
1

Network Programming using sockets

Network Programming 2

TCP/IP layers

Messages (UDP) or Streams (TCP)

Application

Transport

Internet

UDP or TCP packets

IP datagrams

Network-specific frames

Message
Layers

Underlying network

Network interface

2

Network Programming 3

The programmer's conceptual view of a TCP/IP
Internet

IP

Application Application

TCP UDP

Network Programming 4

Socket programming

Socket API
r introduced in BSD4.1 UNIX,

1981
r explicitly created, used,

released by apps
r client/server paradigm
r two types of transport

service via socket API:
m unreliable datagram
m reliable, byte stream-

oriented

a host-local, application-
created/owned,

OS-controlled interface
(a “door”) into which

application process can
both send and

receive messages to/from
another (remote or

local) application process

socket

Goal: learn how to build client/server application that
communicate using sockets

3

Network Programming 5

Sockets and ports

message

agreed portany port socketsocket

Internet address = 138.37.88.249Internet address = 138.37.94.248

other ports

client server

Network Programming 6

Berkeley Sockets (1)

r Socket primitives for TCP/IP.

Release the connectionClose

Receive some data over the connectionReceive

Send some data over the connectionSend

Actively attempt to establish a connectionConnect

Block caller until a connection request arrivesAccept

Announce willingness to accept connectionsListen

Attach a local address to a socketBind

Create a new communication endpointSocket

MeaningPrimitive

4

Network Programming 7

Socket programming with TCP

Client must contact server
r server process must first

be running
r server must have created

socket (door) that
welcomes client’s contact

Client contacts server by:
r creating client-local TCP

socket
r specifying IP address, port

number of server process

r When client creates socket:
client TCP establishes
connection to server TCP

r When contacted by client,
server TCP creates new
socket for server process to
communicate with client
m allows server to talk with

multiple clients

TCP provides reliable, in-order
transfer of bytes (“pipe”)
between client and server

application viewpoint

Network Programming 8

Socket programming with TCP

Example client-server app:
r client reads line from

standard input (inFromUser
stream) , sends to server via
socket (outToServer
stream)

r server reads line from socket
r server converts line to

uppercase, sends back to
client

r client reads, prints modified
line from socket
(inFromServer stream)

Input stream: sequence of
bytes into process

Output stream: sequence of
bytes out of process

client socket

inFromUser ou
tT

oS
er

ve
r

ii
nF

ro
mS

er
ve

r

5

Network Programming 9

Client/server socket interaction: TCP

wait for incoming
connection request
connectionSocket =
welcomeSocket .accept()

create socket,
port=x, for
incoming request:
welcomeSocket =

ServerSocket ()

create socket,
connect to hostid, port=x
clientSocket =

Socket()

close
connectionSocket

read reply from
clientSocket

close
clientSocket

Server (running on hostid) Client

send request using
clientSocketread request from

connectionSocket

write reply to
connectionSocket

TCP
connection setup

Network Programming 10

Berkeley Sockets (2)

r Connection-oriented communication pattern using sockets.

6

Network Programming 11

Sockets used for streams

Requesting a connection Listening and accepting a connection

bind(s, ServerAddress);
listen(s,5);

sNew = accept(s, ClientAddress);

n = read(sNew, buffer, amount)

s = socket(AF_INET, SOCK_STREAM,0)

connect(s, ServerAddress)

write(s, "message", length)

s = socket(AF_INET, SOCK_STREAM,0)

ServerAddress and ClientAddress are socket addresses

Network Programming 12

Example: Java client (TCP)

import java.io.*;
import java.net.*;
class TCPClient {

public static void main(String argv[]) throws Exception
{

String sentence;
String modifiedSentence;

BufferedReader inFromUser =
new BufferedReader(new InputStreamReader(System.in));

Socket clientSocket = new Socket("hostname", 6789);

DataOutputStream outToServer =
new DataOutputStream(clientSocket.getOutputStream ());

Create
input stream

Create
client socket,

connect to server
Create

output stream
attached to socket

7

Network Programming 13

Example: Java client (TCP), cont.

BufferedReader inFromServer =
new BufferedReader(new
InputStreamReader(clientSocket.getInputStream ()));

sentence = inFromUser.readLine();

outToServer.writeBytes(sentence + '\n');

modifiedSentence = inFromServer.readLine();

System.out.println("FROM SERVER: " + modifiedSentence);

clientSocket.close();

}
}

Create
input stream

attached to socket

Send line
to server

Read line
from server

Network Programming 14

Example: Java server (TCP)

import java.io.*;
import java.net.*;

class TCPServer {

public static void main(String argv []) throws Exception
{
String clientSentence;
String capitalizedSentence;

ServerSocket welcomeSocket = new ServerSocket(6789);

while(true) {

Socket connectionSocket = welcomeSocket.accept();

BufferedReader inFromClient =
new BufferedReader(new
InputStreamReader(connectionSocket.getInputStream()));

Create
welcoming socket

at port 6789

Wait, on welcoming
socket for contact

by client

Create input
stream, attached

to socket

8

Network Programming 15

Example: Java server (TCP), cont

DataOutputStream outToClient =
new DataOutputStream(connectionSocket.getOutputStream());

clientSentence = inFromClient.readLine();

capitalizedSentence = clientSentence.toUpperCase() + '\n';

outToClient.writeBytes(capitalizedSentence);
}

}
}

Read in line
from socket

Create output
stream, attached

to socket

Write out line
to socket

End of while loop,
loop back and wait for
another client connection

Network Programming 16

Socket programming with UDP

UDP: no “connection” between
client and server

r no handshaking
r sender explicitly attaches

IP address and port of
destination

r server must extract IP
address, port of sender
from received datagram

UDP: transmitted data may be
received out of order, or
lost

application viewpoint

UDP provides unreliable transfer
of groups of bytes (“datagrams”)

between client and server

9

Network Programming 17

Client/server socket interaction: UDP

close
clientSocket

Server (running on hostid)

read reply from
clientSocket

create socket,
clientSocket =
DatagramSocket ()

Client

Create, address (hostid, port=x,
send datagram request
using clientSocket

create socket,
port=x, for
incoming request:
serverSocket =
DatagramSocket ()

read request from
serverSocket

write reply to
serverSocket
specifying client
host address,
port umber

Network Programming 18

Sockets used for datagrams

ServerAddress and ClientAddress are socket addresses

Sending a message Receiving a message

bind(s, ClientAddress)

sendto(s, "message", ServerAddress)

bind(s, ServerAddress)

amount = recvfrom(s, buffer, from)

s = socket(AF_INET, SOCK_DGRAM, 0)s = socket(AF_INET, SOCK_DGRAM, 0)

10

Network Programming 19

Example: Java client (UDP)

import java.io.*;
import java.net.*;

class UDPClient {
public static void main(String args []) throws Exception
{

BufferedReader inFromUser =
new BufferedReader(new InputStreamReader(System.in));

DatagramSocket clientSocket = new DatagramSocket();

InetAddress IPAddress = InetAddress.getByName("hostname");

byte[] sendData = new byte[1024];
byte[] receiveData = new byte[1024];

String sentence = inFromUser.readLine();

sendData = sentence.getBytes();

Create
input stream

Create
client socket

Translate
hostname to IP

address using DNS

Network Programming 20

Example: Java client (UDP), cont.

DatagramPacket sendPacket =
new DatagramPacket(sendData, sendData.length, IPAddress, 9876);

clientSocket.send(sendPacket);

DatagramPacket receivePacket =
new DatagramPacket(receiveData, receiveData.length);

clientSocket.receive(receivePacket);

String modifiedSentence =
new String(receivePacket.getData());

System.out.println("FROM SERVER:" + modifiedSentence);
clientSocket.close();
}

}

Create datagram
with data-to-send,

length, IP addr, port

Send datagram
to server

Read datagram
from server

11

Network Programming 21

Example: Java server (UDP)

import java.io.*;
import java.net.*;

class UDPServer {
public static void main(String args []) throws Exception
{

DatagramSocket serverSocket = new DatagramSocket(9876);

byte[] receiveData = new byte[1024];
byte[] sendData = new byte[1024];

while(true)
{

DatagramPacket receivePacket =
new DatagramPacket(receiveData, receiveData.length);

serverSocket.receive(receivePacket);

Create
datagram socket

at port 9876

Create space for
received datagram

Receive
datagram

Network Programming 22

Example: Java server (UDP), cont

String sentence = new String(receivePacket.getData());

InetAddress IPAddress = receivePacket.getAddress();

int port = receivePacket.getPort();

String capitalizedSentence = sentence.toUpperCase();

sendData = capitalizedSentence.getBytes();

DatagramPacket sendPacket =
new DatagramPacket(sendData, sendData.length, IPAddress,

port);

serverSocket.send(sendPacket);
}

}

}

Get IP addr
port #, of

sender

Write out
datagram
to socket

End of while loop,
loop back and wait for
another datagram

Create datagram
to send to client

