Network Programming using sockets

TCP/IP layers

Meggage
Layers —v—

o

Application

K Messages (UDP) or Streams (TCP)

D
Transport N

UDP or TCP packets

D
Internet

[~ IP-datagrams

D
Network interface

| Network-specific frames

, >

Underlying network

Network Programming

The programmer's conceptual view of a TCP/IP
Internet

Application Application

TCP UDP

Network Programming 3

Socket programming

Goal: learn how to build client/server application that
communicate using sockets

Socket API [socket
O introduced in BSD4.1 UNIX, .
1981 a host-local, application-

created/owned,
OS-controlled interface
(a “door”) into which
application process can
both send and
receive messages to/from
another (remote or
local) application process

O explicitly created, used,
released by apps

O client/server paradigm

0 two types of transport
service via socket API:

O unreliable datagram

O reliable, byte stream-
oriented

Network Programming 4

Sockets and ports

(aYa

3

agreed port

socw any port socket
message

client \ /@ server
D\ other ports _G

Internet address = 138.37.94.248 Internet address = 138.37.88.249

O A OCO

Network Programming 5

Berkeley Sockets (1)

O Socket primitives for TCP/IP.

Primitive Meaning

Socket Create a new communication endpoint

Bind Attach a local address to a socket
| Listen Announce willingness to accept connections
Accept Block caller until a connection request arrives
|Send Send some data over the connection
Receive Receive some data over the connection
[IClose [Release the connection

Network Programming 6

Socket programming with TCP

Client must contact server O When client creates socket
0 server process must first client TCP establishes
be running connection to server TCP

O server must have created O When contacted by client,

socket (door) that
welcomes client’s contact

server TCP creates new
socket for server process to

communicate with client

Client contacts server by:

O creating client-local TCP
socket

O allows server to talk with
multiple clients

O specifying IP address, port application viewpoint

number of server process

TCP provides reliable, in-order

transfer of bytes (“pipe”)
between client and server

Network Programming 7

Socket programming with TCP

Example client-server app:

O client reads line from
standard input (i nFronser
stream) , sends to server via
socket (out ToSer ver
stream)

O server reads line from socket

O server converts line to
uppercase, sends back to
client

O client reads, prints modified
line from socket
(i nFrontSer ver stream)

Input stream: sequence of
bytes into process

Output stream: sequence of
bytes out of process

|
i nFr onser |

client socket

out ToSer ver
i nFronSer ver

I<

Network Programming 8

Client/server socket interaction: TCP

Server (running on host i d) Client

create socket,
port=x, for
incoming request:
welcomeSocket =
ServerSocket()
>

wait for incoming €~ = —TTCP— — — 4 Create socket,
connection request connection setup cqnnect to hosti d, port=x
connectionSocket = clientSocket =
welcoijocket.accept() Socket()

send request using
read request from /c|ient80 ket
connectiiJnSOCket
write reply to \’
connectionSocket read reply from

J clientSocket
close

connectionSocket close
clientSocket

Network Programming 9

Berkeley Sockets (2)

Server /__\)
[socket] bind | listen |- acht}J‘F}—H write F—» close |
Synchronization point —

i 1
! ; Communication *
| ! \
f

\ J , h |
socket Mconnecth ™ wiite ——»{ read close |
Client

O Connection-oriented communication pattern using sockets.

Network Programming 10

Sockets used for streams

Requesting a connection Listening and accepting a connection
s = socket(AF_INET, SOCK_STREAM,0| s.= socket(AF_INET, SOCK_STREAM,0
: bind(s, ServerAddress);
connect(s, ServerAddress) I§ten(s,5),
: sNew = accept(s, ClientAddress);
L J
write(s, "message", length) n = read(sNew, buffer, amount)

ServerAddress and ClientAddress are socket addresses

Network Programming 11

Example: Java client (TCP)

import java.io.*;
import java.net.*;
class TCPClient{

public static void main(String argv[]) throws Exception
{
String sentence;
String modifiedSentence;
Create — , _
input stream- » BufferedReader inFromUser = _
— new BufferedReader(new InputStreamReader(System.in));
Create

client socket, | » SocketclientSocket = new Socket("hostname", 6789);

connect to server-
Create [» DataOutputStream outToServer =

output stream new DataOutputStream (clientSocketgetOutputStream ());

attached to socket -

Network Programming 12

Example: Java client (TCP), cont.

Create BufferedReader inFromServer =
input stream new BufferedReader(new
attached to socket InputStreamReader(clientSocketgetinputStream ()));

sentence = inFromUser.readLine();

Send line . o
to server outToServer.writeBytes(sentence + '\n');

Read |inej|-> modifiedSentence = inFromServer.readLine();
from server

System.out.printin("FROM SERVER: " + modifiedSentence);

clientSocket.close();

Network Programming 13

Example: Java server (TCP)

import java.io.*;
import java.net.*;

class TCPServer {
public static void main(String argv []) throws Exception

String clientSentence;
Create String capitalizedSentence;

welcoming socket [— _ .
at port 6789 » ServerSocket welcomeSocket = new ServerSocket(6789);

Wait, on welcoming while(true) {
socket for contact >
by client

C . BufferedReader inFromClient =
reate input > new BufferedReader(new
stream, attached

InputStreamReader(connectionSocket.getinputStream()));
to socket

Socket connectionSocket =welcomeSocket.accept();

Network Programming 14

Example: Java server (TCP), cont

Create output_

stream, attached

to socket_»

Read in line |
from socket |

Write out line |
to socket |

}

}

}

DataOutputStream outToClient=
new DataOutputStream(connectionSocket.getOutputStream());

— clientSentence = inFromClientreadLine();

capitalizedSentence = clientSentence .toUpperCase() + '\n’;

—» outToClientwriteBytes (capitalizedSentence);

End of while loop,
loop back and wait for
another client connection

Network Programming 15

Socket programming with UDP

UDP: no “connection” between
client and server

O no handshaking
O sender explicitly attaches application viewpoint

IP address and port of

destination

O server must extract IP
address, port of sender

UDP provides unreliable transfer
of groups of bytes (“datagrams”)
between client and server

from received datagram

UDP: transmitted data may be
received out of order, or

lost

Network Programming 16

Client/server socket interaction: UDP

Server (running on host i d) Client

create socket, create socket,

portq(, for clientSocket =
incoming request: DatagramSocket ()
serverSocket =
DatagramSocket ()
— »

Create, address (hostid, port=x,
/send datagram request

read request from using clientSocket

serverSocket

write reply to

serverSocket \) d reoly 1
specifying client read reply from

host address clientSocket
port umber close
L clientSocket

Network Programming 17

Sockets used for datagrams

Sending a message Receiving a message
s = socket(AF_INET, SOCK_DGRAM, §) %= socket(AF_INET, SOCK_DGRAM, @)
° []
Rnd(s, ClientAddress) leind(s, ServerAddress)
[] []
sendto(s, "message”, ServerAddress) | amount = recvfrom(s, buffer, from)

ServerAddress and ClientAddress are socket addresses

Network Programming 18

Example: Java client (UDP)

import java.io.*;
import java.net.*;

class UDPClient {
public static void main(String args []) throws Exception

Create_ {

input stream [pyfferedReader inFromUser =

Create | new BufferedReader(new InputStreamReader(System.in));

i e
client socket] DatagramSocket clientSocket = new DatagramSocket();

Translate |
hostname to IP
address using DNS |

— InetAddress IPAddress = InetAddress.getByName ("hostname");

byte[] sendData = new byte[1024];
byte[] receiveData = new byte[1024];
String sentence = inFromUser.readLine();

sendData = sentence.getBytes();
Network Programming 19

Example: Java client (UDP), cont.

Create datagram
with data-to-send, | DatagramPacket sendPacket =
length, IP addr, port! » new DatagramPacket(sendData, sendData.length, IPAddress, 9876);

Send datag ram:|—1 clientSocket.send(sendPacket);

to server
DatagramPacket receivePacket =

new DatagramPacket(receiveData, receiveData.length);

Read datagram

from server- ™ clientSocket.receive(receivePacket);

String modifiedSentence =
new String(receivePacket.getData());

System.out.printin("FROM SERVER:" + modifiedSentence);
clientSocket.close();

}

Network Programming 20

10

Example: Java server (UDP)

import java.io.*;
import java.net.*;

class UDPServer {
public static void main(String args[]) throws Exception
Create {
datagram socket

at port 9876 DatagramSocket serverSocket = new DatagramSocket(9876);

byte[] receiveData = new byte[1024];
byte[] sendData = new byte[1024];

while(true)

{

Create space for)
received datagram —» DatagramPacket receivePacket =
new DatagramPacket(receiveData, receiveData.length);

Receiv€|——> serverSocket.receive(receivePacket);

datagram
Network Programming 21

Example: Java server (UDP), cont

String sentence = new String(receivePacket.getData());

Get IP addr
port #, of »InetAddress IPAddress = receivePacket.getAddress();

sender »int port = receivePacket.getPort();

String capitalizedSentence = sentence.toUpperCase();

sendData = capitalizedSentence.getBytes();

Create datagram [—
. » DatagramPacket sendPacket =
to send to client

new DatagramPacket(sendData, sendData.length, IPAddress,

. port);
Write out
datagram | » serverSocket.send(sendPacket);
to socket- '}
} A4
} End of while loop,

loop back and wait for

nother datagram
Network Programming 22

11

