• Servant Retention
– whether the POA will retain active servants in an

Active Object Map
• RETAIN
• NON_RETAIN

• Activation
– does POA support implicit activation of objects

• IMPLICIT_ACTIVATION (typically for transient objects)
• NO_IMPLICIT_ACTIVATION

16

POA Policies cont’d

• Request Processing
– how requests are processed

• USE_ACTIVE_OBJECT_MAP_ONLY
• USE_DEFAULT_SERVANT
• USE_SERVANT_MANAGER

Policy Combinations
• RETAIN & USE_ACTIVE_OBJECT_MAP_ONLY

– objects explicitly activated by application on
startup

– good for servers that manage a finite number of
pre-started objects (or well known services)

• RETAIN & USE_SERVANT_MANAGER
– ideal for servers that manage a large number of

persistent objects
– if POA does not find a servant in its active map, it

invokes servant managers incarnate()method

17

Policy Combinations

• RETAIN & USE_DEFAULT_SERVANT
– ideal for servers that support a large number of

transient objects
• NON_RETAIN & USE_SERVANT_MANAGER

– ideal if one servant is invoked per method call
– POA calls preinvoke on servant manager of type

ServantLocator

Object Activation

• POA object reference creation and object
activation are decoupled
– create_reference() or create_reference_with_id()

• only create reference, not an active servant

• Object activation
– explicitly via activate_object()
– on-demand using a user-supplied servant manager
– implicitly using a default servant (if

IMPLICIT_ACTIVATION policy in effect)

18

Finding the Target Object

• ORB requests contain both POA id and
Object ID

• server started if not already running
• if POA does not exist, it has to be recreated

using an adapter activator
• POA handles request according to Request

Processing policy

IIOP

• Inter-orb protocol
• IIOP is TCP/IP implementaion of GIOP
• all ORBs have bridges
• IOR: stringified representation of object

reference
– it’s all you need to invoke a method on a

remote object

19

Garbage Collection
• Automatic reclamation of resources used by objects

that are no longer in use by clients
– Objects = CORBA objects? Servants?
– What about persistent objects?

• Techniques
– Shutting down the server periodically
– “Evictor” design pattern Recommended strategy
– Time outs
– Explicit keep-alive
– Reverse keep-alive
– Distributed reference counts

• Distributed garbage collection still an open research
problem

Implementation Repositories

• Used for “indirect binding” for persistent references
– Direct binding requires servers to be running when clients wan to use

them
• Deliberately not standardized

– Clients interact with implementation repositories in a standardized way
but proprietary mechanisms exist between servers and their
implementation repositories

– Provides a point at which ORB vendors can provide additional features
such as object migration, load balancing, etc.

• Responsibilities
– Maintains a registry of known servers
– It records which server is currently running on which host and what port
– It starts servers on demand if they are registered for automatic startup

20

CORBA services

• A set of services useful for building applications
– Naming
– Trading (find objects given a constraint string)
– Event (send messages to multiple receivers)
– Transactions
– Security
– Persistence
– Time, Licensing, Lifecycle, Properties, Relationships,

Concurrency, Query, Externalization

