Wormhole Attacks in Wireless Networks

Yiu-Chun Hu, Adrian Perrig and David Johnson

CS818 Presentation By Venkatesh Ramanathan

Introduction

- Wormhole – ‘Shortcut’ through space and time (Source: wikipedia)
- Origin – Worm burrows through the center of apple instead of traveling the whole distance to get to other side
Introduction

- Wormhole attack – Record packet/bits at one location and tunnel to another location.
- Packet Leashes – To detect wormhole attacks
 - Geographic Leashes and Temporal Leashes
 - Authentication Protocol, TIK, for temporal leashes
- Topology based detection unable to detect wormhole

Introduction

- Tunneled packets arrive with better metric
 - Use wired link, Long range wireless link
- Attacker Can
 - forward each bit instead of waiting for the whole packet.
 - Can create wormhole for packets not addressed to self.
 - Can be performed even when communication has confidentiality/authenticity (no crypto keys required)
 - Invisible at higher layers
Introduction

- Dangerous against ad hoc network routing protocols (DSR, AODV)
 - Tunnel RREQ directly to destination node
 - Destination re-broadcasts copy of RREQ and discard all other RREQ
 - Prevents discovery of routes other than through wormhole
 - Attacker could then drop all data packets (DoS)

- OLSR and TBRPF (neighbor discovery protocols)
 - Colluding attackers near nodes A & B wormhole HELLO packets. A & B would believe they are neighbors.

- DSDV
 - If route advertisement is tunneled and A & B not within wireless range, would unable to communicate
Scope

- TIK supports unidirectional and bidirectional wireless links
- Did not consider attacks at physical layer, DoS attacks at MAC layer
- Adversary can place nodes anywhere in the network. Communication between malicious nodes unobservable.
- Using symmetric cryptography as nodes may be resource constrained.
- TIK protocol uses symmetric key cryptography.

Detecting Wormhole Attacks

- Packet Leash – to detect and defend wormhole attacks
- Leash
 - Information added to packet to restrict packet's maximum allowed distance.
 - Designed to protect against wormhole attacks over single hop. Transmission over multiple hops require fresh leash.
- Types:
 - Geographic Leash – Ensure recipient within some distance.
 - Temporal Leash – Upper bound on packet lifetime.
Geographic Leash

- Each node must know its location
- Nodes have loose time synchronization
 - \(d_{sr} \leq || p_s - p_r || + 2 v (t_r - t_s + \Delta) + \delta \)
 - \(d_{sr} \) – upper bound on the distance between sender and receiver
 - \(p_s, p_r \) – locations
 - \(v \) – maximum velocity of node
 - \(\Delta \) – Time synchronization error
 - \(\delta \) – maximum error in location
- Geographic leash can be used to catch an attacker if pretending to be in more than 1 location. (node velocity > maximum node velocity)

Temporal Leash

- Nodes must have ‘tightly synchronized clocks’:
 - maximum difference delta
 - Delta known to all nodes
 - Order of microseconds or hundreds of nano seconds
- Supported hardware
 - LORAN-C – Long Range Navigation Aids
 - WWVB – (NIST time signal) – Used by radio controlled clocks throughout North America
 - GPS, Atomic clocks
- Sender includes time, ts. Receiver computes ts x speed of light and compares with tr. Alternatively, sender includes packet expiration time.
- Digital signature or other authentication scheme to verify timestamps.
Temporal Leashes and TIK

- Sender sets packet expiration time
 - \(tc = ts + L/c - \Delta \)
 - \(ts \) – local time of sender
 - \(c \) – speed of signal
 - \(\Delta \) – time synchronization error
- Receiver checks \(tr < tc \)
- Assumes no delay in sending/receiving packets

Merkle Hash Tree – Mechanism for authenticating keys in TIK

- Values \(v_o, \ldots, v_{w-1} \) are placed at leaf nodes
- Compute \(v'_i = H(v_i) \)
- Internal node \(m_{01} = H(v_o'|v_1) \)
- Root value (\(m_{07} \)) used to authenticate all leaf values.
- To authenticate \(v_2 \), sender discloses \(v_3', m_{01}, \) and \(m_{47} \)
- Receiver computes:
 - \(H[H[m_{01}] | H[H[v_2] | v_3']] | m_{47}] \)
Hash Tree Optimization

- Depth of the tree could be quite large (Not practical for storage)
 - $\log_2 \left(\frac{t}{I} \right)$; I – interval, t-time between rekeying
 - Solution: Store upper layers and compute lower layers on demand.
 - Reconstructing tree requires 2^{d-1} PRF and $2^d - 1$ application of hash functions.

- Number of operations:
 - 2^{D-1} PRF + $2^D - 1$ Hash
 (D – depth of the tree)
 - To choose, d, depth of the tree for on-demand, minimize total storage:
 - $d^* = D/2$
 - Storage:
 - Tree depth of 34 requires 2.5MB to store
TIK (TESLA with Instant Key Disclosure) Protocol

- Packet Transmission Time >> Time Synchronization Error
- Receiver verifies TESLA security condition (corresponding key has not yet been disclosed) as it receives the packet allowing sender to disclose the key in the same packet.
- TIK implements temporal leash
- TIK requires time synchronization between nodes

TIK

Sender Setup

\[
\begin{align*}
\mathcal{F}_{\mathcal{K}}(i) &\rightarrow K_0, K_1, \ldots, K_n
\end{align*}
\]

\[\mathcal{F}:\text{pseudo-random function}\]
\[\mathcal{K}:\text{secret master key}\]
\[I:\text{expire interval}\]

- Sender uses PRF and master key to derive series of keys \(K_0, \ldots, K_n\)
- Computationally infeasible for attacker to find master key even if all keys are known (assuming PRF is secure)
- Without master key, attacker could not derive \(K_i\) that sender has not disclosed
Sender picks key expiration interval I.
- Key K_0 expires at time T_0, K_1 at $T_0 + I$, ...
- Sender constructs merkle hash tree to commit to keys K_0, \ldots, K_{w-1}

Receiver Bootstrapping
- Assumes all nodes have synchronized clocks with max error Δ.
- Receiver knows every sender's hash tree root, T_0 (key expiration time) and I
TIK – Sending and verifying authenticated packets

- Senders estimates upper bound on the arrival time of HMAC
- Sender picks key K_i that will not expire when receiver gets HMAC
- Sender attaches HMAC to packet computed using K_i
- Sender discloses K_i and tree authentication values.

Receiver verifies that K_i was used to compute authentication.
- Packet originated from claimed sender.
- TIK eliminates the need for delayed authentication by disclosing key in the same packet.
- Attacker who re-transmits the packet will incur further delay. Receiver thus rejects the packet.
Evaluation

- Computation Power
 - Optimized MD5 hashing (1.3 mill hashes per sec on Pentium III, 222,000 in iPAQ)
- Storage
 - 2.6MB for hash tree storage.
 - TIK would need 18% CPU on iPAQ for authentication.
 - TIK is not feasible for sensor networks.

Security Analysis

- Packet leashes ensures that attacker is not causing signal to propagate farther than specified distance.
- Does not account for the following:
 - Malicious receiver refuse to check the leash
 - Refuse to check authentication
 - Could tunnel packets to another attacker
 - Nodes can claim false time stamp/location.
Geographic Vs Temporal Leashes

- Geographic
 - Can be used with radio propagation model to detect tunnels through obstacles.
 - No tight time synchronization.
 - $d_{sr} \leq ||p_s - p_r|| + 2V. (t_r - t_s + \Delta) + \delta$
 - Use when $\delta < c \Delta$

- Temporal
 - When used with TIK, less network and computational overhead.
 - $d_{sr} \leq c. (t_r - t_s + \Delta)$
 - Use when $\delta \geq c \Delta$

Related Work

- Topology-Based Approach – Build a model of topology from distance measurements between nodes.
Related Work

- Directional antennas for detecting wormhole attacks using correctly positioned verifier (Hu & Evans).
- Open, Half-Open and Closed worm holes (Wang, et. al.)
 - Open – no higher layer
 - Half-open – one end at higher layer
 - Closed – higher layer
- Radio Frequency Water Marking (authenticates wireless transmission by modulating RF wave form)
- TESLA & TIK
 - TESLA requires looser time synchronization where as TIK better for hop-by-hop authentication (TIK key disclosure along with packet)

Conclusions

- Wormhole attack that exploits routing protocols in ad hoc networks was introduced.
- Presented Packet Leashes (Geographic & Temporal Leashes) to defend against such attacks.
- Presented TIK protocol to authenticate packets received.
 - TIK requires n public keys
 - Node requires 3 – 6 hash function evaluations per interval and 30 evaluations per packet.
 - Less than 3% memory use and 18% CPU use.
 - TIK prevents attacks that cause signal to travel distances longer than radio range
Comments

- Wormhole attack – different form of man in the middle attack
- Geographic Leash – Did not include processing delay, speed of the signal, lower bound on distance
- Temporal leash – TTL
- Network overhead.
- Weak evaluation.
- No experiments.