
1

RMI Programming

Distributed Software Systems

RMI Programming 2

RMI Programming
❒ RMI software

❍ Generated by IDL compiler
❍ Proxy

• Behaves like remote object to clients (invoker)
• Marshals arguments, forwards message to remote object,

unmarshals results, returns results to client
❍ Skeleton

• Server side stub;
• Unmarshals arguments, invokes method, marshals results

and sends to sending proxy’s method
❍ Dispatcher

• Receives the request message from communication module,
passes on the message to the appropriate method in the
skeleton

❒ Server and Client programs

2

RMI Programming 3

The role of proxy and skeleton in
remote method invocation

object A object Bskeleton
Request

proxy for B

Reply

CommunicationRemote Remote referenceCommunication
modulemodulereference module module

for B’s class
& dispatcher

remote
client server

RMI Programming 4

RMI Programming
❒ Binder

❍ Client programs need a means of obtaining a remote
object reference

❍ Binder is a service that maintains a mapping from textual
names to remote object references

❍ Servers need to register the services they are exporting
with the binder

❍ Java RMIregistry, CORBA Naming service
❒ Server threads

❍ Several choices: thread per object, thread per invocation
❍ Remote method invocations must allow for concurrent

execution

3

RMI Programming 5

RMI systems

❒ CORBA – language independent
❒ DCOM - Microsoft
❒ Java RMI
❒ SOAP (Simple Object Access Protocol)

❍ HTTP is request-reply protocol
❍ XML for data representation

RMI Programming 6

Java RMI
❒ Features

❍ Integrated with Java language + libraries
• Security, write once run anywhere, multithreaded
• Object orientation

❍ Can pass “behavior”
• Mobile code
• Not possible in CORBA, traditional RPC systems

❍ Distributed Garbage Collection
❍ Remoteness of objects intentionally not

transparent

4

RMI Programming 7

Remote Interfaces, Objects, and
Methods
❒ Objects become remote by implementing a

remote interface
❍ A remote interface extends the interface
java.rmi.Remote

❍ Each method of the interface declares
java.rmi.RemoteException in its throws clause
in addition to any application-specific clauses

RMI Programming 8

Creating distributed applications using RMI
1. Define the remote interfaces
2. Implement the remote objects
3. Implement the client (can be done anytime after

remote interfaces have been defined)
4. Register the remote object in the name server

registry
5. Generate the stub and client using rmic
6. Start the registry
7. Start the server
8. Run the client

5

RMI Programming 9

Java Remote interfaces Shape and
ShapeList

import java.rmi.*;
import java.util.Vector;
public interface Shape extends Remote {

int getVersion() throws RemoteException;
GraphicalObject getAllState() throws RemoteException; 1

}
public interface ShapeList extends Remote {

Shape newShape(GraphicalObject g) throws RemoteException; 2
Vector allShapes() throws RemoteException;
int getVersion() throws RemoteException;

}

RMI Programming 10

The Naming class of Java RMIregistry
void rebind (String name, Remote obj)

This method is used by a server to register the identifier of a remote
object by name, as shown in Figure 15.13, line 3.

void bind (String name, Remote obj)
This method can alternatively be used by a server to register a remote
object by name, but if the name is already bound to a remote object
reference an exception is thrown.

void unbind (String name, Remote obj)
This method removes a binding.

Remote lookup(String name)
This method is used by clients to look up a remote object by name, as
shown in Figure 15.15 line 1. A remote object reference is returned.

String [] list()
This method returns an array of Strings containing the names bound in
the registry.

6

RMI Programming 11

Java class ShapeListServer with main
method

import java.rmi.*;
public class ShapeListServer{

public static void main(String args[]){
System.setSecurityManager(new RMISecurityManager());
try{

ShapeList aShapeList = new ShapeListServant(); 1
Naming.rebind("Shape List", aShapeList); 2

System.out.println("ShapeList server ready");
}catch(Exception e) {
System.out.println("ShapeList server main " + e.getMessage());}

}
}

RMI Programming 12

Java class ShapeListServant
implements interface ShapeList

import java.rmi.*;
import java.rmi.server.UnicastRemoteObject;
import java.util.Vector;
public class ShapeListServant extends UnicastRemoteObject implements ShapeList {

private Vector theList; // contains the list of Shapes 1
private int version;

public ShapeListServant()throws RemoteException{...}
public Shape newShape(GraphicalObject g) throws RemoteException { 2

version++;
Shape s = new ShapeServant(g, version); 3
theList.addElement(s);
return s;

}
public Vector allShapes()throws RemoteException{...}
public int getVersion() throws RemoteException { ... }

}

7

RMI Programming 13

Java client of ShapeList

import java.rmi.*;
import java.rmi.server.*;
import java.util.Vector;
public class ShapeListClient{

public static void main(String args[]){
System.setSecurityManager(new RMISecurityManager());
ShapeList aShapeList = null;
try{

aShapeList = (ShapeList) Naming.lookup("//bruno.ShapeList") ; 1
Vector sList = aShapeList.allShapes(); 2

} catch(RemoteException e) {System.out.println(e.getMessage());
}catch(Exception e) {System.out.println("Client: " + e.getMessage());}

}
}

RMI Programming 14

Classes supporting Java RMI

RemoteServer

UnicastRemoteObject

<servant class>

Activatable

RemoteObject

8

RMI Programming 15

CORBA

RMI Programming 16

The main components of the CORBA
architecture

client server

proxy

or dynamic invocation

implementation
repository object

adapter

ORBORB

skeleton

or dynamic skeleton

client
program

interface
repository

Request

Reply
corecorefor A

Servant
A

9

RMI Programming 17

IDL interfaces Shape and ShapeList

struct Rectangle{ 1
long width;
long height;
long x;
long y;

} ;

struct GraphicalObject{ 2
string type;
Rectangle enclosing;
boolean isFilled;

};

interface Shape { 3
long getVersion() ;
GraphicalObject getAllState() ; // returns state of the GraphicalObject

};

typedef sequence <Shape, 100> All; 4
interface ShapeList { 5

exception FullException{ }; 6
Shape newShape(in GraphicalObject g) raises (FullException); 7
All allShapes(); // returns sequence of remote object references 8
long getVersion() ;

};

RMI Programming 18

Java interface ShapeList generated by
idltojava from CORBA interface ShapeList

public interface ShapeList extends org.omg.CORBA.Object {
Shape newShape(GraphicalObject g) throws ShapeListPackage.FullException;
Shape[] allShapes();
int getVersion();

}

10

RMI Programming 19

ShapeListServant class of the Java server program
for CORBA interface ShapeList

import org.omg.CORBA.*;
class ShapeListServant extends _ShapeListImplBase {

ORB theOrb;
private Shape theList[];
private int version;
private static int n=0;
public ShapeListServant(ORB orb){

theOrb = orb;
// initialize the other instance variables

}
public Shape newShape(GraphicalObject g) throws ShapeListPackage.FullException { 1

version++;
Shape s = new ShapeServant(g, version);
if(n >=100) throw new ShapeListPackage.FullException();
theList[n++] = s; 2

theOrb.connect(s);
return s;

}
public Shape[] allShapes(){ ... }
public int getVersion() { ... }

}

RMI Programming 20

Java class ShapeListServer

import org.omg.CosNaming.*;
import org.omg.CosNaming.NamingContextPackage.*;
import org.omg.CORBA.*;
public class ShapeListServer {

public static void main(String args[]) {
try{

ORB orb = ORB.init(args, null); 1
ShapeListServant shapeRef = new ShapeListServant(orb); 2
orb.connect(shapeRef); 3
org.omg.CORBA.Object objRef =

orb.resolve_initial_references("NameService"); 4
NamingContext ncRef = NamingContextHelper.narrow(objRef);
NameComponent nc = new NameComponent("ShapeList", ""); 5
NameComponent path[] = {nc}; 6
ncRef.rebind(path, shapeRef); 7
java.lang.Object sync = new java.lang.Object();
synchronized (sync) { sync.wait();}

} catch (Exception e) { ... }
}

}

11

RMI Programming 21

Java client program for CORBA interfaces
Shape and ShapeList

import org.omg.CosNaming.*;
import org.omg.CosNaming.NamingContextPackage.*;
import org.omg.CORBA.*;
public class ShapeListClient{

public static void main(String args[]) {
try{

ORB orb = ORB.init(args, null); 1
org.omg.CORBA.Object objRef =

orb.resolve_initial_references("NameService");
NamingContext ncRef = NamingContextHelper.narrow(objRef);
NameComponent nc = new NameComponent("ShapeList", "");
NameComponent path [] = { nc };
ShapeList shapeListRef =

ShapeListHelper.narrow(ncRef.resolve(path)); 2
Shape[] sList = shapeListRef.allShapes(); 3
GraphicalObject g = sList[0].getAllState(); 4

} catch(org.omg.CORBA.SystemException e) {...}
}

RMI Programming 22

IDL module Whiteboard

module Whiteboard {
struct Rectangle{
...} ;
struct GraphicalObject {
...};
interface Shape {
...};
typedef sequence <Shape, 100> All;
interface ShapeList {
...};

};

12

RMI Programming 23

IDL constructed types

Type Examples Use
sequence typedef sequence <Shape, 100> All;

typedef sequence <Shape> All
bounded and unbounded sequences
of Shapes

Defines a type for a variable-length
sequence of elements of a specified
IDL type. An upper bound on the
length may be specified.

string String name;
typedef string<8> SmallString;
unbounded and bounded
sequences of characters

Defines a sequences of characters,
terminated by the null character. An
upper bound on the length may be
specified.

array typedef octet uniqueId[12];
typedef GraphicalObject GO[10][8]

Defines a type for a multi-dimensional
fixed-length sequence of elements of a
specified IDL type.

RMI Programming 24

IDL constructed types cont’d

Type Examples Use
record struct GraphicalObject {

string type;
Rectangle enclosing;
boolean isFilled;

};

Defines a type for a record containing a
group of related entities. Structs are
passed by value in arguments and
results.

enumerated enum Rand
(Exp, Number, Name);

The enumerated type in IDL maps a
type name onto a small set of integer
values.

union union Exp switch (Rand) {
case Exp: string vote;

case Number: long n;
case Name: string s;

The IDL discriminated union allows
one of a given set of types to be passed
as an argument. The header is
parameterized by an enum, which
specifies which member is in use.};

13

RMI Programming 25

CORBA interoperable object references

IOR format

IDL interface type nameProtocol and address details Object key
interface repository
identifier

IIOP host domain
name

port number adapter name object name

RMI Programming 26

Naming graph in CORBA Naming Service

initial naming context

ShapeList

C
D E

B

initial naming context

P

R S T

V

Q U

initial naming context

XX

14

RMI Programming 27

Part of the CORBA Naming Service NamingContext
interface in IDL
struct NameComponent { string id; string kind; };

typedef sequence <NameComponent> Name;

interface NamingContext {
void bind (in Name n, in Object obj);

binds the given name and remote object reference in my context.
void unbind (in Name n);

removes an existing binding with the given name.
void bind_new_context(in Name n);

creates a new naming context and binds it to a given name in my context.
Object resolve (in Name n);

looks up the name in my context and returns its remote object reference.
void list (in unsigned long how_many, out BindingList bl, out BindingIterator bi);

returns the names in the bindings in my context.
};

	RMI Programming
	RMI Programming
	The role of proxy and skeleton in remote method invocation
	RMI Programming
	RMI systems
	Java RMI
	Remote Interfaces, Objects, and Methods
	Creating distributed applications using RMI
	Java Remote interfaces Shape and ShapeList
	The Naming class of Java RMIregistry
	Java class ShapeListServer with main method
	Java class ShapeListServant implements interface ShapeList
	Java client of ShapeList
	Classes supporting Java RMI
	CORBA
	The main components of the CORBA architecture
	IDL interfaces Shape and ShapeList
	Java interface ShapeList generated by idltojava from CORBA interface ShapeList
	ShapeListServant class of the Java server program for CORBA interface ShapeList
	Java class ShapeListServer
	Java client program for CORBA interfaces Shape and ShapeList
	IDL module Whiteboard
	IDL constructed types
	IDL constructed types cont’d
	CORBA interoperable object references
	Naming graph in CORBA Naming Service
	Part of the CORBA Naming Service NamingContext interface in IDL

