
1

Synchronization

Distributed Software Systems

2

Clock Synchronization

When each machine has its own clock, an event that
occurred after another event may nevertheless
be assigned an earlier time.

2

3

Skew between computer clocks in a
distributed system

Network

4

Clock Synchronization Algorithms

The relation between clock time and UTC when clocks tick at different
rates.

3

5

Clock Synchronization

Physical clocks drift, therefore need for
clock synchronization algorithms

Many algorithms depend upon clock
synchronization
Clock synch. Algorithms – Christian, NTP,
Berkeley algorithm, etc.

However, since we cannot perfectly
synchronize clocks across computers, we
cannot use physical time to order events

6

Clock synchronization using a time
server

mr

mt
p Time server,S

4

7

Cristian's Algorithm

Getting the current time from a time server.

8

Clock synchronization algorithms
Cristian’s algorithm

p should set its time to t + Tround/2
Earliest time at which S could have placed its

time in mt was min after p dispatched mr
Latest point at which it could do so was min

before mt arrived at p
Time by S’s clock when message arrives at p is in

range [t + min, t + Tround – min]
Accuracy ±(Tround/2-min)

5

9

The Berkeley Algorithm

a) The time daemon asks all the other machines for their clock values
b) The machines answer
c) The time daemon tells everyone how to adjust their clock

10

An example synchronization subnet in
an NTP implementation

1

2

3

2

3 3

Note: Arrows denote synchronization control, numbers denote
strata.

6

11

Logical time & clocks

Lamport proposed using logical clocks
based upon the “happened before” relation

If two events occur at the same process, then
they occurred in the order observed
Whenever a message is sent between
processes, the event of sending occurred
before the event of receiving
X happened before Y denoted by X→Y

12

Events occurring at three
processes

p1

p2

p3

a b

c d

e f

m1

m2

Physical
time

7

13

Lamport’s algorithm

Each process has its own logical clock
LC1: Cp is incremented before each event
at process p
LC2:

1. When process p sends a message it
piggybacks on it the value Cp

2. On receiving a message (m,t) a process q
computes Cq = max(Cq,t) and then applies LC1
before timestamping the receive event

14

Lamport timestamps for the events

a b

c d

e f

m1

m2

21

3 4

51

p1

p2

p3

Physical
time

8

15

Vector Timestamps

Shortcoming of Lamport’s clocks: if L(e) <
L(f), we cannot conclude that e f
Vector clocks

A process keeps an array of clocks, one for
each process
Like Lamport timestamps, processes piggyback
vector timestamps on messages they send each
other

V = W iff V[j] = W[j] for j = 1, 2, …, N
V ≤W iff V[j] ≤ W[j] for j = 1, 2, …, N
V < W if V ≤ W and V ≠ W

16

Vector timestamps for the events

a b

c d

e f

m1

m2

(2,0,0)(1,0,0)

(2,1,0) (2,2,0)

(2,2,2)(0,0,1)

p1

p2

p3

Physical
time

9

17

Totally ordered logical clocks

Logical clocks only impose partial ordering
For total order, use (Ta,Pa) where Pa is
processor id
(Ta,Pa) < (Tb,Pb) if and only if either
Ta < Tb or (Ta = Tb and Pa < Pb)
This ordering has no physical significance,
but it is sometime useful, e.g. to break a
tie between two processes trying to enter
a critical section

18

Example: Totally-Ordered Multicasting

Updating a replicated database and leaving it in an
inconsistent state.

10

19

Distributed mutual exclusion
Central server algorithm
Ricart and Agrawal algorithm

A distributed algorithm that uses logical clocks
Ring-based algorithms

NOTE: the above algorithms are not fault-tolerant and
not very practical. However, they illustrate issues in
the design of distributed algorithms
Several other mutual exclusion algorithms have been
proposed

Quorum consensus algorithms – Maekawa’s algorithm
We will discuss majority voting in the context of replicated
data management

20

Server managing a mutual exclusion
token for a set of processes

Server

1. Request
token

Queue of
requests

2. Release
token

3. Grant
token

4

2

p4

p
3p2

p
1

11

21

A ring of processes transferring a
mutual exclusion token

pn

p
2

p
3

p
4

Token

p
1

22

Ricart and Agrawala’s algorithm
On initialization

state := RELEASED;
To enter the section

state := WANTED;
Multicast request to all processes; request processing deferred here
T := request’s timestamp;
Wait until (number of replies received = (N – 1));
state := HELD;

On receipt of a request <Ti, pi> at pj (i ≠ j)
if (state = HELD or (state = WANTED and (T, pj) < (Ti, pi)))
then

queue request from pi without replying;
else

reply immediately to pi;
end if

To exit the critical section
state := RELEASED;
reply to any queued requests;

12

23

Multicast synchronization

p
3

34

Reply

34

41

41
41

34

p
1

p
2

Reply
Reply

24

Comparison

A comparison of three mutual exclusion algorithms.

Lost token, process
crash0 to n – 11 to ∞Token ring

Crash of any
process2 (n – 1)2 (n – 1)Distributed

Coordinator crash23Centralized

ProblemsDelay before entry (in
message times)

Messages per
entry/exitAlgorithm

13

25

Maekawa’s algorithm

Every node needs permission from other
nodes in its quorum before it enters
critical section
Quorums are constructed in such a way
that no two nodes can be in their critical
section at the same time
The size of each node’s quorum is O(√N),
which can be shown to be optimal

26

Construction of quorum sets

Consider a system with 9 nodes
The quorum for any node includes

the nodes in its row and column

Quorum for Node 1 = {1,2,3,4,7}
Quorum for Node 2 = {2,5,8,1,3}
There is a non-null intersection for

the quorums of any two nodes 987

654

321

14

27

Maekawa’s algorithm
On initialization

state := RELEASED;
voted := FALSE;

For pi to enter the critical section
state := WANTED;
Multicast request to all processes in Vi – {pi};
Wait until (number of replies received = (K – 1));
state := HELD;

On receipt of a request from pi at pj (i ≠ j)
if (state = HELD or voted = TRUE)
then

queue request from pi without replying;
else

send reply to pi;
voted := TRUE;

end if

28

Maekawa’s algorithm – cont’d

For pi to exit the critical section
state := RELEASED;
Multicast release to all processes in Vi – {pi};

On receipt of a release from pi at pj (i ≠ j)
if (queue of requests is non-empty)
then

remove head of queue – from pk, say;
send reply to pk;
voted := TRUE;

else
voted := FALSE;

end if

15

29

Election Algorithms

An election is a procedure carried out to chose a
process from a group, for example to take over the
role of a process that has failed
Main requirement: elected process should be unique
even if several processes start an election
simultaneously
Algorithms:

Bully algorithm: assumes all processes know the identities
and addresses of all the other processes
Ring-based election: processes need to know only addresses
of their immediate neighbors

30

A ring-based election in progress

24

15

9

4

3

28

17

24

1

Note: The election was started by process 17.
The highest process identifier encountered so far is 24.
Participant processes are shown darkened

16

31

The bully algorithm

p1 p
2

p
3

p
4

p
1

p
2

p
3

p
4

C
coordinator

Stage 4

C

election

election
Stage 2

p
1

p
2

p
3

p
4

C

election

answer

answer

election
Stage 1

timeout

Stage 3

Eventually.....

p
1

p
2

p
3 p

4

election

answer

The election of coordinator
p2, after the failure of p4 and
then p3

32

Detecting global properties
p2p1

message
garbage object

object
reference

a. Garbage collection

p2p1 wait-for

wait-forb. Deadlock

p2p1

activate
passive passivec. Termination

17

33

Global states and consistent cuts

Capturing a global state would be straightforward
if we had perfectly synchronized clocks
How to capture a meaningful global state from
local states recorded at different real times?
Each process records events that correspond to
internal actions, e.g. updating a variable, and the
sending or receipt of a message
A Cut is a subset of the system’s global history
that is a union of prefixes of process histories
A cut is consistent if for each event it contains, it
also contains all events that happened before that
event

34

Consistent and Inconsistent Cuts

m1 m2

p1

p2
Physical

time

e1
0

Consistent cut
Inconsistent cut

e1
1 e1

2 e1
3

e2
0 e 2

1 e 2
2

18

35

Chandy and Lamport’s snapshot algorithm

Goal: record a set of process and channel states
for a set of processes such that even if the
combination of recorded states may never have
occurred at the same time, the recorded state is
consistent
State recorded locally at processes
Assumptions

neither channels nor processes fail; communication is reliable
channels are unidirectional and provide FIFO message delivery
the graph of processes and channels is strongly connected
any process may initiate a global snapshot at any time
processes may continue with their execution and send and
receive normal messages while the snapshot takes place

36

Chandy and Lamport algorithm

Organization of a process and channels for a distributed snapshot

19

37

Chandy and Lamport’s ‘snapshot’ algorithm

Marker receiving rule for process pi
On pi’s receipt of a marker message over channel c:

if (pi has not yet recorded its state) it
records its process state now;
records the state of c as the empty set;
turns on recording of messages arriving over other incoming channels;

else
pi records the state of c as the set of messages it has received over c

since it saved its state.
end if

Marker sending rule for process pi
After pi has recorded its state, for each outgoing channel c:

pi sends one marker message over c
(before it sends any other message over c).

38

Chandy & Lamport algorithm

b) Process Q receives a marker for the first time and records its
local state

c) Q records all incoming message
d) Q receives a marker for its incoming channel and finishes

recording the state of the incoming channel

20

39

Two processes and their initial states

p1 p2
c2

c1

account widgets

$1000 (none)

account widgets

$50 2000

Assume that p2 has already received an order for five
widgets, which it will shortly dispatch to p1

40

Example: Chandy & Lamport’s algorithm

p1 p2(empty)<$1000, 0> <$50, 2000>

(empty)

c2

c1

1. Global state S0

2. Global state S1

3. Global state S2

4. Global state S3

p1 p2(Order 10, $100), M<$900, 0> <$50, 2000>

(empty)

c2

c1

p1 p2(Order 10, $100), M<$900, 0> <$50, 1995>

(five widgets)

c2

c1

p1 p2(Order 10, $100)<$900, 5> <$50, 1995>

(empty)

c2

c1

(M = marker message)

	Synchronization
	Clock Synchronization
	Skew between computer clocks in a distributed system
	Clock Synchronization Algorithms
	Clock Synchronization
	Clock synchronization using a time server
	Cristian's Algorithm
	Clock synchronization algorithms
	The Berkeley Algorithm
	An example synchronization subnet in an NTP implementation
	Logical time & clocks
	Events occurring at three processes
	Lamport’s algorithm
	Lamport timestamps for the events
	Vector Timestamps
	Vector timestamps for the events
	Totally ordered logical clocks
	Example: Totally-Ordered Multicasting
	Distributed mutual exclusion
	Server managing a mutual exclusion token for a set of processes
	A ring of processes transferring a mutual exclusion token
	Ricart and Agrawala’s algorithm
	Multicast synchronization
	Comparison
	Maekawa’s algorithm
	Construction of quorum sets
	Maekawa’s algorithm
	Maekawa’s algorithm – cont’d
	Election Algorithms
	A ring-based election in progress
	The bully algorithm
	Detecting global properties
	Global states and consistent cuts
	Consistent and Inconsistent Cuts
	Chandy and Lamport’s snapshot algorithm
	Chandy and Lamport algorithm
	Chandy and Lamport’s ‘snapshot’ algorithm
	Chandy & Lamport algorithm
	Two processes and their initial states
	Example: Chandy & Lamport’s algorithm

