
1

1

Peer-peer Computing & Networking

CS 707

2

Acknowledgements

Some of the followings slides are based on the
slides made available by the authors of
Computer Networking: A Top Down Approach
Featuring the Internet, 2nd edition.
Jim Kurose, Keith Ross
Addison-Wesley, July 2002.

 and from talks by Robert Morris (MIT)

2

3

Peer-peer computing and networking

4

Peer-peer network Focus at the application level

3

5

Peer-to-Peer: Some Definitions
 A P2P computer network refers to any network that does

not have fixed clients and servers, but a number of peer
nodes that function as both clients and servers to other
nodes on the network.

Wikipedia.org
 The sharing of computer resources and services by direct

exchange between systems
Intel P2P working group

 The use of devices on the internet periphery in a non-client
capacity

Alex Weytsel, Aberdeen Group
 P2P is a class of applications that takes advantage of

resources – storage, cycles, content, human presence –
available at the edges of the internet.

Clay Shirky, openp2p.com

6

Peer-peer applications
 File sharing

 Napster, Gnutella, KaZaa
 Second generation projects

 Oceanstore, PAST, Freehaven

 Distributed Computation
 SETI@home, Entropia, Parabon, United Devices, Popular

Power

 Other Applications
 Content Distribution (BitTorrent)
 Instant Messaging (Jabber), Anonymous Email
 Groupware (Groove)
 P2P Databases

4

7

Is Peer-to-peer new?
 P2P concept certainly not new

 Usenet - News groups first truly decentralized system
 DNS - Handles huge number of clients
 Basic IP - Vastly decentralized, many equivalent routers

 What is new?
 Scale: people are envisioning much larger scale
 Security: Systems must deal with privacy and integrity
 Anonymity: Protect identity and prevent censorship
 (In)Stability: Deal with unstable components at the edges

8

P2P: Related Technologies

 Distributed computing.
 How is P2P different from distributed computing?

 Grid computing.
 How is the computational grid different from P2P

networks?
KEY DIFFERENCES: Peers are on the edges of the

Internet, are autonomous, have variable connectivity,
and temporary network addresses

 Application-level networking.
 Resilient overlay networks for multicast, video

distribution, etc.

5

9

P2P: Related Technologies

 Wireless ad-hoc networks.
 Sensor networks.
 P2P devices/ubiquitous computing.

 JINI.

 Web services.
 .NET framework, SOAP, UDDI.

10

Why the hype???
 File Sharing: Napster (+Gnutella, KaZaa, etc)

 High coolness factor
 Served a high-demand niche: online jukebox

 Anonymity/Privacy/Anarchy: FreeNet, Publis, etc
 Libertarian dream of freedom
 Extremely valid concern of Censorship/Privacy
 In search of copyright violators, RIAA challenging rights to privacy

 Computing: The Grid
 Scavenge the numerous free cycles of the world to do work
 Seti@Home most visible version of this

 Industry/Management
 Looking for the next big thing
 A lot of interest/hype in “autonomic computing”/Computing as a utility

6

11

P2P Applications Taxonomy
 Content and File Sharing

 Napster, Gnutella, KaZaa, etc.
 Most research has focused on this class of apps

 Parallelizable
 Compute Intensive (Same task on every peer using

different parameters)
 Componentized applications – different components on

each peer (not yet widely supported/recognized)

 Collaborative
 Instant messaging, groupware, games
 Many startups but not that much academic research

12

P2P file sharing

Example
 Alice runs P2P client

application on her notebook
computer

 Intermittently connects to
Internet; gets new IP
address for each
connection

 Asks for “Hey Jude”
 Application displays other

peers that have copy of
Hey Jude.

 Alice chooses one of the
peers, Bob.

 File is copied from Bob’s PC
to Alice’s notebook: HTTP

 While Alice downloads,
other users uploading from
Alice.

 Alice’s peer is both a Web
client and a transient Web
server.

All peers are servers = highly
scalable!

7

13

P2P Content Location & Routing

 Three approaches
 Centralized directory (Napster)
 Decentralized directory + Flooding-based

search (Gnutella)
 Unstructured P2P systems

 Distributed Hash Tables (DHT) based document
search and publication
 Structured P2P systems (Chord, CAN, Tapestry, etc)
 Presented in weeks 2 & 3

14

P2P: centralized directory

original “Napster” design
1) when peer connects, it

informs central server:
 IP address
 content

2) Alice queries for “Hey
Jude”

3) Alice requests file from
Bob

centralized
directory server

peers

Alice

Bob

1

1

1

12

3

8

15

P2P: problems with centralized directory

 Single point of failure
 Performance

bottleneck
 Copyright

infringement

 file transfer is
decentralized, but
locating content is highly
centralized

16

Napster
 program for sharing files over the Internet
 a killer application?
 history:

 5/99: Shawn Fanning (freshman, Northeasten U.) founds
Napster Online music service

 12/99: first lawsuit
 3/00: 25% UWisc traffic Napster
 2000: est. 60M users
 2/01: US Circuit Court of Appeals: Napster knew users

violating copyright laws
 7/01: # simultaneous online users:

Napster 160K, Gnutella: 40K, Morpheus: 300K
 2001: Napster shut down; Bertelsmann acquire assets, etc.

 Today
 Napster 2.0 music download service (Roxio)
 Also OpenNap (open source napster server)

9

17

Napster: how did it work

Application-level, client-server protocol over point-
to-point TCP

Four steps:
 Connect to Napster server
 Upload your list of files (push) to server.
 Give server keywords to search the full list with.
 Select “best” of correct answers. (pings)

18

Napster

napster.com

users

File list is
uploaded

1.

10

19

Napster

napster.com

user

Request
and

results

User
requests
search at
server.

2.

20

Napster

napster.com

user

pings pings

User pings
hosts that
apparently
have data.

Looks for
best transfer
rate.

3.

11

21

Napster

napster.com

user

Retrieves
file

User
retrieves file

4.

22

Napster: architecture notes

 centralized server:
 single logical point of failure
 can load balance among servers using DNS

rotation
 potential for congestion

 no security:
 passwords in plain text
 no authentication
 no anonymity

12

23

P2P: decentralized directory

 Each peer is either a group
leader or assigned to a
group leader.

 Group leader tracks the
content in all its children.

 Peer queries group leader;
group leader may query
other group leaders.

ordinary peer

group-leader peer

neighoring relationships
in overlay network

24

More about decentralized directory

overlay network
 peers are nodes
 edges between peers and

their group leaders
 edges between some pairs

of group leaders
 virtual neighbors
bootstrap node
 connecting peer is either

assigned to a group leader
or designated as leader

advantages of approach
 no centralized directory

server
 location service

distributed over peers
 more difficult to shut

down

disadvantages of approach
 bootstrap node needed
 group leaders can get

overloaded

13

25

P2P: Query flooding

 Gnutella
 no hierarchy
 use bootstrap node to learn

about others
 join message

 Send query to neighbors
 Neighbors forward query
 If queried peer has object, it

sends message back to
querying peer

join

26

P2P: more on query flooding

Pros
 peers have similar

responsibilities: no
group leaders

 highly decentralized
 no peer maintains

directory info

Cons
 excessive query

traffic
 query radius: may not

have content when
present

 bootstrap node
 maintenance of overlay

network

14

27

Gnutella
 peer-to-peer networking: applications connect to peer applications
 focus: decentralized method of searching for files
 each application instance serves to:

 store selected files
 route queries (file searches) from and to its neighboring peers
 respond to queries (serve file) if file stored locally

 Gnutella history:
 3/14/00: release by AOL, almost immediately withdrawn
 too late
 many iterations to fix poor initial design (poor design turned many

people off)
 What we care about:

 How much traffic does one query generate?
 how many hosts can it support at once?
 What is the latency associated with querying?
 Is there a bottleneck?

28

Gnutella: how it works
Searching by flooding:
 If you don’t have the file you want, query 7 of

your partners.
 If they don’t have it, they contact 7 of their

partners, for a maximum hop count of 10.
 Requests are flooded, but there is no tree

structure.
 No looping but packets may be received twice.
 Reverse path forwarding

Note: Play gnutella animation at:
http://www.limewire.com/index.jsp/p2p

15

29

Flooding in Gnutella: loop prevention

Seen already list: “A”

30

Distributed Computing
 Current supercomputers are too expensive

 ASCI White (#1 in TOP500) costs more than $110 million
and needed a new building

 Few institutions or research groups can afford this level
of investment

 There are more than 500 million PCs around the
world
 some as powerful as early 90s supercomputers
 they are idle most of the time (60% to 90%), even when

being used (spreadsheet, typing, printing,...)
 corporations and institutions have hundreds or thousands

of PCs on their networks

Try to harness idle PCs on a network and use them
on computationally intensive problems

16

31

How it works

 Embarrassingly parallel applications
 Large computation to communication ratio
 Master/worker model
 Applications can use local disk for checkpointing

 Provider farms out work to idle PCs across
the internet
 PC owners volunteer idle cycles (for money or

altruistic purposes)

32

Entropia network
 Born in 1997 to apply idle computers worldwide to problems of

scientific interest
 In 2 years grew to more than 30,000 computers with aggregate

speed of over 1 Tflop/second
 Several scientific achievements, e.g. Identification of largest

known prime number
 Gone commercial: www.entropia.com and used for applications

from:
 Life sciences
 Financial services
 Product design, etc.

 Today: appears to not have succeeded as a business
 Business model for distributed computing not yet successful

17

33

SETI @ home project

 SETI = Search for Extraterrestrial Intelligence
 Started in 1996 to enlist PCs to work on analyzing

data from the Arecibo radio telescope
 Good mix of popular appeal and good technology

• Now running on more than _ million PCs

• delivering ~ 1,200 CPU years per day

• ~ 35 Tflops/sec

• fastest (but special-purpose) computer in the world

setiathome.ssl.berkeley.edu

34

DHTs

 Distributed Hash Tables: a building block for P2P
applications

 First generation of DHTs
 Tapestry (Zhao et al -- UC Berkeley)
 Pastry (Rowstron et al - Microsoft Research)
 Chord (Morris - MIT)
 CAN (Ratnasamy et al - UC Berkeley)

 Several other DHTs have been proposed
 Symphony, Kademlia, etc.

18

35

What Is a DHT?

 Single-node hash table:
key = Hash(name)
put(key, value)
get(key) -> value
 Service: O(1) storage

 How do I do this across millions of hosts on
the Internet?
 Distributed Hash Table

36

What Is a DHT?

Distributed Hash Table:
key = Hash(data)
lookup(key) -> IP address (Chord)
send-RPC(IP address, PUT, key, value)
send-RPC(IP address, GET, key) -> value

Possibly a first step towards truly large-scale
distributed systems
 a tuple in a global database engine
 a data block in a global file system
 rare.mp3 in a P2P file-sharing system

19

37

DHTs

Distributed hash table

Distributed application

get (key) data

node node node….

put(key, data)

Lookup service

lookup(key) node IP address

• Application may be distributed over many nodes
• DHT distributes data storage over many nodes

(DHash)

(Chord)

38

Why the put()/get() interface?

 API supports a wide range of applications
 DHT imposes no structure/meaning on keys

 Key/value pairs are persistent and global
 Can store keys in other DHT values
 And thus build complex data structures

20

39

Why Might DHT Design Be Hard?

 Decentralized: no central authority
 Scalable: low network traffic overhead
 Efficient: find items quickly (latency)
 Dynamic: nodes fail, new nodes join
 General-purpose: flexible naming

40

The Lookup Problem

Internet

N1
N2 N3

N6N5
N4

Publisher

Put (Key=“title”
Value=file data…) Client

Get(key=“title”)

?

• At the heart of all DHTs

21

41

Motivation: Centralized Lookup
(Napster)

Publisher@

Client

Lookup(“title”)

N6

N9 N7

DB

N8

N3

N2N1SetLoc(“title”, N4)

Simple, but O(N) state and a single point of failure

Key=“title”
Value=file data…

N4

42

Motivation: Flooded Queries
(Gnutella)

N4Publisher@
Client

N6

N9

N7
N8

N3

N2N1

Robust, but worst case O(N) messages per lookup

Key=“title”
Value=file data…

Lookup(“title”)

22

43

Motivation: Routed DHT Queries
(Tapestry, Pastry, Chord, CAN, etc)

N4Publisher

Client

N6

N9

N7
N8

N3

N2N1

Lookup(H(audio data))

Key=H(audio data)
Value={artist,
album title,
 track title}

44

DHT Applications

 global file systems [OceanStore, CFS, PAST, Pastiche,
UsenetDHT]

 naming services [Chord-DNS, Twine, SFR]
 DB query processing [PIER, Wisc]
 Internet-scale data structures [PHT, Cone, SkipGraphs]
 communication services [i3, MCAN, Bayeux]
 event notification [Scribe, Herald]
 File sharing [OverNet]

23

45

Chord Simplicity

 Resolution entails participation by O(log(N))
nodes

 Resolution is efficient when each node
enjoys accurate information about
O(log(N)) other nodes

 Resolution is possible when each node
enjoys accurate information about 1 other
node

“Degrades gracefully”

46

Chord Algorithms

Basic Lookup
Node Joins
Stabilization
Failures and Replication

24

47

Chord Properties
 Efficient: O(log(N)) messages per lookup

 N is the total number of servers

 Scalable: O(log(N)) state per node
 Robust: survives massive failures

 Proofs are in paper / tech report
 Assuming no malicious participants

48

Chord IDs

 Key identifier = SHA-1(key)
 Node identifier = SHA-1(IP address)
 Both are uniformly distributed
 Both exist in the same ID space

 How to map key IDs to node IDs?

25

49

Consistent Hashing[Karger 97]

 Target: web page caching
 Like normal hashing, assigns items to

buckets so that each bucket receives
roughly the same number of items

 Unlike normal hashing, a small change in the
bucket set does not induce a total
remapping of items to buckets

50

Consistent Hashing [Karger 97]

N32

N90

N105

K80

K20

K5

Circular 7-bit
ID space

Key 5
Node 105

A key is stored at its successor:
node with next higher ID

26

51

Basic lookup

N32

N90

N105

N60

N10
N120

K80

“Where is key 80?”

“N90 has K80”

52

Simple lookup algorithm

Lookup(my-id, key-id)
n = my successor
if my-id < n < key-id

call Lookup(id) on node n // next hop

else
return my successor // done

 Correctness depends only on successors

27

53

“Finger table” allows log(N)-time
lookups

N80

1/21/4

1/8

1/16
1/32
1/64
1/128

54

Finger i points to successor of n+2i-
1

N80

1/21/4

1/8

1/16
1/32
1/64
1/128

112

N120

28

55

Lookup with fingers

Lookup(my-id, key-id)
look in local finger table for

highest node n s.t. my-id < n < key-id
if n exists

call Lookup(id) on node n // next hop

else
return my successor // done

56

Lookups take O(log(N)) hops

N32

N10

N5

N20
N110

N99

N80

N60

Lookup(K19)

K19

29

57

Node Join - Linked List Insert

N36

N40

N25

1. Lookup(36)
K30
K38

58

Node Join (2)

N36

N40

N25

2. N36 sets its own
successor pointer

K30
K38

30

59

Node Join (3)

N36

N40

N25

3. Copy keys 26..36
from N40 to N36

K30
K38

K30

60

Node Join (4)

N36

N40

N25

4. Set N25’s successor
pointer

Update finger pointers in the background
Correct successors produce correct lookups

K30
K38

K30

31

61

Stabilization

 Case 1: finger tables are reasonably fresh
 Case 2: successor pointers are correct; fingers are

inaccurate
 Case 3: successor pointers are inaccurate or key migration is

incomplete

 Stabilization algorithm periodically verifies and refreshes
node knowledge
 Successor pointers
 Predecessor pointers
 Finger tables

62

Failures and Replication

N120
N113

N102

N80

N85

N80 doesn’t know correct successor, so incorrect lookup

N10

Lookup(90)

32

63

Solution: successor lists

 Each node knows r immediate successors
 After failure, will know first live successor
 Correct successors guarantee correct lookups

 Guarantee is with some probability

64

Choosing the successor list
length

 Assume 1/2 of nodes fail
 P(successor list all dead) = (1/2)r

 I.e. P(this node breaks the Chord ring)
 Depends on independent failure

 P(no broken nodes) = (1 – (1/2)r)N

 r = 2log(N) makes prob. = 1 – 1/N

33

65

Chord status

 Working implementation as part of CFS
 Chord library: 3,000 lines of C++
 Deployed in small Internet testbed
 Includes:

 Correct concurrent join/fail
 Proximity-based routing for low delay
 Load control for heterogeneous nodes
 Resistance to spoofed node IDs

66

Chord Summary

 Chord provides peer-to-peer hash lookup
 Efficient: O(log(n)) messages per lookup
 Robust as nodes fail and join
 Good primitive for peer-to-peer systems

http://www.pdos.lcs.mit.edu/chord

34

67

Readings

 P2P Survey Article on Class web page
 Article on Chord

