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Network Programming using sockets

Network Programming 2

TCP/IP layers

Messages (UDP) or Streams (TCP)

Application

Transport

Internet

UDP or TCP packets

IP datagrams

Network-specific frames

Message
Layers

Underlying network

Network  interface
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The programmer's conceptual view of a TCP/IP 
Internet

IP

Application Application

TCP UDP
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Socket programming

Socket API
r introduced in BSD4.1 UNIX, 

1981
r explicitly created, used, 

released by apps 
r client/server paradigm 
r two types of transport 

service via socket API: 
m unreliable datagram 
m reliable, byte stream-

oriented 

a host-local, application-
created/owned, 

OS-controlled interface 
(a “door”) into which

application process can 
both send and 

receive messages to/from 
another (remote or 

local) application process

socket

Goal: learn how to build client/server application that 
communicate using sockets
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Sockets and ports

message

agreed portany port socketsocket

Internet address = 138.37.88.249Internet address = 138.37.94.248

other ports

client server
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Berkeley Sockets (1)

r Socket primitives for TCP/IP.

Release the connectionClose

Receive some data over the connectionReceive

Send some data over the connectionSend

Actively attempt to establish a connectionConnect

Block caller until a connection request arrivesAccept

Announce willingness to accept connectionsListen

Attach a local address to a socketBind

Create a new communication endpointSocket

MeaningPrimitive
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Socket programming with TCP

Client must contact server
r server process must first 

be running
r server must have created 

socket (door) that 
welcomes client’s contact

Client contacts server by:
r creating client-local TCP 

socket
r specifying IP address, port 

number of server process

r When client creates socket: 
client TCP establishes 
connection to server TCP

r When contacted by client, 
server TCP creates new 
socket for server process to 
communicate with client
m allows server to talk with 

multiple clients

TCP provides reliable, in-order
transfer of bytes (“pipe”) 
between client and server

application viewpoint
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Socket programming with TCP

Example client-server app:
r client reads line from 

standard input (inFromUser
stream) , sends to server via 
socket (outToServer
stream)

r server reads line from socket
r server converts line to 

uppercase, sends back to 
client

r client reads, prints  modified 
line from socket 
(inFromServer stream)

Input stream: sequence of 
bytes into process

Output stream: sequence of 
bytes out of process

client socket

inFromUser ou
tT
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er
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r
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Client/server socket interaction: TCP

wait for incoming
connection request
connectionSocket =
welcomeSocket .accept()

create socket,
port=x, for
incoming request:
welcomeSocket =

ServerSocket ()

create socket,
connect to hostid, port=x
clientSocket =

Socket()

close
connectionSocket

read reply from
clientSocket

close
clientSocket

Server (running on hostid) Client

send request using
clientSocketread request from

connectionSocket

write reply to
connectionSocket

TCP 
connection setup
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Berkeley Sockets (2)

r Connection-oriented communication pattern using sockets.
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Sockets used for streams

Requesting a connection Listening and accepting a connection

bind(s, ServerAddress);
listen(s,5);

sNew = accept(s, ClientAddress);

n = read(sNew, buffer, amount)

s = socket(AF_INET, SOCK_STREAM,0)

connect(s, ServerAddress)

write(s, "message", length)

s = socket(AF_INET, SOCK_STREAM,0)

ServerAddress and ClientAddress are socket addresses
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Example: Java client (TCP)

import java.io.*; 
import java.net.*; 
class TCPClient { 

public static void main(String argv[]) throws Exception 
{ 

String sentence; 
String modifiedSentence;

BufferedReader inFromUser = 
new BufferedReader(new InputStreamReader(System.in)); 

Socket clientSocket = new Socket("hostname", 6789);

DataOutputStream outToServer = 
new DataOutputStream(clientSocket.getOutputStream ());

Create
input stream

Create 
client socket, 

connect to server
Create

output stream
attached to socket
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Example: Java client (TCP), cont.

BufferedReader inFromServer = 
new BufferedReader(new
InputStreamReader(clientSocket.getInputStream ())); 

sentence = inFromUser.readLine();

outToServer.writeBytes(sentence + '\n');

modifiedSentence = inFromServer.readLine(); 

System.out.println("FROM SERVER: " + modifiedSentence);

clientSocket.close(); 

} 
}

Create
input stream

attached to socket

Send line
to server

Read line
from server
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Example: Java server (TCP)

import java.io.*; 
import java.net.*; 

class TCPServer { 

public static void main(String argv []) throws Exception 
{ 
String clientSentence; 
String capitalizedSentence;

ServerSocket welcomeSocket = new ServerSocket(6789); 

while(true) { 

Socket connectionSocket = welcomeSocket.accept();

BufferedReader inFromClient = 
new BufferedReader(new
InputStreamReader(connectionSocket.getInputStream()));

Create
welcoming socket

at port 6789

Wait, on welcoming
socket for contact

by client

Create input
stream, attached 

to socket
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Example: Java server (TCP), cont

DataOutputStream  outToClient = 
new DataOutputStream(connectionSocket.getOutputStream());

clientSentence = inFromClient.readLine();

capitalizedSentence = clientSentence.toUpperCase() + '\n';

outToClient.writeBytes(capitalizedSentence); 
} 

} 
}

Read in  line
from socket

Create output
stream, attached 

to socket

Write out line
to socket

End of while loop,
loop back and wait for
another client connection
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Socket programming with UDP

UDP: no “connection” between 
client and server

r no handshaking
r sender explicitly attaches 

IP address and port of 
destination

r server must extract IP 
address, port of sender 
from received datagram

UDP: transmitted data may be 
received out of order, or 
lost

application viewpoint

UDP provides unreliable transfer
of groups of bytes (“datagrams”)

between client and server
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Client/server socket interaction: UDP

close
clientSocket

Server (running on hostid)

read reply from
clientSocket

create socket,
clientSocket =
DatagramSocket ()

Client

Create, address (hostid, port=x,
send datagram request 
using clientSocket

create socket,
port=x, for
incoming request:
serverSocket =
DatagramSocket ()

read request from
serverSocket

write reply to
serverSocket
specifying client
host address,
port umber
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Sockets used for datagrams

ServerAddress and ClientAddress are socket addresses

Sending a message Receiving a message

bind(s, ClientAddress)

sendto(s, "message", ServerAddress)

bind(s, ServerAddress)

amount = recvfrom(s, buffer, from)

s = socket(AF_INET, SOCK_DGRAM, 0)s = socket(AF_INET, SOCK_DGRAM, 0)
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Example: Java client (UDP)

import java.io.*; 
import java.net.*; 

class UDPClient { 
public static void main(String args []) throws Exception 
{

BufferedReader inFromUser = 
new BufferedReader(new InputStreamReader(System.in));

DatagramSocket clientSocket = new DatagramSocket();

InetAddress IPAddress = InetAddress.getByName("hostname"); 

byte[] sendData = new byte[1024]; 
byte[] receiveData = new byte[1024]; 

String sentence = inFromUser.readLine();

sendData = sentence.getBytes();

Create
input stream

Create 
client socket

Translate
hostname to IP 

address using DNS
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Example: Java client (UDP), cont.

DatagramPacket sendPacket = 
new DatagramPacket(sendData, sendData.length, IPAddress, 9876);

clientSocket.send(sendPacket);

DatagramPacket receivePacket = 
new DatagramPacket(receiveData, receiveData.length);

clientSocket.receive(receivePacket); 

String modifiedSentence = 
new String(receivePacket.getData()); 

System.out.println("FROM SERVER:" + modifiedSentence);
clientSocket.close(); 
} 

}

Create datagram 
with data-to-send,

length, IP addr, port

Send datagram
to server

Read datagram
from server
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Example: Java server (UDP)

import java.io.*; 
import java.net.*; 

class UDPServer { 
public static void main(String args []) throws Exception 
{

DatagramSocket serverSocket = new DatagramSocket(9876); 

byte[] receiveData = new byte[1024]; 
byte[] sendData  = new byte[1024]; 

while(true) 
{

DatagramPacket receivePacket = 
new DatagramPacket(receiveData, receiveData.length);

serverSocket.receive(receivePacket);

Create
datagram socket

at port 9876

Create space for
received datagram

Receive
datagram
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Example: Java server (UDP), cont

String sentence = new String(receivePacket.getData());

InetAddress IPAddress = receivePacket.getAddress();

int port = receivePacket.getPort(); 

String capitalizedSentence = sentence.toUpperCase();

sendData = capitalizedSentence.getBytes();

DatagramPacket sendPacket = 
new DatagramPacket(sendData, sendData.length, IPAddress, 

port);

serverSocket.send(sendPacket); 
} 

} 

}

Get IP addr
port #, of

sender

Write out 
datagram
to socket

End of while loop,
loop back and wait for
another datagram

Create datagram
to send to client


