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Synchronization

Distributed Software Systems
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Clock Synchronization

When each machine has its own clock, an event that 
occurred after another event may nevertheless 
be assigned an earlier time.
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Skew between computer clocks in a 
distributed system

Network
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Clock Synchronization Algorithms

The relation between clock time and UTC when clocks tick at different 
rates.
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Clock Synchronization

Physical clocks drift, therefore need for 
clock synchronization algorithms

Many algorithms depend upon clock 
synchronization
Clock synch. Algorithms – Christian, NTP, 
Berkeley algorithm, etc.

However, since we cannot perfectly 
synchronize clocks across computers, we 
cannot use physical time to order events
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Clock synchronization using a time 
server

mr

mt
p Time server,S
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Cristian's Algorithm

Getting the current time from a time server.
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Clock synchronization algorithms
Cristian’s algorithm

p should set its time to t + Tround/2
Earliest time at which S could have placed its 

time in mt was min after p dispatched mr
Latest point at which it could do so was min

before mt arrived at p
Time by S’s clock when message arrives at p is in 

range [t + min, t + Tround – min]
Accuracy ±(Tround/2-min)
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The Berkeley Algorithm

a) The time daemon asks all the other machines for their clock values
b) The machines answer
c) The time daemon tells everyone how to adjust their clock
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An example synchronization subnet in 
an NTP implementation

1

2

3

2

3 3

Note: Arrows denote synchronization control, numbers denote 
strata.
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Logical time & clocks

Lamport proposed using logical clocks 
based upon the “happened before” relation 

If two events occur at the same process, then 
they occurred in the order observed
Whenever a message is sent between 
processes, the event of sending occurred 
before the event of receiving
X happened before Y denoted by X→Y
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Events occurring at three 
processes
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p3
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Physical
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Lamport’s algorithm

Each process has its own logical clock
LC1: Cp is incremented before each event 
at process p
LC2:

1. When process p sends a message it 
piggybacks on it the value  Cp

2. On receiving a message (m,t) a process q 
computes  Cq = max(Cq,t) and then applies LC1  
before timestamping the receive event
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Lamport timestamps for the events
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Vector Timestamps

Shortcoming of Lamport’s clocks: if L(e) < 
L(f), we cannot conclude that e f
Vector clocks

A process keeps an array of clocks, one for 
each process
Like Lamport timestamps, processes piggyback 
vector timestamps on messages they send each 
other

V = W iff V[j] = W[j] for j = 1, 2, …, N
V ≤W iff V[j] ≤ W[j]  for j = 1, 2, …, N
V < W if V ≤ W and V ≠ W
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Vector timestamps for the events
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Totally ordered logical clocks

Logical clocks only impose partial ordering 
For total order, use (Ta,Pa) where Pa is 
processor id
(Ta,Pa) < (Tb,Pb) if and only if either 
Ta < Tb or (Ta = Tb and Pa < Pb)
This ordering has no physical significance, 
but it is sometime useful, e.g. to break a 
tie between two processes trying to enter 
a critical section
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Example: Totally-Ordered Multicasting

Updating a replicated database and leaving it in an 
inconsistent state.
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Distributed mutual exclusion
Central server algorithm
Ricart and Agrawal algorithm

A distributed algorithm that uses logical clocks
Ring-based algorithms

NOTE: the above algorithms are not fault-tolerant and 
not very practical. However, they illustrate issues in 
the design of distributed algorithms
Several other mutual exclusion algorithms have been 
proposed

Quorum consensus algorithms – Maekawa’s algorithm
We will discuss majority voting in the context of replicated 
data management

20

Server managing a mutual exclusion 
token for a set of processes

Server

1. Request
token

Queue of
requests

2. Release
token

3. Grant
token
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A ring of processes transferring a 
mutual exclusion token

pn

p
2

p
3

p
4

Token

p
1
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Ricart and Agrawala’s algorithm
On initialization

state := RELEASED; 
To enter the section

state := WANTED;
Multicast request to all processes; request processing deferred here
T := request’s timestamp;
Wait until (number of replies received = (N – 1));
state := HELD;

On receipt of a request <Ti, pi> at pj (i ≠ j)
if (state = HELD or (state = WANTED and (T, pj) < (Ti, pi)))
then

queue request from pi without replying; 
else

reply immediately to pi;
end if

To exit the critical section
state := RELEASED;
reply to any queued requests;
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Multicast synchronization

p
3

34

Reply
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Comparison

A comparison of three mutual exclusion algorithms.

Lost token, process 
crash0 to n – 11 to ∞Token ring

Crash of any 
process2 ( n – 1 )2 ( n – 1 )Distributed

Coordinator crash23Centralized

ProblemsDelay before entry (in 
message times)

Messages per 
entry/exitAlgorithm
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Maekawa’s algorithm

Every node needs permission from other 
nodes in its quorum before it enters 
critical section
Quorums are constructed in such a way 
that no two nodes can be in their critical 
section at the same time
The size of each node’s quorum is O(√N), 
which can be shown to be optimal
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Construction of quorum sets

Consider a system with 9 nodes
The quorum for any node includes 

the nodes in its row and column

Quorum for Node 1 = {1,2,3,4,7}
Quorum for Node 2 = {2,5,8,1,3}
There is a non-null intersection for 

the quorums of any two nodes 987

654

321
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Maekawa’s algorithm
On initialization

state := RELEASED;
voted := FALSE;

For pi to enter the critical section
state := WANTED;
Multicast request to all processes in Vi – {pi};
Wait until (number of replies received = (K – 1));
state := HELD;

On receipt of a request from pi at pj (i ≠ j)
if (state = HELD or voted = TRUE)
then

queue request from pi without replying; 
else

send reply to pi;
voted := TRUE;

end if
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Maekawa’s algorithm – cont’d

For pi to exit the critical section
state := RELEASED;
Multicast release to all processes in Vi – {pi};

On receipt of a release from pi at pj (i ≠ j)
if (queue of requests is non-empty)
then

remove head of queue – from pk, say; 
send reply to pk;
voted := TRUE;

else
voted := FALSE;

end if
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Election Algorithms

An election is a procedure carried out to chose a 
process from a group, for example to take over the 
role of a process that has failed
Main requirement: elected process should be unique 
even if several processes start an election 
simultaneously
Algorithms:

Bully algorithm: assumes all processes know the identities 
and addresses of all the other processes
Ring-based election: processes need to know only addresses 
of their immediate neighbors 
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A ring-based election in progress
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Note: The election was started by process 17.
The highest process identifier encountered so far is 24. 
Participant processes are shown darkened
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The bully algorithm
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The election of coordinator 
p2,  after the failure of p4 and 
then p3
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Detecting global properties
p2p1

message
garbage object

object
reference

a. Garbage collection

p2p1 wait-for

wait-forb. Deadlock

p2p1

activate
passive passivec. Termination
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Global states and consistent cuts

Capturing a global state would be straightforward 
if we had perfectly synchronized clocks
How to capture a meaningful global state from 
local states recorded at different real times?
Each process records events that correspond to 
internal actions, e.g. updating a variable, and the 
sending or receipt of a message
A Cut is a subset of the system’s global history 
that is a union of prefixes of process histories
A cut is consistent if for each event it contains, it 
also contains all events that happened before that 
event 
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Consistent and Inconsistent Cuts
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Chandy and Lamport’s snapshot algorithm

Goal: record a set of process and channel states 
for a set of processes such that even if the 
combination of recorded states may never have 
occurred at the same time, the recorded state is 
consistent
State recorded locally at  processes
Assumptions

neither channels nor processes fail; communication is reliable
channels are unidirectional and provide FIFO message delivery
the graph of processes and channels is strongly connected
any process may initiate a global snapshot at any time
processes may continue with their execution and send and 
receive normal messages while the snapshot takes place
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Chandy and Lamport algorithm

Organization of a process and channels for a distributed snapshot
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Chandy and Lamport’s ‘snapshot’ algorithm

Marker receiving rule for process pi
On pi’s receipt of a marker message over channel c:

if (pi has not yet recorded its state) it
records its process state now;
records the state of c as the empty set;
turns on recording of messages arriving over other incoming channels;

else
pi records the state of c as the set of messages it has received over c

since it saved its state.
end if

Marker sending rule for process pi
After pi has recorded its state, for each outgoing channel c:

pi sends one marker message over c
(before it sends any other message over c).
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Chandy & Lamport algorithm

b) Process Q receives a marker for the first time and records its 
local state

c) Q records all incoming message
d) Q receives a marker for its incoming channel and finishes 

recording the state of the incoming channel
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Two processes and their initial states

p1 p2
c2

c1

account widgets

$1000 (none)

account widgets

$50 2000

Assume that p2 has already received an order for five 
widgets, which it will shortly dispatch to p1

40

Example: Chandy & Lamport’s algorithm

p1 p2(empty)<$1000, 0> <$50, 2000>

(empty)

c2

c1

1. Global state S0

2. Global state S1

3. Global state S2

4. Global state S3

p1 p2(Order 10, $100), M<$900, 0> <$50, 2000>

(empty)

c2

c1

p1 p2(Order 10, $100), M<$900, 0> <$50, 1995>

(five widgets)

c2

c1

p1 p2(Order 10, $100)<$900, 5> <$50, 1995>

(empty)

c2

c1

(M = marker message)
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