
1

Transactions 1

Transactions

Distributed Software Systems

Transactions 2

Transactions

? Motivation
? Provide atomic operations at servers that maintain

shared data for clients
? Provide recoverability from server crashes

? Properties
? Atomicity, Consistency, Isolation, Durability (ACID)

? Concepts: commit, abort

2

Transactions 3

Operations of the Account interface

deposit(amount)
deposit amount in the account

withdraw(amount)
withdraw amount from the account

getBalance() -> amount
return the balance of the account

setBalance(amount)
set the balance of the account to amount

create(name) -> account
create a new account with a given name

lookUp(name) -> account
return a reference to the account with the given
name

branchTotal() -> amount
return the total of all the balances at the branch

Operations of the Branch interface

Transactions 4

A client’s banking transaction

Transaction T:
a.withdraw(100);
b.deposit(100);
c.withdraw(200);
b.deposit(200);

3

Transactions 5

Operations in Coordinator interface

openTransaction() -> trans;
starts a new transaction and delivers a unique TID trans.
This identifier will be used in the other operations in the
transaction.

closeTransaction(trans) -> (commit, abort);
ends a transaction: a commit return value indicates that
the transaction has committed; an abort return value
indicates that it has aborted.

abortTransaction(trans);
aborts the transaction.

Transactions 6

Transaction life histories

Successful Aborted by client Aborted by server

openTransaction openTransaction openTransaction
operation operation operation
operation operation operation

server aborts
transaction

operation operation operation ERROR
reported to client

closeTransaction abortTransaction

4

Transactions 7

Concurrency control

? Motivation: without concurrency control, we have lost
updates, inconsistent retrievals, dirty reads, etc. (see
following slides)

? Concurrency control schemes are designed to allow two
or more transactions to be executed correctly while
maintaining serial equivalence
? Serial Equivalence is correctness criterion
? Schedule produced by concurrency control scheme should be

equivalent to a serial schedule in which transactions are executed
one after the other

? Schemes: locking, optimistic concurrency control, time-
stamp based concurrency control

Transactions 8

The lost update problem

Transaction T :
balance = b.getBalance();
b.setBalance(balance*1.1);
a.withdraw(balance/10)

Transaction U:

balance = b.getBalance();
b.setBalance(balance*1.1);
c.withdraw(balance/10)

balance = b.getBalance(); $200

balance = b.getBalance(); $200

b.setBalance(balance*1.1); $220

b.setBalance(balance*1.1); $220

a.withdraw(balance/10) $80

c.withdraw(balance/10) $280

5

Transactions 9

The inconsistent retrievals problem

Transaction V
a.withdraw(100)
b.deposit(100)

Transaction W:

aBranch.branchTotal()

a.withdraw(100); $100
total = a.getBalance() $100

total = total+b.getBalance() $300

total = total+c.getBalance()

b.deposit(100) $300

Transactions 10

A serially equivalent interleaving of T and U

Transaction T
balance = b.getBalance()
b.setBalance(balance*1.1)
a.withdraw(balance/10)

Transaction U
balance = b.getBalance()
b.setBalance(balance*1.1)
c.withdraw(balance/10)

balance = b.getBalance() $200

b.setBalance(balance*1.1) $220
balance = b.getBalance() $220

b.setBalance(balance*1.1) $242
a.withdraw(balance/10) $80

c.withdraw(balance/10) $278

6

Transactions 11

A serially equivalent interleaving of V and W

Transaction V:
a.withdraw(100);
b.deposit(100)

Transaction W:

aBranch.branchTotal()

a.withdraw(100); $100

b.deposit(100) $300

total = a.getBalance() $100

total = total+b.getBalance() $400

total = total+c.getBalance()
...

Transactions 12

A dirty read when transaction T aborts

Transaction T:

a.getBalance()
a.setBalance(balance + 10)

Transaction U:

a.getBalance()
a.setBalance(balance + 20)

balance = a.getBalance() $100

a.setBalance(balance + 10) $110
balance = a.getBalance() $110

a.setBalance(balance + 20) $130

commit transaction

abort transaction

7

Transactions 13

Serializability

a) – c) Three transactions T1, T2, and T3

d) Possible schedules

BEGIN_TRANSACTION
x = 0;
x = x + 3;

END_TRANSACTION

(c)

BEGIN_TRANSACTION
x = 0;
x = x + 2;

END_TRANSACTION

(b)

BEGIN_TRANSACTION
x = 0;
x = x + 1;

END_TRANSACTION

(a)

Illegalx = 0; x = 0; x = x + 1; x = 0; x = x + 2; x = x + 3;Schedule 3

Legalx = 0; x = 0; x = x + 1; x = x + 2; x = 0; x = x + 3;Schedule 2

Legalx = 0; x = x + 1; x = 0; x = x + 2; x = 0; x = x + 3Schedule 1

(d)

Transactions 14

Read and write operation conflict rules

Operations of different
transactions

Conflict Reason

read read No Because the effect of a pair of read operations
does not depend on the order in which they are
executed

read write Yes Because the effect of a read and a write operation
depends on the order of their execution

write write Yes Because the effect of a pair of write operations
depends on the order of their execution

8

Transactions 15

A non-serially equivalent interleaving of
operations of transactions T and U

Transaction T: Transaction U:

x = read(i)
write(i, 10)

y = read(j)
write(j, 30)

write(j, 20)
z = read (i)

Transactions 16

Implementing Transactions: Private Workspace

a) The file index and disk blocks for a three-block file
b) The situation after a transaction has modified block 0 and

appended block 3
c) After committing

9

Transactions 17

Implementing Transactions: Writeahead Log

a) A transaction
b) – d) The log before each statement is executed

Log

[x = 0 / 1]
[y = 0/2]
[x = 1/4]

(d)

Log

[x = 0 / 1]
[y = 0/2]

(c)

Log

[x = 0 / 1]

(b)

x = 0;
y = 0;
BEGIN_TRANSACTION;

x = x + 1;
y = y + 2
x = y * y;

END_TRANSACTION;
(a)

Transactions 18

Concurrency Control

General organization of managers for handling
transactions.

10

Transactions 19

Transactions T and U with exclusive locks

Transaction T:
balance = b.getBalance()
b.setBalance(bal*1.1)
a.withdraw(bal/10)

Transaction U:

balance = b.getBalance()
b.setBalance(bal*1.1)
c.withdraw(bal/10)

Operations Locks Operations Locks

openTransaction
bal = b.getBalance() lock B

b.setBalance(bal*1.1) openTransaction

a.withdraw(bal/10) lock A bal = b.getBalance() waits for T’s
lock on B

closeTransaction unlock A, B

lock B

b.setBalance(bal*1.1)
c.withdraw(bal/10) lock C

closeTransaction unlock B, C

Transactions 20

Lock compatibility

For one object Lock requested
read write

Lock already set none OK OK

read OK wait

write wait wait

11

Transactions 21

Use of locks in strict two-phase locking

1. When an operation accesses an object within a transaction:
(a) If the object is not already locked, it is locked and the operation

proceeds.
(b) If the object has a conflicting lock set by another transaction, the

transaction must wait until it is unlocked.
(c) If the object has a non-conflicting lock set by another transaction,

the lock is shared and the operation proceeds.
(d) If the object has already been locked in the same transaction, the

lock will be promoted if necessary and the operation proceeds.
(Where promotion is prevented by a conflicting lock, rule (b) is
used.)

2. When a transaction is committed or aborted, the server unlocks all objects
it locked for the transaction.

Transactions 22

Two-Phase Locking (1)

? Two-phase locking.

12

Transactions 23

Strict Two-Phase Locking (2)

? Strict two-phase locking.

Transactions 24

Deadlock with write locks

Transaction T Transaction U

Operations Locks Operations Locks

a.deposit(100); write lock A

b.deposit(200) write lock B

b.withdraw(100)
waits for U’s a.withdraw(200); waits for T’s

lock on B lock on A

13

Transactions 25

The wait-for graph

B

A

Waits for

Held by

Held by

T UU T

Waits for

Transactions 26

A cycle in a wait-for graph

U

V

T

14

Transactions 27

Another wait-for graph

C

T

U
V

Held by

Held by

Held by

T

U

V

W

W

B

Held by

Waits for

Transactions 28

Resolution of deadlock

Transaction T Transaction U

Operations Locks Operations Locks

a.deposit(100); write lock A

b.deposit(200) write lock B

b.withdraw(100)

waits for U’s a.withdraw(200); waits for T’s

lock on B lock on A
(timeout elapses)

T’s lock on A becomes vulnerable,
unlock A, abort T

a.withdraw(200); write locks A
unlock A, B

15

Transactions 29

Optimistic Concurrency Control

? Drawbacks of locking
? Overhead of lock maintenance
? Deadlocks
? Reduced concurrency

? Optimistic Concurrency Control
? In most applications, likelihood of conflicting accesses by

concurrent transactions is low
? Transactions proceed as though there are no conflicts
? Three phases
?Working Phase – transactions read and write private copies of

objects
? Validation Phase – each transaction is assigned a transaction

number when it enters this phase
?Update Phase

Transactions 30

Optimistic Concurrency Control: Serializability
of transaction Tv with respect to transaction Ti

Tv Ti Rule

write read 1. Ti must not read objects written by Tv

read write 2. Tv must not read objects written by Ti

write write 3. Ti must not write objects written by Tv and

Tv must not write objects written by Ti

Tv and Ti are overlapping transactions

For Tv to be serializable wrt Ti the following rules must hold

If simplification is made that only one transaction may be in its
validation or write phases at one time, then third rule is always satisfied

16

Transactions 31

Validation of transactions

Earlier committed
transactions

Working Validation Update

T1

Tv
Transaction
being validated

T2

T3

Later active
transactions

active1

active2

Transactions 32

Validation of Transactions

Backward validation of transaction Tv
boolean valid = true;
for (int Ti = startTn+1; Ti <= finishTn; Ti++){

if (read set of Tv intersects write set of Ti) valid = false;
}

Forward validation of transaction Tv
boolean valid = true;
for (int Tid = active1; Tid <= activeN; Tid++){

if (write set of Tv intersects read set of Tid) valid = false;
}

17

Transactions 33

Timestamp based concurrency control

? Each timestamp is assigned a unique
timestamp at the moment it starts
? In distributed transactions, Lamport’s timestamps

can be used

? Every data item has a timestamp
? Read timestamp = timestamp of transaction that

last read the item
? Write timestamp = timestamp of transaction that

most recently changed an item

Transactions 34

Operation conflicts for timestamp ordering

Rule Tc Ti

1. write read Tc must not write an object that has been read by any Ti where

this requires that Tc = the maximum read timestamp of the object.

2. write write Tc must not write an object that has been written by any Ti where

Ti >Tc

this requires that Tc > write timestamp of the committed object.

3. read write Tc must not read an object that has been written by any Ti where

this requires that Tc > write timestamp of the committed object.

Ti >Tc

Ti >Tc

18

Transactions 35

Timestamp ordering write rule

if (Tc = maximum read timestamp on D &&
Tc > write timestamp on committed version of D)

perform write operation on tentative version of D with write timestamp Tc
else /* write is too late */

Abort transaction Tc

Transactions 36

Write operations and timestamps

(a) write write

(c) T3 write
object produced
by transaction Ti

(with write timestamp Ti)

(b) T3 T3

write(d) T3

T1<T2<T3<T4

Time

Before

After

T2

T2 T3

Time

Before

After

T2

T2 T3

T1

T1

Time

Before

After

T1

T1

T4

T3 T4

Time

Transaction
aborts

Before

After

T4

T4

Tentative

Committed

Ti

Ti

Key:

19

Transactions 37

Timestamp ordering read rule

if (Tc > write timestamp on committed version of D) {
let Dselected be the version of D with the maximum write timestamp = Tc
if (Dselected is committed)

perform read operation on the version Dselected
else

Wait until the transaction that made version Dselected commits or aborts
then reapply the read rule

} else
Abort transaction Tc

Transactions 38

Read operations and timestamps

(b) T3 read

Time

read
proceeds

Selected

T2

Time

read
proceeds

Selected

T2 T4

Time

read waits

Selected

T1 T2

Time

Transaction
abortsT4

Key:

Tentative

Committed

Ti

Ti

object produced
by transaction Ti
(with write timestamp Ti)
T1 < T2 < T3 < T4

(a) T3 read

(c) T3 read (d) T3 read

20

Transactions 39

Timestamps in transactions T and U

Timestamps and versions of objects
T U A B C

RTS WTS RTS WTS RTS WTS
{} S {} S {} S

openTransaction
bal = b.getBalance() {T}

openTransaction
b.setBalance(bal*1.1)

bal = b.getBalance()
wait for T

a.withdraw(bal/10)
commit T T

bal = b.getBalance()
b.setBalance(bal*1.1)
c.withdraw(bal/10) S, U

T, U

S, T

S, T

{U}

Transactions 40

Distributed transactions

Client

X

Y

Z

X

Y

M

NT1

T2

T11

Client

P

T
T12

T
21

T
22

(a) Flat transaction (b) Nested transactions

T

T

21

Transactions 41

Nested banking transaction

a.withdraw(10)

c.deposit(10)

b.withdraw(20)

d.deposit(20)

Client A

B

C

T1

T2

T3

T4

T

D

X

Y

Z

T = openTransaction
openSubTransaction

a.withdraw(10);

closeTransaction

openSubTransaction
b.withdraw(20);

openSubTransaction
c.deposit(10);

openSubTransaction
d.deposit(20);

Transactions 42

A distributed banking transaction

..

BranchZ

BranchX

participant

participant

C

D

Client

BranchY

B

A

participantjoin

join

join

T

a.withdraw(4);

c.deposit(4);

b.withdraw(3);

d.deposit(3);

openTransaction

b.withdraw(T, 3);

closeTransaction

T = openTransaction
a.withdraw(4);
c.deposit(4);
b.withdraw(3);
d.deposit(3);

closeTransaction

Note: the coordinator is in one of the servers, e.g. BranchX

22

Transactions 43

Concurrency Control for Distributed Transactions

General organization of
managers for handling
distributed transactions.

Transactions 44

Concurrency Control for Distributed
Transactions

? Locking
? Distributed deadlocks possible

? Timestamp ordering
? Lamport time stamps
? for efficiency it is required that timestamps issued by

coordinators be roughly synchronized

23

Transactions 45

Interleavings of transactions U, V and W

U V W

d.deposit(10) lock D

b.deposit(10) lock B

a.deposit(20) lock A at Y

at X
c.deposit(30) lock C

b.withdraw(30) wait at Y at Z

c.withdraw(20) wait at Z

a.withdraw(20) wait at X

Transactions 46

Distributed deadlock

D

Waits for

Waits
for

Held by

Held
by

B Waits for
Held

by

X

Y

Z

Held by

W

UV

AC

W

V

U

(a) (b)

24

Transactions 47

Local and global wait-for graphs

X

T U

Y

V T
T

U V

local wait-for graph local wait-for graph global deadlock detector

Transactions 48

Atomic Commit Protocols

? The atomicity of a transaction requires that
when a distributed transaction comes to an
end, either all of its operations are carried out
or none of them

? One phase commit
? Coordinator tells all participants to commit
? If a participant cannot commit (say because of

concurrency control), no way to inform coordinator

? Two phase commit (2PC)

25

Transactions 49

The two-phase commit protocol

Phase 1 (voting phase):
1. The coordinator sends a canCommit? request to each of the participants in

the transaction.
2. When a participant receives a canCommit? request it replies with its vote

(Yes or No) to the coordinator. Before voting Yes, it prepares to commit by
saving objects in permanent storage. If the vote is No the participant aborts
immediately.

Phase 2 (completion according to outcome of vote):
3. The coordinator collects the votes (including its own).

(a) If there are no failures and all the votes are Yes the coordinator
decides to commit the transaction and sends a doCommit request
to each of the participants.

(b) Otherwise the coordinator decides to abort the transaction and
sends doAbort requests to all participants that voted Yes.

4. Participants that voted Yes are waiting for a doCommit or doAbort request
from the coordinator. When a participant receives one of these messages it
acts accordingly and in the case of commit, makes a haveCommitted call as
confirmation to the coordinator.

Transactions 50

Operations for two-phase commit protocol

canCommit?(trans)-> Yes / No
Call from coordinator to participant to ask whether it can commit a
transaction. Participant replies with its vote.

doCommit(trans)
Call from coordinator to participant to tell participant to commit its part of a
transaction.

doAbort(trans)
Call from coordinator to participant to tell participant to abort its part of a
transaction.

haveCommitted(trans, participant)
Call from participant to coordinator to confirm that it has committed the
transaction.

getDecision(trans) -> Yes / No
Call from participant to coordinator to ask for the decision on a transaction
after it has voted Yes but has still had no reply after some delay. Used to
recover from server crash or delayed messages.

26

Transactions 51

Communication in two-phase commit protocol

canCommit?

Yes

doCommit

haveCommitted

Coordinator

1

3

(waiting for votes)

committed

done

prepared to commit

step

Participant

2

4

(uncertain)
prepared to commit

committed

statusstepstatus

Transactions 52

Two-Phase Commit (1)

a) The finite state machine for the coordinator in 2PC.
b) The finite state machine for a participant.

27

Transactions 53

Two-Phase Commit (2)

Actions taken by a participant P when residing in state
READY and having contacted another participant Q.

Contact another participantREADY

Make transition to ABORTINIT

Make transition to ABORTABORT

Make transition to COMMITCOMMIT

Action by PState of Q

Transactions 54

Two-Phase Commit (3)

Outline of the steps taken by the coordinator in
a two phase commit protocol

actions by coordinator:

while START _2PC to local log;
multicast VOTE_REQUEST to all participants;
while not all votes have been collected {

wait for any incoming vote;
if timeout {

write GLOBAL_ABORT to local log;
multicast GLOBAL_ABORT to all participants;
exit;

}
record vote;

}
if all participants sent VOTE_COMMIT and coordinator votes COMMIT{

write GLOBAL_COMMIT to local log;
multicast GLOBAL_COMMIT to all participants;

} else {
write GLOBAL_ABORT to local log;
multicast GLOBAL_ABORT to all participants;

}

28

Transactions 55

Two-Phase Commit (4)

Steps taken by
participant
process in
2PC.

actions by participant:

write INIT to local log;
wait for VOTE_REQUEST from coordinator;
if timeout {

write VOTE_ABORT to local log;
exit;

}
if participant votes COMMIT {

write VOTE_COMMIT to local log;
send VOTE_COMMIT to coordinator;
wait for DECISION from coordinator;
if timeout {

multicast DECISION_REQUEST to other participants;
wait until DECISION is received; /* remain blocked */
write DECISION to local log;

}
if DECISION == GLOBAL_COMMIT

write GLOBAL_COMMIT to local log;
else if DECISION == GLOBAL_ABORT

write GLOBAL_ABORT to local log;
} else {

write VOTE_ABORT to local log;
send VOTE ABORT to coordinator;

}

Transactions 56

Two-Phase Commit (5)

Steps taken for handling incoming decision requests.

actions for handling decision requests: /* executed by separate thread */

while true {
wait until any incoming DECISION_REQUEST is received; /* remain blocked */
read most recently recorded STATE from the local log;
if STATE == GLOBAL_COMMIT

send GLOBAL_COMMIT to requesting participant;
else if STATE == INIT or STATE == GLOBAL_ABORT

send GLOBAL_ABORT to requesting participant;
else

skip; /* participant remains blocked */

29

Transactions 57

Three Phase Commit

? Problem with 2PC
? If coordinator crashes, participants cannot reach a

decision, stay blocked until coordinator recovers

? 3PC
? There is no single state from which it is possible to

make a transition directly to either COMMIT or
ABORT states

? There is no state in which it is not possible to
make a final decision, and from which a transition
to COMMIT can be made

Transactions 58

Three-Phase Commit

a) Finite state machine for the coordinator in 3PC
b) Finite state machine for a participant

